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VC dimension and Sauer’s lemma



Shattering

Definition

Let H be a class of functions X → {0, 1} and let

C = {c1, . . . , cm} ⊂ X . The restriction of H to C is the set of

functions C → {0, 1} that can be derived from H:

HC =
{

(c1, . . . , cm)→
(
h(c1), . . . , h(cm)

)
: h ∈ H

}
.

Shattering

A hypothesis class H shatters a finite set C ⊂ X if HC = {0, 1}C .

Example:

• H =
{
ha : a ∈ R}.

• H2
rec =

{
h(a1,b1,a2,b2) : a1 ≤ b1 and a2 ≤ b2

}
where

h(a1,b1,a2,b2)(x1, x2) =

{
1 if a1 ≤ x1 ≤ b1 and a2 ≤ x2 ≤ b2 ;

0 otherwise .
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VC dimension

Definition

The Vapnik Chervonenkis dimension VCdim(H) of a hypothesis class H
is the maximal size of a set C ⊂ X that can be shattered by H. If H
can shatter sets of arbitrarily large size we say that VCdim(H) =∞.

Theorem

Let H be a class of infinite VC-dimension. Then H is not

PAC-learnable.

Proof: for every training size m, there exists a set C of size 2m that is

shattered by H. By the NFL theorem, for every learning algorithm A

there exists a probability distribution D over X × {0, 1} such that

LD(h) = 0 but with probability at least 1/7 over the training set, we have

LD
(
A(S)

)
≥ 1/8.
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Fundamental theorem of PAC learning

Let H be a hypothesis class of functions from a domain X to {0, 1} and

let the loss function of 0− 1 loss. Then the following propositions are

equivalent:

1. H has the uniform convergence property,

2. any ERM ruel is a successful agnostic PAC learner for H,

3. H is agnostic PAC learnable,

4. H is PAC learnable,

5. any ERM rule is a sucessful PAC learner for H,

6. H has finite VC-dimension.
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Fundamental theorem of PAC learning (quantitative version)

Let H be a hypothesis class of functions from a domain X to {0, 1} and

let the loss function of 0− 1 loss. Assume thatVCdim(H) <∞. Then

there exist constants C1,C2 such that:

1. H has the uniform convergence property with sample complexity

C1
d + log(1/δ)

ε2
≤ mUC

H (ε, δ) ≤ C2
d + log(1/δ)

ε2
,

2. H is agnostic PAC learnable with sample complexity

C1
d + log(1/δ)

ε2
≤ mH(ε, δ) ≤ C2

d + log(1/δ)

ε2
,

3. H is PAC learnable with sample complexity

C1
d + log(1/δ)

ε
≤ mUC

H (ε, δ) ≤ C2
d log(1/ε) + log(1/δ)

ε
.
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Sauer’s lemma

Definition

Let H be a hypothesis class. Then the growth function of H, denoted

τH : N→ N, is defined as the maximal number of different functions

that can be obtained by restricting H to a set of size m:

τH(m) = max
C⊂X :|C |=m

∣∣HC

∣∣ .
Note: if VCdim(H) = d , then for any m ≤ d we have τH(m) = 2m.

Sauer’s lemma

Let H be a hypothesis class with VCdim(H) ≤ d <∞. Then, for all

m ≥ d ,

τH(m) ≤
d∑

i=0

(
m

i

)
≤
(em

d

)d
.
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Proof of Sauer’s lemma 1/2

In fact we prove the stronger claim: ∣∣Hc
∣∣ ≤ ∣∣{B ⊂ C : H shatters B}

∣∣ ≤ d∑
i=0

(m
i

)
.

where the last inequality holds since no set of size larger than d is shattered byH. The proof is by induction.

m=1: The empty set is always considered to be shattered byH. Hence, either |H(C)| = 1 and d = 0, inequality 1 ≤ 1, or d ≥ 1 and

the inequality is 2 ≤ 2.

Induction: Let C = {c1, . . . , cm}, and let C′ = {c2, . . . , cm}. We note functions like vectors, and we define

Y0 =
{

(y2, . . . , ym) : (0, y2, . . . , ym) ∈ HC or (1, y2, . . . , ym) ∈ HC
}

, and

Y1 =
{

(y2, . . . , ym) : (0, y2, . . . , ym) ∈ HC and (1, y2, . . . , ym) ∈ HC
}

.

Then |HC | = |Y0| + |Y1|. Moreover, Y0 = HC′ and hence by the induction hypothesis:

|Y0| ≤
∣∣HC′

∣∣ ≤ ∣∣{B ⊂ C′ : H shatters B}
∣∣ =

∣∣{B ⊂ C : c1 /∈ B andH shatters B}
∣∣

Next, define

H′ =

{
h ∈ H : ∃h′ ∈ H s.t. h′(c) =

{
1 − h(c) if c = c1

h(c) otherwise

}

Note thatH′ shatters B ⊂ C′ iffH′ shatters B ∪ {c1}, and that Y1 = H′
C′ . Hence, by the induction hypothesis,

|Y1| =
∣∣H′

C′
∣∣ ≤ ∣∣{B ⊂ C′ : H′ shatters B}

∣∣ =
∣∣{B ⊂ C′ : H′ shatters B ∪ {c1}}

∣∣
=
∣∣{B ⊂ C : c1 ∈ B andH′ shatters B}

∣∣ ≤ ∣∣{B ⊂ C : c1 ∈ B andH shatters B}
∣∣ .

Overall,∣∣HC
∣∣ = |Y0| + |Y1| ≤

∣∣{B ⊂ C : c1 /∈ B andH shatters B}
∣∣ +

∣∣{B ⊂ C : c1 ∈ B andH shatters B}
∣∣ =

∣∣{B ⊂ C : H shatters B}
∣∣ .
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Proof of Sauer’s lemma 2/2

For the last inequality, one may observe that if m ≥ 2d , defining N ∼ B(m, 1/2), Chernoff’s

inequality and inequality log(u) ≥ (u − 1)/u yield

− log P(N ≤ d) ≥ m kl

(
d

m
,

1

2

)
≥ d log

2d

m
+ (m − d) log

2(m − d)

m

≥ m log(2) + d log
d

m
+ (m − d)

−d/m
(m − d)/m

= m log(2) + d log
d

em
,

and hence
d∑

i=0

(m
i

)
= 2dP(N ≤ d) ≤ exp

(
−d log

d

em

)
=

(
em

d

)d

.

Besides, for the case d ≤ m ≤ 2d , the inequality is obvious since (em/d)d ≥ 2m: indeed, function

f : x 7→ −x log(x/e) is increasing on [0, 1], and hence for all d ≤ m ≤ 2d :

d

m
log

em

d
= f (d/m) ≥ f (1/2) =

1

2
log(2e) ≥ log(2) ,

which implies (
em

d

)d

= exp

(
d log

em

d

)
≥ exp(m log(2)) = 2m

.

Alternately, you may simply observe that for all m ≥ d ,(
d

m

)d d∑
i=0

(m
i

)
≤

d∑
i=0

(
d

m

)i (m
i

)
≤

m∑
i=0

(
d

m

)i (m
i

)
=

(
1 +

d

m

)m

≤ ed .
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Finite VC dimension implies

Uniform Convergence



Finite VC dimension implies Uniform Convergence

Theorem

Let H be a class and let τH be its growth function. Then, for every

distribution D dans for every δ ∈ (0, 1), with probability at least 1− δ
over the choice of the sample S ∼ D⊗m we have

sup
h∈H

∣∣LD(h)− LS(h)
∣∣ ≤ 1 +

√
log
(
τH(2m))

δ
√

m/2
.

Note: this result is sufficient to prove that finite VC-dim =⇒ learnable,

but the dependency in δ is not correct at all: roughly speaking, the factor

1/δ can be replaced by log(1/δ).
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Proof: symmetrization and Rademacher complexity (1/2)

We consider the 0-1 loss, or any [0, 1]−valued loss. Observe that LD (h) = E[LS′ (h)] where

S′ = z′1, . . . , z
′
m is another iid sample of D. Hence,

ES

[
sup
h∈H

∣∣LD (h)− LS (h)
∣∣] = ES

[
sup
h∈H

∣∣LS′ (h)− LS (h)
∣∣] ≤ ES

[
sup
h∈H

∣∣∣ES′
[
LS′ (h)− LS (h)

]∣∣∣]
≤ ES

[
sup
h∈H

ES′
[∣∣LS′ (h)− LS (h)

∣∣]] ≤ ES

[
ES′
[

sup
h∈H

∣∣LS′ (h)− LS (h)
∣∣]]

= ES,S′

[
sup
h∈H

1

m

∣∣∣∣∣
m∑
i=1

`(h, z′i )− `(h, zi )

∣∣∣∣∣
]

= ES,S′

[
sup
h∈H

1

m

∣∣∣∣∣
m∑
i=1

σi

(
`(h, z′i )− `(h, zi )

)∣∣∣∣∣
]

for all σ ∈ {±1}m

= EΣES,S′

[
sup
h∈H

1

m

∣∣∣∣∣
m∑
i=1

Σi

(
`(h, z′i )− `(h, zi )

)∣∣∣∣∣
]

if Σ ∼ U
(
{±1}m)

= ES,S′EΣ

[
sup
h∈H

1

m

∣∣∣∣∣
m∑
i=1

Σi

(
`(h, z′i )− `(h, zi )

)∣∣∣∣∣
]
.

Now, for every S, S′, let C = CS,S′ be the instances appearing in S and S′. Then

sup
h∈H

1

m

∣∣∣∣∣
m∑
i=1

σi

(
`(h, z′i )− `(h, zi )

)∣∣∣∣∣ = max
h∈HC

1

m

∣∣∣∣∣
m∑
i=1

σi

(
`(h, z′i )− `(h, zi )

)∣∣∣∣∣ .
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Proof: symmetrization and Rademacher complexity (2/2)

Moreover, for every h ∈ HC let Zh = 1
m

∑m
i=1 Σi

(
`(h, z′i )− `(h, zi )

)
. Then EΣ[Zh] = 0, each

summand belongs to [−1, 1] and by Hoeffding’s inequality, for every ε > 0:

PΣ

[
|Zh| ≥ ε

]
≤ 2 exp

(
−

mε2

2

)
.

Hence, by the union bound,

PΣ

[
max

h∈HC

|Zh| ≥ ε
]
≤ 2
∣∣HC

∣∣ exp

(
−

mε2

2

)
.

The following lemma permits to deduce that

EΣ

[
max

h∈HC

Zh|
]
≤

1 +
√

log(|HC |)√
m/2

≤
1 +

√
log(τH(2m))√
m/2

.

Hence,

ES

[
sup
h∈H

∣∣LD (h)− LS (h)
∣∣] ≤ ES,S′EΣ

[
sup
h∈H

1

m

∣∣∣∣∣
m∑
i=1

Σi

(
`(h, z′i )− `(h, zi )

)∣∣∣∣∣
]
≤

1 +
√

log(τH(2m))√
m/2

,

and we conclude by using Markov’s inequality (poor idea! Better: McDiarmid’s inequality).
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Technical Lemma

Lemma

Let a > 0, b > 1, and let Z be a real-valued random variable such that

for all t ≥ 0, P(Z ≥ t) ≤ 2b exp

(
− t2

a2

)
. Then

E[Z ] ≤ a

(√
log(b) +

1√
log(b)

)
.

Proof:

E[Z ] ≤
∫ ∞

0

P(Z ≥ t)dt ≤ a
√

log(b) +

∫ ∞
a
√

log(b)

2b exp

(
−

t2

a2

)

≤ a
√

log(b) + 2b

∫ ∞
a
√

log(b)

t

a
√

log(b)
exp

(
−

t2

a2

)

= a
√

log(b) +
2b

a
√

log(b)
×

a2

2
exp

(
−
(
a
√

log(b)
)2

a2

)

= a
√

log(b) +
a√

log(b)
.

NB: cutting at a
√

log(2b) gives a better but less nice inequality for our use. 12



Finite VC-dimension implies

learnability



Application: Finite VC-dim classes are agnostically learnable

It suffices to prove that finite VC-dim implies the uniform convergence

property. From Sauer’s lemma, for all m ≥ d/2 we have

τH(2m) ≤ (2em/d)d . With the previous theorem, this yields that with

probability at least 1− δ:

sup
h∈H

∣∣LD(h)− LS(h)
∣∣1 +

√
d log

(
2em/d

)
δ
√
m/2

≤ 1

δ

√
8d log(2em/d)

m

as soon as
√
d log

(
2em/d

)
≥ 1. To ensure that this is at most ε, one

may choose

m ≥ 8d log(m)

(δε)2
+

8d log(2e/d)

(δε)2
.

By the following lemma, it is sufficient that

m ≥
32d log

(
4d

(δε)2

)
(δε)2

+
16d log

(
2e
d

)
(δε)2

.
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Technical Lemma

Lemma

Let a > 0. Then

x ≥ 2a log(a) =⇒ x ≥ a log(x) .

Proof: For a ≤ e, true for every x > 0. Otherwise, for a ≥
√
e we have

2a log(a) ≥ a and thus for every t ≥ 2a log(a), as f : t 7→ t − a log(t) is

increasing on [a,∞), f (t) ≥ f (2a log(a)) = a log(a)− a log(2 log(a)) ≥ 0,

since for every a > 0 it holds that a ≥ 2 log(a).

Lemma

Let a ≥ 1, b > 0. Then

x ≥ 4a log(2a) + 2b =⇒ x ≥ a log(x) + b .

Proof: It suffices to check that x ≥ 2a log(x) (given by the above

lemma) and that x ≥ 2b (obvious since 4a log(2a) ≥ 0). 14
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