Machine Learning 5: VC dimension, Sauer's Lemma, Fundamental Theorem of Statistical Learning

Master 2 Computer Science

Aurélien Garivier 2018-2019

- 1. VC dimension and Sauer's lemma
- 2. Finite VC dimension implies Uniform Convergence
- 3. Finite VC-dimension implies learnability

VC dimension and Sauer's lemma

Shattering

Definition

Let \mathcal{H} be a class of functions $\mathcal{X} \to \{0,1\}$ and let $C = \{c_1, \ldots, c_m\} \subset \mathcal{X}$. The *restriction* of \mathcal{H} to C is the set of functions $C \to \{0,1\}$ that can be derived from \mathcal{H} :

$$\mathcal{H}_{\mathcal{C}} = \left\{ (c_1, \ldots, c_m)
ightarrow \left(h(c_1), \ldots, h(c_m)
ight) : h \in \mathcal{H}
ight\}.$$

Shattering

A hypothesis class \mathcal{H} shatters a finite set $\mathcal{C} \subset \mathcal{X}$ if $\mathcal{H}_{\mathcal{C}} = \{0, 1\}^{\mathcal{C}}$.

Example:

•
$$\mathcal{H} = \{h_a : a \in \mathbb{R}\}.$$

• $\mathcal{H}_{rec}^2 = \{h_{(a_1,b_1,a_2,b_2)} : a_1 \le b_1 \text{ and } a_2 \le b_2\}$ where
 $h_{(a_1,b_1,a_2,b_2)}(x_1,x_2) = \begin{cases} 1 & \text{if } a_1 \le x_1 \le b_1 \text{ and } a_2 \le x_2 \le b_2; \\ 0 & \text{otherwise }. \end{cases}$

Definition

The Vapnik Chervonenkis dimension $VCdim(\mathcal{H})$ of a hypothesis class \mathcal{H} is the maximal size of a set $C \subset \mathcal{X}$ that can be shattered by \mathcal{H} . If \mathcal{H} can shatter sets of arbitrarily large size we say that $VCdim(\mathcal{H}) = \infty$.

Theorem

Let ${\mathcal H}$ be a class of infinite VC-dimension. Then ${\mathcal H}$ is not PAC-learnable.

Proof: for every training size *m*, there exists a set *C* of size 2m that is shattered by \mathcal{H} . By the NFL theorem, for every learning algorithm *A* there exists a probability distribution *D* over $\mathcal{X} \times \{0, 1\}$ such that $L_D(h) = 0$ but with probability at least 1/7 over the training set, we have $L_D(\mathcal{A}(S)) \ge 1/8$.

Let \mathcal{H} be a hypothesis class of functions from a domain \mathcal{X} to $\{0,1\}$ and let the loss function of 0-1 loss. Then the following propositions are equivalent:

- 1. $\ensuremath{\mathcal{H}}$ has the uniform convergence property,
- 2. any ERM ruel is a successful agnostic PAC learner for $\mathcal{H},$
- 3. ${\mathcal H}$ is agnostic PAC learnable,
- 4. \mathcal{H} is PAC learnable,
- 5. any ERM rule is a sucessful PAC learner for $\mathcal{H},$
- 6. ${\mathcal H}$ has finite VC-dimension.

Let \mathcal{H} be a hypothesis class of functions from a domain \mathcal{X} to $\{0,1\}$ and let the loss function of 0-1 loss. Assume thatVCdim $(\mathcal{H}) < \infty$. Then there exist constants C_1, C_2 such that:

1. ${\mathcal H}$ has the uniform convergence property with sample complexity

$$C_1 rac{d + \log(1/\delta)}{\epsilon^2} \leq m_{\mathcal{H}}^{\mathit{UC}}(\epsilon, \delta) \leq C_2 rac{d + \log(1/\delta)}{\epsilon^2} \; ,$$

2. \mathcal{H} is agnostic PAC learnable with sample complexity

$$C_1 rac{d + \log(1/\delta)}{\epsilon^2} \leq m_{\mathcal{H}}(\epsilon, \delta) \leq C_2 rac{d + \log(1/\delta)}{\epsilon^2} \; ,$$

3. \mathcal{H} is PAC learnable with sample complexity

$$C_1 rac{d + \log(1/\delta)}{\epsilon} \leq m_{\mathcal{H}}^{UC}(\epsilon, \delta) \leq C_2 rac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon}$$

Sauer's lemma

Definition

Let \mathcal{H} be a hypothesis class. Then the growth function of \mathcal{H} , denoted $\tau_{\mathcal{H}} : \mathbb{N} \to \mathbb{N}$, is defined as the maximal number of different functions that can be obtained by restricting \mathcal{H} to a set of size m:

$$\tau_{\mathcal{H}}(m) = \max_{C \subset X: |C|=m} |\mathcal{H}_C|.$$

Note: if $VCdim(\mathcal{H}) = d$, then for any $m \leq d$ we have $\tau_{\mathcal{H}}(m) = 2^m$.

Sauer's lemma

Let $\mathcal H$ be a hypothesis class with $\operatorname{VCdim}(\mathcal H) \leq d < \infty$. Then, for all $m \geq d$,

$$au_{\mathcal{H}}(m) \leq \sum_{i=0}^d \binom{m}{i} \leq \left(\frac{em}{d}\right)^d$$

Proof of Sauer's lemma 1/2

In fact we prove the stronger claim:

$$|\mathcal{H}_{c}| \leq |\{B \subset C : \mathcal{H} \text{ shatters } B\}| \leq \sum_{i=0}^{d} {m \choose i}.$$

where the last inequality holds since no set of size larger than d is shattered by \mathcal{H} . The proof is by induction.

m=1: The empty set is always considered to be shattered by \mathcal{H} . Hence, either $|\mathcal{H}(\mathcal{C})| = 1$ and d = 0, inequality $1 \leq 1$, or $d \geq 1$ and the inequality is $2 \leq 2$.

Induction: Let $C = \{c_1, \ldots, c_m\}$, and let $C' = \{c_2, \ldots, c_m\}$. We note functions like vectors, and we define

$$\begin{split} &Y_0 = \left\{(y_2, \ldots, y_m) : (0, y_2, \ldots, y_m) \in \mathcal{H}_C \text{ or } (1, y_2, \ldots, y_m) \in \mathcal{H}_C \right\}, \quad \text{and} \\ &Y_1 = \left\{(y_2, \ldots, y_m) : (0, y_2, \ldots, y_m) \in \mathcal{H}_C \text{ and } (1, y_2, \ldots, y_m) \in \mathcal{H}_C \right\}. \end{split}$$

Then $|\mathcal{H}_{C}| = |Y_{0}| + |Y_{1}|$. Moreover, $Y_{0} = \mathcal{H}_{C'}$ and hence by the induction hypothesis:

$$|Y_0| \leq |\mathcal{H}_{\mathcal{C}'}| \leq |\{B \subset \mathcal{C}' : \mathcal{H} \text{ shatters } B\}| = |\{B \subset \mathcal{C} : c_1 \notin B \text{ and } \mathcal{H} \text{ shatters } B\}|$$

Next, define

$$\mathcal{H}' = \left\{ h \in \mathcal{H} : \exists h' \in \mathcal{H} \text{ s.t. } h'(c) = \left\{ \begin{matrix} 1 - h(c) \text{ if } c = c_1 \\ h(c) \text{ otherwise} \end{matrix} \right\} \right\}$$

Note that \mathcal{H}' shatters $B \subset C'$ iff \mathcal{H}' shatters $B \cup \{c_1\}$, and that $Y_1 = \mathcal{H}'_{C'}$. Hence, by the induction hypothesis,

$$\begin{split} |Y_1| &= |\mathcal{H}'_{\mathcal{C}'}| \leq |\{B \subset \mathcal{C}' : \mathcal{H}' \text{ shatters } B\}| = |\{B \subset \mathcal{C}' : \mathcal{H}' \text{ shatters } B \cup \{c_1\}\}| \\ &= |\{B \subset \mathcal{C} : c_1 \in B \text{ and } \mathcal{H}' \text{ shatters } B\}| \leq |\{B \subset \mathcal{C} : c_1 \in B \text{ and } \mathcal{H} \text{ shatters } B\}| \end{split}$$

Overall,

$$|\mathcal{H}_{\mathcal{C}}| = |Y_0| + |Y_1| \leq \left|\{B \subset \mathcal{C} : c_1 \notin B \text{ and } \mathcal{H} \text{ shatters } B\}\right| + \left|\{B \subset \mathcal{C} : c_1 \in B \text{ and } \mathcal{H} \text{ shatters } B\}\right| = \left|\{B \subset \mathcal{C} : \mathcal{H} \text{ shatters } B\}\right| = |\{B \in \mathcal{C} : \mathcal{H} \text{ shatters } B\}| = |\{B \in \mathcal{C} : \mathcal{H} \text{ shatters } B\}| = |\{B \in \mathcal{C} : \mathcal{H} \text{ shatters } B\}| = |\{B \in \mathcal{C} : \mathcal{H} \text{ shatters } B\}| = |\{B \in \mathcal{C} : \mathcal{H} \text{ shatters } B\}| = |\{B \in \mathcal{C} : \mathcal{H} \text{ shatters } B\}| = |\{B \in \mathcal{C} : \mathcal{H} \text{ shatters } B\}| = |\{B \in \mathcal{C} : \mathcal{H} \text{ shatters } B\}| = |\{B \in \mathcal{C} : \mathcal{H} \text{ shatters } B\}| = |\{B \in \mathcal{C} : \mathcal{H} \text{ shatters } B\}| = |\{B \in \mathcal{L} : \mathcal{H} \text{ shatters } B\}| = |\{B \in \mathcal{H} : \mathcal{H} \text{ shatters } B\}| = |\{B \in \mathcal{H} : \mathcal{H} :$$

Proof of Sauer's lemma 2/2

For the last inequality, one may observe that if $m \ge 2d$, defining $N \sim \mathcal{B}(m, 1/2)$, Chernoff's inequality and inequality $\log(u) \ge (u-1)/u$ yield

$$\begin{aligned} -\log \mathbb{P}(N \le d) \ge m \, \mathrm{kl}\left(\frac{d}{m}, \frac{1}{2}\right) \ge d \log \frac{2d}{m} + (m-d) \log \frac{2(m-d)}{m} \\ \ge m \log(2) + d \log \frac{d}{m} + (m-d) \frac{-d/m}{(m-d)/m} \\ = m \log(2) + d \log \frac{d}{em} , \end{aligned}$$

and hence

$$\sum_{i=0}^{d} \binom{m}{i} = 2^{d} \mathbb{P}(N \le d) \le \exp\left(-d\log\frac{d}{em}\right) = \left(\frac{em}{d}\right)^{d}$$

Besides, for the case $d \le m \le 2d$, the inequality is obvious since $(em/d)^d \ge 2^m$: indeed, function $f: x \mapsto -x \log(x/e)$ is increasing on [0, 1], and hence for all $d \le m \le 2d$:

$$\frac{d}{m}\log \frac{em}{d} = f(d/m) \ge f(1/2) = \frac{1}{2}\log(2e) \ge \log(2)$$
,

which implies

$$\left(\frac{em}{d}\right)^d = \exp\left(d\log\frac{em}{d}\right) \ge \exp(m\log(2)) = 2^m$$
.

Alternately, you may simply observe that for all $m \ge d$,

$$\left(\frac{d}{m}\right)^d \sum_{i=0}^d \binom{m}{i} \leq \sum_{i=0}^d \left(\frac{d}{m}\right)^i \binom{m}{i} \leq \sum_{i=0}^m \left(\frac{d}{m}\right)^i \binom{m}{i} = \left(1 + \frac{d}{m}\right)^m \leq e^d \; .$$

Finite VC dimension implies Uniform Convergence

Theorem

Let \mathcal{H} be a class and let $\tau_{\mathcal{H}}$ be its growth function. Then, for every distribution D dans for every $\delta \in (0, 1)$, with probability at least $1 - \delta$ over the choice of the sample $S \sim D^{\otimes m}$ we have

$$\sup_{h \in \mathcal{H}} \left| L_D(h) - L_S(h) \right| \leq \frac{1 + \sqrt{\log\left(\tau_{\mathcal{H}}(2m)\right)}}{\delta \sqrt{m/2}}$$

Note: this result is sufficient to prove that finite VC-dim \implies learnable, but the dependency in δ is not correct at all: roughly speaking, the factor $1/\delta$ can be replaced by $\log(1/\delta)$.

Proof: symmetrization and Rademacher complexity (1/2)

We consider the 0-1 loss, or any [0, 1]-valued loss. Observe that $L_D(h) = \mathbb{E}[L_{S'}(h)]$ where $S' = z'_1, \ldots, z'_m$ is another iid sample of D. Hence,

$$\begin{split} \mathbb{E}_{S} \left[\sup_{h \in \mathcal{H}} \left| L_{D}(h) - L_{S}(h) \right| \right] &= \mathbb{E}_{S} \left[\sup_{h \in \mathcal{H}} \left| L_{S'}(h) - L_{S}(h) \right| \right] \leq \mathbb{E}_{S} \left[\sup_{h \in \mathcal{H}} \left| \mathbb{E}_{S'} \left[L_{S'}(h) - L_{S}(h) \right] \right| \right] \\ &\leq \mathbb{E}_{S} \left[\sup_{h \in \mathcal{H}} \mathbb{E}_{S'} \left[\left| L_{S'}(h) - L_{S}(h) \right| \right] \right] \leq \mathbb{E}_{S} \left[\mathbb{E}_{S'} \left[\sup_{h \in \mathcal{H}} \left| L_{S'}(h) - L_{S}(h) \right| \right] \right] \\ &= \mathbb{E}_{S,S'} \left[\sup_{h \in \mathcal{H}} \frac{1}{m} \left| \sum_{i=1}^{m} \ell(h, z'_{i}) - \ell(h, z_{i}) \right| \right] \\ &= \mathbb{E}_{S,S'} \left[\sup_{h \in \mathcal{H}} \frac{1}{m} \left| \sum_{i=1}^{m} \sigma_{i} \left(\ell(h, z'_{i}) - \ell(h, z_{i}) \right) \right| \right] \quad \text{for all } \sigma \in \{\pm 1\}^{m} \\ &= \mathbb{E}_{\Sigma} \mathbb{E}_{S,S'} \left[\sup_{h \in \mathcal{H}} \frac{1}{m} \left| \sum_{i=1}^{m} \Sigma_{i} \left(\ell(h, z'_{i}) - \ell(h, z_{i}) \right) \right| \right] \quad \text{if } \Sigma \sim \mathcal{U}(\{\pm 1\}^{m}) \\ &= \mathbb{E}_{S,S'} \mathbb{E}_{\Sigma} \left[\sup_{h \in \mathcal{H}} \frac{1}{m} \left| \sum_{i=1}^{m} \Sigma_{i} \left(\ell(h, z'_{i}) - \ell(h, z_{i}) \right) \right| \right] \quad \text{if } \Sigma \sim \mathcal{U}(\{\pm 1\}^{m}) \end{split}$$

Now, for every S, S', let $C = C_{S,S'}$ be the instances appearing in S and S'. Then

$$\sup_{h\in\mathcal{H}} \frac{1}{m} \left| \sum_{i=1}^{m} \sigma_i (\ell(h, z_i') - \ell(h, z_i)) \right| = \max_{h\in\mathcal{H}_{\mathcal{C}}} \frac{1}{m} \left| \sum_{i=1}^{m} \sigma_i (\ell(h, z_i') - \ell(h, z_i)) \right| .$$

Proof: symmetrization and Rademacher complexity (2/2)

Moreover, for every $h \in \mathcal{H}_{\mathcal{L}}$ let $Z_h = \frac{1}{m} \sum_{i=1}^m \Sigma_i (\ell(h, z'_i) - \ell(h, z_i))$. Then $\mathbb{E}_{\Sigma}[Z_h] = 0$, each summand belongs to [-1, 1] and by Hoeffding's inequality, for every $\epsilon > 0$:

$$\mathbb{P}_{\Sigma}\left[|Z_{h}| \geq \epsilon\right] \leq 2 \exp\left(-\frac{m\epsilon^{2}}{2}\right)$$

Hence, by the union bound,

$$\mathbb{P}_{\Sigma} igg[\max_{h \in \mathcal{H}_{\mathcal{C}}} |Z_h| \geq \epsilon igg] \leq 2 ig| \mathcal{H}_{\mathcal{C}} ig| \exp\left(-rac{m\epsilon^2}{2}
ight) \;.$$

The following lemma permits to deduce that

$$\mathbb{E}_{\Sigma} \left[\max_{h \in \mathcal{H}_{C}} Z_{h} | \right] \leq \frac{1 + \sqrt{\log(|\mathcal{H}_{C}|)}}{\sqrt{m/2}} \leq \frac{1 + \sqrt{\log(\tau_{\mathcal{H}}(2m))}}{\sqrt{m/2}}$$

Hence,

$$\mathbb{E}_{\mathcal{S}}\left[\sup_{h\in\mathcal{H}}\left|\mathcal{L}_{\mathcal{D}}(h)-\mathcal{L}_{\mathcal{S}}(h)\right|\right] \leq \mathbb{E}_{\mathcal{S},\mathcal{S}'}\mathbb{E}_{\Sigma}\left[\sup_{h\in\mathcal{H}}\frac{1}{m}\left|\sum_{i=1}^{m}\Sigma_{i}\left(\ell(h,z_{i}')-\ell(h,z_{i})\right)\right|\right] \leq \frac{1+\sqrt{\log(\tau_{\mathcal{H}}(2m))}}{\sqrt{m/2}}$$

and we conclude by using Markov's inequality (poor idea! Better: McDiarmid's inequality).

Technical Lemma

Lemma

Let a > 0, b > 1, and let Z be a real-valued random variable such that for all $t \ge 0$, $\mathbb{P}(Z \ge t) \le 2b \exp\left(-\frac{t^2}{a^2}\right)$. Then $\mathbb{E}[Z] \le a\left(\sqrt{\log(b)} + \frac{1}{\sqrt{\log(b)}}\right)$.

Proof:

$$\begin{split} \mathbb{E}[Z] &\leq \int_0^\infty \mathbb{P}(Z \geq t) dt \leq a \sqrt{\log(b)} + \int_{a\sqrt{\log(b)}}^\infty 2b \exp\left(-\frac{t^2}{a^2}\right) \\ &\leq a \sqrt{\log(b)} + 2b \int_{a\sqrt{\log(b)}}^\infty \frac{t}{a\sqrt{\log(b)}} \exp\left(-\frac{t^2}{a^2}\right) \\ &= a \sqrt{\log(b)} + \frac{2b}{a\sqrt{\log(b)}} \times \frac{a^2}{2} \exp\left(-\frac{(a\sqrt{\log(b)})^2}{a^2}\right) \\ &= a \sqrt{\log(b)} + \frac{a}{\sqrt{\log(b)}} \;. \end{split}$$

NB: cutting at $a\sqrt{\log(2b)}$ gives a better but less nice inequality for our use.

Finite VC-dimension implies learnability

Application: Finite VC-dim classes are agnostically learnable

It suffices to prove that finite VC-dim implies the uniform convergence property. From Sauer's lemma, for all $m \ge d/2$ we have $\tau_{\mathcal{H}}(2m) \le (2em/d)^d$. With the previous theorem, this yields that with probability at least $1 - \delta$:

$$\sup_{h \in \mathcal{H}} \left| L_D(h) - L_S(h) \right| \frac{1 + \sqrt{d \log \left(2em/d \right)}}{\delta \sqrt{m/2}} \le \frac{1}{\delta} \sqrt{\frac{8d \log(2em/d)}{m}}$$

as soon as $\sqrt{d\log\left(2em/d
ight)}\geq 1.$ To ensure that this is at most ϵ , one may choose

$$m \geq rac{8d\log(m)}{(\delta\epsilon)^2} + rac{8d\log(2e/d)}{(\delta\epsilon)^2}$$

By the following lemma, it is sufficient that

$$m \geq \frac{32d \log \left(\frac{4d}{(\delta \epsilon)^2}\right)}{(\delta \epsilon)^2} + \frac{16d \log \left(\frac{2e}{d}\right)}{(\delta \epsilon)^2}$$

Technical Lemma

Lemma

Let a > 0. Then

$x \ge 2a \log(a) \implies x \ge a \log(x)$.

Proof: For $a \le e$, true for every x > 0. Otherwise, for $a \ge \sqrt{e}$ we have $2a \log(a) \ge a$ and thus for every $t \ge 2a \log(a)$, as $f : t \mapsto t - a \log(t)$ is increasing on $[a, \infty)$, $f(t) \ge f(2a \log(a)) = a \log(a) - a \log(2 \log(a)) \ge 0$, since for every a > 0 it holds that $a \ge 2 \log(a)$.

Lemma

Let $a \ge 1, b > 0$. Then

 $x \ge 4a \log(2a) + 2b \implies x \ge a \log(x) + b$.

Proof: It suffices to check that $x \ge 2a \log(x)$ (given by the above lemma) and that $x \ge 2b$ (obvious since $4a \log(2a) \ge 0$).