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Recap on Supervised Learning

Experience, Task and Performance measure

@ Training data : D = {(Xy, Y1),...,(Xpn, Yn)} (i.i.d. ~P)
@ Predictor: f : X — ) measurable

@ Cost/Loss function : ¢(Y, f(X)) measure how well f(X)
“predicts" Y

® Risk:

R(F) =E[(Y,F(X))] 5 Ex [Eyx [(Y, F(X))]

o Often (Y, f(X)) = |F(X) = Y|? or /Y, f(X)) = 1y_.¢(x)

@ Learn a rule to construct a classifier f € F from the training

data D, s.t. the risk R(f) is small on average or with high
probability with respect to D,,.

M1 CS 2021






Recap on Supervised Learning 3

@ The best solution f* (which is independent of D,,) is

f* = arg ?212 R(f) = arg ?glngE [(Y, f(X))] = arg ;T;IJQ Ex [Ev|x (Y, f(x))]]

Bayes Classifier (explicit solution)
e In binary classification with 0 — 1 loss:
+1 if P{Y =+1|X} >P{Y = -1|X}

f*(X) = S P{Y =+1|X} >1/2
—1 otherwise

- Ay (E[Y1X])

e In regression with the quadratic loss

FH(X) = E[Y[X]

Issue: Explicit solution requires to know [ [ Y| X] for all values of X!

M1 CS 2021
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Recap on Supervised Learning

Machine Learning

@ Learn a rule to construct a classifier f € F from the training

data D, s.t. the risk R(f) is small on average or with high
probability with respect to D,,.

Canonical example: Empirical Risk Minimizer

@ One restricts f to a subset of functions S = {fy,0 € ©}

@ One replaces the minimization of the average loss by the
minimization of the empirical loss
~ 17
f =f=argmin— ) LY, fo(X;
o foce n,; (Y, %(X:))

@ Examples:

e Linear regression

e Linear discrimination with
S = {X > sign{ﬂTx 4= fo} /f € Rd,,"go € R}

M1 CS 2021






Plugin Classification 5

Linear Classifier

@ Classifier family:

S={fh:x— sign{B x+ B} /B € R?, By € R}
o Natural loss: (91(Y, f(x)) =1,.¢(x)
& (ﬁ,%) + [30 =0

M1 CS 2021



Plugin Classification o

Linear Classifier

o Classifier family:
S={fh:x— sign{B x+ B} /B € R?, By € R}

@ Natural loss: 50/1(\/7 f(x)) = 1y#f(X)

Empirical Risk Minimization

@ ERM Classifier:

?:f:argmln— Ly, 46
9 oee@n; #fo(Xi))

@ Not smooth or convex = no easy minimization scheme!

@ £ regression with quadratic loss case! /l\

@ How to go beyond? M P \'\
- haad
M1 CS 2021




Plugin Classification 6

Bayes Classifier and Plugin

@ Best classifier given by

(+1 if P{Y =+1|X}>P{Y = -1|X)}
F*(X) = ¢ SP{Y =+1|X} > 1/2

| = 1 otherwise

@ Plugin classifier: replace P{Y = +1|X} by a data driven

I T

estimate P{Y = +1|X}!

@ Other strategies are possible (Risk convexification...)

M1 CS 2021



Plugin Classification

Plugin Linear Discrimination

@ Model P{Y = +1|X} by h(B7X + o) with h non decreasing.
o h(BTX+Bo) >1/2 < BTX+ 30— h1(1/2) >0
o Linear Classifier: sign(3" X + 5o — h=1(1/2))

PLY=11x] e W (¢po+B)

M1 CS 2021 @ @



Plugin Classification

@ Model P{Y = +1|X} by h(87X + 39) with h non decreasing.
@ h(BTX+By)>1/2 BTX+ B —h1(1/2) >0
o Linear Classifier: sign(37 X + 8o — h™1(1/2))

Plugin Linear Classifier Estimation

@ C(lassical choice for h:

t

h(t) = ] i o logit or logistic
h(t) = Far(t) probit
h(t)=1—e ¢ log-log

@ Choice of the best 3 from the data.

@ Need to specify the quality criterion...
M1 CS 2021



Kullback-Leibler Divergence 8

Probabilistic Model

@ By construction, Y|X follows B(P{Y = +1|X})
e Approximation of Y|X by B(h(3"X + /%))

@ Natural probabilistic choice for 3: [ minimizing the distance
between B(h(X*3)) and B(P{Y = 1|X}).

M1 CS 2021



Kullback-Leibler Divergence 8

Probabilistic Model

@ By construction, Y|X follows B(P{Y = +1|X})
e Approximation of Y|X by B(h(3"X + /%))

@ Natural probabilistic choice for 3: [ minimizing the distance
between B(h(X'3)) and B(P{Y = 1|X}).
@ Natural distance: Kullback-Leibler divergence
KL(B(P{Y = 1|X}), B(h(X*3))
— Ex [KL(B(P{Y = 1|X}), B(h(X'8))
P{Y = 1|X}
h(Xtj3)

— Ex |[P{Y = 1|X} log

1-P{Y =1|X)

+1—P{Y =1|X})log

M1 CS 2021



Log-Likelihood

log-likelihood

e KL:
KL(B(P {Y = 1|X}),B(h(X*5))
=Ex [P{Y =1|X}log P{/:E;’;)‘X}

+(1—1P’{Y:1IX})|0g1_P{Y: 1|X}}

1 — h(XB)
= Ex [-P {Y = 1|X} log(h(X"B))
—(1—P{Y = 1|X}) log(1 — h(X*B))] + Cxv

M1 CS 2021



Log-Likelihood

log-likelihood

o KL:
KL(B(P{Y = 1|X}), B(h(X'3))
—Ex |P{Y =1|X}log P{;E;;)IX}

+(1-P{Y = 1|X})Iog1_P{Y: 1|X}]

1— h(XtR)
— Ex [P {Y = 11X} log(h(X"3))
—(1 — P { = 1|X}) |Og(1 — h(Xtd))] =F Cx1y

@ Empirical counterpart = opposite of the log-likelihood:

_ = Z 1 Iog : ,',‘3)) = ly,-:—l |Og(1 - h(Xit.’B)))

@ Minimization of possible if h is regular...

M1 CS 2021



Logistic Regression

10

Logistic Regression and Odd

e Logistic model: h(t) =

t -
et (most natural choice...)

@ The Bernoulli law B(h(t)) satisfies then
P{Y =1}
P{Y = -1}

P{Y=1}
P{Y=-1}

=e' & log

@ Interpretation in term of odd.

@ Logistic model: linear model on the logarithm of the odd.

Associated Classifier

@ Plugin strategy:

fa(x) =

1 if 1+ = 1/2<:>xt8>0
—1 otherwise

M1 CS 2021



Logistic Regression 11

Likelikood Rewriting
@ Opposite of the log-likelihood:

1 <& : "
T n Z (1}’::1 Iog(h(xf,zf?)) + lyi=—1 Iog(l - h(X'F’B)))
i=1

1 <& e%i P 1
S 1,—1log———= +1,,—_1log ——
n;(}’l 1 g1+ex’.d Vi 1 g1+exi;j)

_ 1i| (1 4 e VilxiB)
N og o )

@ Convex and smooth function of /3

@ Easy optimization.

M1 CS 2021



Logistic Regression 12

Risk Convexification Heuristic
log (1 -+ e*yi(xf-ﬁ))
log 2
@ Link between the empirical prediction loss and the likelihood:

il o2 g -
o Z_; Lyafi(x) = P Z—:l L, (xtg)<0 < nlog Z log (1 + e il 3))

@ Logistic: easy minimization of the right hand instead of the
untractable left hand side...

@ Prop: Eo/l(yi, fB(Xi)) — 1y,-(xf;5’)<0 <

M1 CS 2021



Risk Convexification

13

3 2 1 0 1 2

¢(a. 1) for several classification losses

M1 CS 2021



Logistic Regression 14

Logistic Coefficients
@ Logistic regression entirely specified by /3.
@ Coefficientwise:

e 3; = 0 means that the ith covariate is not used.
@ 3; ~ 0 means that the ith covariate as a low influence...

Simplified Logistic Models

@ Enforce simplicity through a constraint on 3!
U| 0 — Z?’:I 1;3;750 <C
@ Size constraint: ||3|, < C with 1 < p (Often p =2 or p = 1)

@ Support constraint: |

e Rk: ||3||, is not scaling invariant if p # 0...

@ Initial rescaling issue.

M1 CS 2021



Logistic Regression 15

Constrained Optimization

@ Choose a constant C.

@ Compute 3 as

argmin Z log(1l + e —yi(B* xi))
BeRY,[|B]l,<C 1

Lagrangian Reformulation

@ Choose A and compute (5 as

1 < (Ats, -
argmin — Z log(1+ e yi(B X')) AL )\H,f'ng
BecRd n i—1
with p’ = p except if p =0 where p’ = 1.
@ Easier calibration...

M1 CS 2021



Logistic Regression

Penalized Likelihood

@ Minimization of
n

1 at
argmin — Z log(1 4+ e (52 4 pen(p)
perd N33
where pen(3) is a (sparsity promoting) penalty
@ Variable selection if 3 is sparse.

Classical Penalties

e AIC: pen(53) = Al|B]lo (non convex / sparsity)

o Ridge: pen(3) = \||3||3 (convex / no sparsity)

e Lasso: pen(5) = Al|3||1 (convex / sparsity)

e Elastic net: pen(3) = \1]|3]|1 + A2||3]|3 (convex / sparsity)

e Easy optimization if pen (and the loss) is convex...
@ Need to specify \!

M1 CS 2021



Logistic Regression 17

Penalized Likelihood

@ Minimization of

1< g
—> _log(1+ e (8 x)) + pen(B)
i=1

e Convex function in 5 € R9!

M1 CS 2021



Logistic Regression 17

Penalized Likelihood

@ Minimization of

1 gt
- Z log(1 + e ¥\¥>)) 4 pen(3)
=1

e Convex function in 5 € R9!

Practical Selection Methodology

@ Choose a penalty shape pen(/3).

e Compute a CV error for a penalty Apen((3) for all A € A.
o Determine )\ the \ minimizing the CV error.

e Compute the final logistic regression with a penalty :\;ﬁﬁ(ﬁ).

M1 CS 2021



Logistic Regression 17

Penalized Likelihood

@ Minimization of

1< g
—> _log(1+ e (8 x)) + pen(B)
i=1

e Convex function in 5 € R9!
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Logistic Regression 17

Penalized Likelihood

@ Minimization of

1 gt
- Z log(1 + e ¥\¥>)) 4 pen(3)
=1

e Convex function in 5 € R9!

Convex Optimization

@ A local minimum is a global minimum!

@ No possibility to be trapped in a local minimum!

@ Several very efficient minimization algorithm exists.
@ Huge progress recently (motivated by big data...).

@ Canonical algorithm: (sub)gradient descent.

M1 CS 2021



Logistic Regression 18

Subgradient Descent Algorithm

@ Start with a point 6

@ for k =1,... until convergence repeat:
o (KTl gk — o ' VF(0%) where VF(0%) is any subgradient of f
at 6k

Step/Learning Rate Choice

@ Choice of ay crucial!
@ Provable convergence toward a minimum for suitable choice!

@ Subject of a full course in the master!

M1 CS 2021



Supervised Learning

Various approaches for Classification, a short review



The Realisable Case 20

ﬁthe realizable case, there exists w* such that Vi € {1,..., m}, \
\ *

yi{iw*,x;) > 0, and even such that Vi € {1,... , m}, yi(w*, x;) > 0.

Then there exists w € RY such that Vi € {1,...,m}, yi{w,x;) > 1. if we
can find one, we have an ERM.

Let A€ M, 4(R) be defined by A;; = y; x;;, and let

max (0, w) subjectto Aw > v
welR9

Qan ERM. It can thus be computed in polynomial time. j

M1 CS 2021







Rosenblatt’s Perceptron

21

Algorithm: Batch Perceptron

Data: training set (x1,v1),- .-, (Xm, ¥Ym)
t>0
while Ji; @ y; (w;, x;,) < 0 do
X,"
WeiL © We Tt i x|

t—t+1

W =

o,

6 return w;

Each updates helps reaching the solution, since

yit<wt+1txir> — Vi <Wt +y’t H || > - yit<WtTXir> + ||XitH c
lt

Relates to a coordinate descent (stepsize does not matter).

M1 CS 2021



Convergence of Rosenblatt’s Perceptron

Theorem
Assume that the dataset S = {(x1,y1),---,(Xm. Ym)} is linearly
separable and let the separation margin v be defined as:

. min ¥ (w, x;) .
weRd:||wl=11<i<n  ||x]|

Then the perceptron algorithm stops after at most 1/+2 iterations.

+ 1

vilw™, x;) _ Y —
Proof: Let w* be such that V1 < i < m, yilw, Xi} > . <
o |f iteration t is necessary, then |l - © e "o
o [a]

/ * \ * xl’z - { = -
\W » Weyp1 — Wz') = yil w ” " 2 Y and hence <W N W[‘) /_) -l’t .
Xip

e |[f iteration t is necessary, then
= 2y, {we, x;, )
— IW!||?+ )’:,( Oy Mg
B
\q’-—i

<0

weaa ||” = [|we + yip —— +yp < llwell” +1

|I ,II

and hence ||w||? < t, or |[we] < /1.
e As a consequence, the algorithm iterates at least t times if

~ 1
YESAw o we) Slwme] < VE = < .

In the worst case, the number of iterations can be exponentially large in the dimension d. Usually,
it converges quite fast. If Vi, |[x|| = 1, v = d(S, D) where D = {x : (w",x) = 0}.

M1 CS 2021



NP-Hardness 23

NP-hardness of computing the ERM for halfspaces
Computing an ERM in the agnostic case is NP-hard.

See Un the difticulty of approximately maximizing agreements, by Ben-David, Eiron and Long.

Since the 0-1 loss 25
1 < w—0-1
LS(hw) = ; Z ]l{y; <W7X,'> < O} square
i=1 absolute
logistic
iIs intractable to minimize in the hinge
boosting

agnostic case, one may consider
surrogate loss functions

Ls(hy) =

where the loss function £ : R — R™

M1 CS 2021



Ordinary Least Squares, the Quadratic Loss 24

0-1

we SQUAare
absolute
logistic

Linear regression with least

squares:
hinge

boosting

-1.0 -05 0.5 1.0 15 20

1 m 1 m
LS(h 2;; X:) y, ZEZ; 1_.V1WX1>)

If X =(x1,...,Xm) € Mmd(R) and y = (y1,...,ym) € R™, one obtains
w = (XTX)"XTy, where A~ = generalized inverse of A.

M1 CS 2021



Absolute Loss 25

25

w01

square

Linear regression with absolute w= absolute

IOSS: logistic
hinge
boosting

1
LS(h Z IhW(xl _yi| = ;Z |1 _yihw(xi)| -
i=1

Can be solved by linear programming.

Interest: (statistical) robustness.

M1 CS 2021



Logistic Loss 26

Statistics: "logistic regression’ : — 0-1
square
absolute

=== |ogistic
hinge

05 boosting

Pu(Y =y|X =x)

- 1+exp(—y(w,x))

-1.0 -05 0.5 1.0 1.5 20
log with base 2 here so that £(0) = 1

Ls(hy) Zlog 1+ exp(—yi{w, x)))

i=1

convex minimization problem, can be solved by Newton's algorithm (in
small dimension).

M1 CS 2021



Support Vector Machines (SVM) 27

25

0-1
square
absolute
logistic
w== hinge
boosting

Margin maximization leads to

Ls(hy) Zmax{O 1—yi{w,x;)},

convex but non-smooth minimization problem, used with a penalization
term \|w||?: cf later.

M1 CS 2021



Boosting 28

= 0-1
square
absolute
logistic
hinge

Margin maximization leads to

=== boosting

Ls( Zexp — yi{w, xi)) ,

with ad-hoc optimization procedure — cf later.

M1 CS 2021
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