Empirical Risk Minimization, Linear Separators, Risk Convexification

Yohann De Castro & Aurélien Garivier

Introduction to High-Dimensional Statistics

Christophe Giraud

CRC Press
Taylor & France Group
A CHAPMAN & HALL BOOK

Chap 9:

Supervised Classification

-> Bounds con Risk Clam ficution

-> proofs uniq

VC - dimension

Experience, Task and Performance measure

- Training data : $\mathcal{D} = \{(\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)\}$ (i.i.d. $\sim \mathbf{P}$)
- Predictor: $f: \mathcal{X} \to \mathcal{Y}$ measurable
- Cost/Loss function : $\ell(Y, f(X))$ measure how well f(X) "predicts" Y
- Risk:

$$\mathcal{R}(f) = \mathbb{E}\left[\ell(Y, f(\mathbf{X}))\right] = \mathbb{E}_{X}\left[\mathbb{E}_{Y|\mathbf{X}}\left[\ell(Y, f(\mathbf{X}))\right]\right]$$

• Often $\ell(Y, f(X)) = |f(X) - Y|^2$ or $\ell(Y, f(X)) = \mathbf{1}_{Y \neq f(X)}$

Goal

• Learn a rule to construct a classifier $\hat{f} \in \mathcal{F}$ from the training data \mathcal{D}_n s.t. the risk $\mathcal{R}(\hat{f})$ is small on average or with high probability with respect to \mathcal{D}_n .

$$R(f) = \mathbb{E} \left[\left((Y, f(x)) \right) \right]$$

$$\int_{X_{\lambda}Y} \left((Y_{1} f(x)) \right) P_{(\lambda,Y)}(n_{1}y) dndy$$

$$= \int_{X} \left[\int_{Y} \left\{ (Y_{1} f(x)) \right\} P_{(\lambda,Y)}(n_{1}y) dndy \right]$$

$$P_{(\lambda_{1}Y)}(n_{1}y) = \frac{P_{(\lambda_{1}Y)}(n_{1}y)}{\int_{Y} P_{(\lambda_{1}Y)}(n_{1}y) dy} \times \int_{Y} P_{(\lambda_{1}Y)}(n_{1}y) dy$$

$$P_{Y|X=x}(y) \int_{Y} \frac{P_{(\lambda_{1}Y)}(n_{1}y)}{\int_{Y} P_{(\lambda_{1}Y)}(n_{1}y) dy} dy = 1$$

$$R(f) = \mathbb{E}_{X} \left[\mathbb{E}_{Y|X} \left[l(Y, f(x)) \right] \right]$$

$$Conditional expectation$$

• The best solution f^* (which is independent of \mathcal{D}_n) is

$$f^* = \arg\min_{f \in \mathcal{F}} R(f) = \arg\min_{f \in \mathcal{F}} \mathbb{E}\left[\ell(Y, f(\mathbf{X}))\right] = \arg\min_{f \in \mathcal{F}} \mathbb{E}_{\mathbf{X}}\left[\mathbb{E}_{Y \mid \mathbf{X}}\left[\ell(Y, f(\mathbf{x}))\right]\right]$$

Bayes Classifier (explicit solution)

• In binary classification with 0-1 loss:

$$f^*(\mathbf{X}) = egin{cases} +1 & ext{if} & \mathbb{P}\left\{Y = +1 | \mathbf{X}
ight\} \geq \mathbb{P}\left\{Y = -1 | \mathbf{X}
ight\} \\ &\Leftrightarrow \mathbb{P}\left\{Y = +1 | \mathbf{X}
ight\} \geq 1/2 \\ -1 & ext{otherwise} \\ &= ext{Syn}\left(\mathbb{E}\left[Y \mid X
ight]\right) \end{cases}$$

In regression with the quadratic loss

$$f^*(\mathbf{X}) = \mathbb{E}[Y|\mathbf{X}]$$

Issue: Explicit solution requires to know $\mathbb{E}[Y|X]$ for all values of X!

Evante: Binary Classification
$$y = \{-1, +1\}$$

Best Predictor for the misclossification loss:

$$l(y,y') = 1 \quad y \neq y.$$

$$R(f) = \mathbb{E} \left[l(Y, f(Y)) \right] = \mathbb{P} \left[Y \neq f(X) \right]$$

proportion of misclossification

$$f^*(x) = sqn \left(\mathbb{E} \left[Y \mid X = x \right] \right)$$

$$= \{ Y \mid X = x \} = +1 \times \mathbb{P} \left[Y = 1 \mid X = x \right]$$

$$= \{ Y \mid X = x \} - \mathbb{P} \left[Y = -1 \mid X = x \right]$$

$$= \{ Y \mid Y = 1 \mid X = x \} - \mathbb{P} \left[Y = -1 \mid X = x \right]$$

$$= \{ Y \mid Y = 1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$= \{ Y \mid Y = -1 \mid X = x \}$$

$$\frac{R(\xi)}{E} = E \left[1_{Y \neq f(x)} \right]$$

$$= E_{X} \left[E_{Y|X} \left(1_{Y \neq f(x)} \right) \right]$$

$$= E_{X} \left[P\left(Y \neq f(x) \mid X \right) \right]$$

$$\text{randon} \quad \epsilon_{Y = \{-1, +1\}} \leftarrow \text{fixed}$$

$$\text{variable} \quad X = X$$

$$P(Y \neq f(x) | X = x)$$
undom fixed
with law $Y | X = x$

If
$$f(n) = -1$$
 then:

$$P(Y \neq -1 \mid X = n) = P(Y = 1 \mid X = n)$$
If $f(x) = +1$ then

$\mathbb{P}\left(Y \neq 1 \mid X = x\right) = \mathbb{P}\left(Y = -1 \mid X = x\right)$

Machine Learning

• Learn a rule to construct a classifier $\hat{f} \in \mathcal{F}$ from the training data \mathcal{D}_n s.t. the risk $\mathcal{R}(\hat{f})$ is small on average or with high probability with respect to \mathcal{D}_n .

Canonical example: Empirical Risk Minimizer

- One restricts f to a subset of functions $S = \{f_{\theta}, \theta \in \Theta\}$
- One replaces the minimization of the average loss by the minimization of the empirical loss

$$\widehat{f} = f_{\widehat{\theta}} = \underset{f_{\theta}, \theta \in \Theta}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \ell(Y_i, f_{\theta}(\mathbf{X}_i))$$

- Examples:
 - Linear regression
 - Linear discrimination with $S = \{ \mathbf{x} \mapsto \text{sign}\{\beta^T \mathbf{x} + \beta_0\} / \beta \in \mathbb{R}^d, \beta_0 \in \mathbb{R} \}$

Linear Classifier

Classifier family:

$$S = \{ f_{\theta} : \mathbf{x} \mapsto \operatorname{sign}\{\beta^T \mathbf{x} + \beta_0\} / \beta \in \mathbb{R}^d, \beta_0 \in \mathbb{R} \}$$

• Natural loss: $\ell^{0/1}(Y, f(x)) = \mathbf{1}_{y \neq f(x)}$

Linear Classifier

Classifier family:

$$S = \{ f_{\theta} : \mathbf{x} \mapsto \operatorname{sign}\{\beta^{\mathsf{T}}\mathbf{x} + \beta_{0}\} / \beta \in \mathbb{R}^{d}, \beta_{0} \in \mathbb{R} \}$$

• Natural loss: $\ell^{0/1}(Y, f(x)) = \mathbf{1}_{y \neq f(x)}$

Empirical Risk Minimization

ERM Classifier:

$$\widehat{f} = f_{\widehat{\theta}} = \underset{f_{\theta}, \theta \in \Theta}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{Y_{i} \neq f_{\theta}(\mathbf{X}_{i})}$$

- Not smooth or convex no easy minimization scheme!
- \bullet \neq regression with quadratic loss case!
- How to go beyond?

Bayes Classifier and Plugin

Best classifier given by

$$f^*(\mathbf{X}) = egin{cases} +1 & ext{if} & \mathbb{P}\left\{Y = +1 | \mathbf{X}
ight\} \geq \mathbb{P}\left\{Y = -1 | \mathbf{X}
ight\} \\ & \Leftrightarrow \mathbb{P}\left\{Y = +1 | \mathbf{X}
ight\} \geq 1/2 \\ -1 & ext{otherwise} \end{cases}$$

- Plugin classifier: replace $\mathbb{P}\left\{Y=+1|\mathbf{X}\right\}$ by a data driven estimate $\mathbb{P}\left\{\widehat{Y=+1}|\mathbf{X}\right\}$!
- Other strategies are possible (Risk convexification...)

Plugin Linear Discrimination

- Model $\mathbb{P}\left\{Y=+1|\mathbf{X}\right\}$ by $h(\beta^T\mathbf{X}+\beta_0)$ with h non decreasing.
- $h(\beta^T \mathbf{X} + \beta_0) > 1/2 \Leftrightarrow \beta^T \mathbf{X} + \beta_0 h^{-1}(1/2) > 0$
- Linear Classifier: $sign(\beta^T \mathbf{X} + \beta_0 h^{-1}(1/2))$

$$P[Y=1|X] \leftarrow h(\langle B, x \rangle + \beta_0)$$

M1 CS 2021

Plugin Linear Discrimination

- Model $\mathbb{P}\left\{Y=+1|\mathbf{X}\right\}$ by $h(\beta^T\mathbf{X}+\beta_0)$ with h non decreasing.
- $h(\beta^T \mathbf{X} + \beta_0) > 1/2 \Leftrightarrow \beta^T \mathbf{X} + \beta_0 h^{-1}(1/2) > 0$
- Linear Classifier: $sign(\beta^T \mathbf{X} + \beta_0 h^{-1}(1/2))$

Plugin Linear Classifier Estimation

Classical choice for h:

$$h(t) = rac{e^t}{1+e^t}$$
 logit or logistic $h(t) = F_{\mathcal{N}}(t)$ probit $h(t) = 1 - e^{-e^t}$ log-log

- Choice of the best β from the data.
- Need to specify the quality criterion...

Probabilistic Model

- By construction, Y|X follows $\mathcal{B}(\mathbb{P}\{Y=+1|X\})$
- Approximation of Y|X by $\mathcal{B}(h(\beta^TX + \beta_0))$
- Natural probabilistic choice for β : β minimizing the distance between $\mathcal{B}(h(X^t\beta))$ and $\mathcal{B}(\mathbb{P}\{Y=1|X\})$.

Probabilistic Model

- By construction, Y|X follows $\mathcal{B}(\mathbb{P}\{Y=+1|X\})$
- Approximation of Y|X by $\mathcal{B}(h(\beta^TX + \beta_0))$
- Natural probabilistic choice for β : β minimizing the distance between $\mathcal{B}(h(X^t\beta))$ and $\mathcal{B}(\mathbb{P}\{Y=1|X\})$.

KL Distance

Natural distance: Kullback-Leibler divergence

$$egin{aligned} & \mathrm{KL}(\mathcal{B}(\mathbb{P} \left\{ Y = 1 | X
ight\}), \mathcal{B}(h(X^t eta)) \ &= \mathbb{E}_X \left[\mathrm{KL}(\mathcal{B}(\mathbb{P} \left\{ Y = 1 | X
ight\}), \mathcal{B}(h(X^t eta))
ight] \ &= \mathbb{E}_X \left[\mathbb{P} \left\{ Y = 1 | X
ight\} \log \frac{\mathbb{P} \left\{ Y = 1 | X
ight\}}{h(X^t eta)} \ &+ (1 - \mathbb{P} \left\{ Y = 1 | X
ight\}) \log \frac{1 - \mathbb{P} \left\{ Y = 1 | X
ight\}}{1 - h(X^t eta)}
ight] \end{aligned}$$

log-likelihood

KL:

$$\begin{aligned} \operatorname{KL}(\mathcal{B}(\mathbb{P} \left\{ Y = 1 | X \right\}), \mathcal{B}(h(X^{t}\beta)) \\ &= \mathbb{E}_{X} \left[\mathbb{P} \left\{ Y = 1 | X \right\} \log \frac{\mathbb{P} \left\{ Y = 1 | X \right\}}{h(X^{t}\beta)} \right. \\ &\left. + (1 - \mathbb{P} \left\{ Y = 1 | X \right\}) \log \frac{1 - \mathbb{P} \left\{ Y = 1 | X \right\}}{1 - h(X^{t}\beta)} \right] \\ &= \mathbb{E}_{X} \left[-\mathbb{P} \left\{ Y = 1 | X \right\} \log(h(X^{t}\beta)) \right. \\ &\left. - (1 - \mathbb{P} \left\{ Y = 1 | X \right\}) \log(1 - h(X^{t}\beta)) \right] + C_{X,Y} \end{aligned}$$

log-likelihood

KL:

$$\begin{split} \operatorname{KL}(\mathcal{B}(\mathbb{P} \left\{ Y = 1 | X \right\}), & \mathcal{B}(h(X^{t}\beta)) \\ &= \mathbb{E}_{X} \left[\mathbb{P} \left\{ Y = 1 | X \right\} \log \frac{\mathbb{P} \left\{ Y = 1 | X \right\}}{h(X^{t}\beta)} \right. \\ &\left. + (1 - \mathbb{P} \left\{ Y = 1 | X \right\}) \log \frac{1 - \mathbb{P} \left\{ Y = 1 | X \right\}}{1 - h(X^{t}\beta)} \right] \\ &= \mathbb{E}_{X} \left[-\mathbb{P} \left\{ Y = 1 | X \right\} \log(h(X^{t}\beta)) \right. \\ &\left. - (1 - \mathbb{P} \left\{ Y = 1 | X \right\}) \log(1 - h(X^{t}\beta)) \right] + C_{X,Y} \end{split}$$

• Empirical counterpart = opposite of the log-likelihood:

$$-\frac{1}{n}\sum_{i=1}^{n}\left(\mathbf{1}_{y_{i}=1}\log(h(x_{i}^{t}\beta))+\mathbf{1}_{y_{i}=-1}\log(1-h(x_{i}^{t}\beta))\right)$$

Minimization of possible if h is regular...

Logistic Regression and Odd

- Logistic model: $h(t) = \frac{e^t}{1+e^t}$ (most *natural* choice...)
- The Bernoulli law $\mathcal{B}(h(t))$ satisfies then

$$\frac{\mathbb{P}\left\{Y=1\right\}}{\mathbb{P}\left\{Y=-1\right\}}=e^t \Leftrightarrow \log \frac{\mathbb{P}\left\{Y=1\right\}}{\mathbb{P}\left\{Y=-1\right\}}=t$$

- Interpretation in term of odd.
- Logistic model: linear model on the logarithm of the odd.

Associated Classifier

• Plugin strategy:

$$f_{eta}(x) = egin{cases} 1 & ext{if } rac{e^{x^t eta}}{1 + e^{x^t eta}} > 1/2 \Leftrightarrow x^t eta > 0 \ -1 & ext{otherwise} \end{cases}$$

Likelikood Rewriting

Opposite of the log-likelihood:

$$-\frac{1}{n} \sum_{i=1}^{n} (\mathbf{1}_{y_{i}=1} \log(h(x_{i}^{t}\beta)) + \mathbf{1}_{y_{i}=-1} \log(1 - h(x_{i}^{t}\beta)))$$

$$= -\frac{1}{n} \sum_{i=1}^{n} \left(\mathbf{1}_{y_{i}=1} \log \frac{e^{x_{i}^{t}\beta}}{1 + e^{x_{i}^{t}\beta}} + \mathbf{1}_{y_{i}=-1} \log \frac{1}{1 + e^{x_{i}^{t}\beta}} \right)$$

$$= \frac{1}{n} \sum_{i=1}^{n} \log \left(1 + e^{-y_{i}(x_{i}^{t}\beta)} \right)$$

- Convex and smooth function of β
- Easy optimization.

Risk Convexification Heuristic

- Prop: $\ell^{0/1}(y_i, f_{\beta}(x_i)) = \mathbf{1}_{y_i(x_i^t\beta) < 0} \le \frac{\log\left(1 + e^{-y_i(x_i^t\beta)}\right)}{\log 2}$
- Link between the empirical prediction loss and the likelihood:

$$\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{y_i \neq f_{\beta}(x_i)} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{y_i(x_i^t \beta) < 0} \leq \frac{1}{n \log 2} \sum_{i=1}^{n} \log \left(1 + e^{-y_i(x_i^t \beta)} \right)$$

 Logistic: easy minimization of the right hand instead of the untractable left hand side...

M1 CS 2021

Logistic Coefficients

- Logistic regression entirely specified by β .
- Coefficientwise:
 - $\beta_i = 0$ means that the *i*th covariate is not used.
 - $\beta_i \sim 0$ means that the *i*th covariate as a low influence...

Simplified Logistic Models

- Enforce simplicity through a constraint on β !
- Support constraint: $\|\beta\|_0 = \sum_{i=1}^d \mathbf{1}_{\beta_i \neq 0} < C$
- Size constraint: $\|\beta\|_p < C$ with $1 \le p$ (Often p = 2 or p = 1)
- **Rk:** $\|\beta\|_p$ is not scaling invariant if $p \neq 0...$
- Initial rescaling issue.

Constrained Optimization

- Choose a constant C.
- ullet Compute eta as

$$\underset{\beta \in \mathbb{R}^d, \|\beta\|_p \le C}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n \log(1 + e^{-y_i(\beta^t x_i)})$$

Lagrangian Reformulation

• Choose λ and compute β as

$$\underset{\beta \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n \log(1 + e^{-y_i(\beta^t x_i)}) + \lambda \|\beta\|_p^{p'}$$

with p' = p except if p = 0 where p' = 1.

Easier calibration...

Minimization of

$$\underset{\beta \in \mathbb{R}^d}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^n \log(1 + e^{-y_i(\beta^t x_i)}) + \operatorname{pen}(\beta)$$

where pen(β) is a (sparsity promoting) penalty

• Variable selection if β is sparse.

Classical Penalties

- AIC: $pen(\beta) = \lambda ||\beta||_0$ (non convex / sparsity)
- Ridge: $pen(\beta) = \lambda ||\beta||_2^2$ (convex / no sparsity)
- Lasso: $pen(\beta) = \lambda ||\beta||_1$ (convex / sparsity)
- Elastic net: pen(β) = $\lambda_1 \|\beta\|_1 + \lambda_2 \|\beta\|_2^2$ (convex / sparsity)
- Easy optimization if pen (and the loss) is convex...
- Need to specify $\lambda!$

Minimization of

$$\frac{1}{n}\sum_{i=1}^n\log(1+e^{-y_i(\beta^t\chi_i)})+\operatorname{pen}(\beta)$$

• Convex function in $\beta \in \mathbb{R}^d$!

Minimization of

$$\frac{1}{n}\sum_{i=1}^n\log(1+e^{-y_i(\beta^t\chi_i)})+\operatorname{pen}(\beta)$$

• Convex function in $\beta \in \mathbb{R}^d$!

Practical Selection Methodology

- Choose a penalty shape $\widetilde{pen}(\beta)$.
- Compute a CV error for a penalty $\lambda \widetilde{pen}(\beta)$ for all $\lambda \in \Lambda$.
- Determine $\hat{\lambda}$ the λ minimizing the CV error.
- Compute the final logistic regression with a penalty $\widehat{\lambda} \widetilde{pen}(\beta)$.

Minimization of

$$\frac{1}{n}\sum_{i=1}^n\log(1+e^{-y_i(\beta^t\chi_i)})+\operatorname{pen}(\beta)$$

• Convex function in $\beta \in \mathbb{R}^d$!

Minimization of

$$\frac{1}{n}\sum_{i=1}^n\log(1+e^{-y_i(\beta^t\chi_i)})+\operatorname{pen}(\beta)$$

• Convex function in $\beta \in \mathbb{R}^d$!

Convex Optimization

- A local minimum is a global minimum!
- No possibility to be trapped in a local minimum!
- Several very efficient minimization algorithm exists.
- Huge progress recently (motivated by big data...).
- Canonical algorithm: (sub)gradient descent.

Subgradient Descent Algorithm

- Start with a point θ_0
- for $k = 1, \ldots$ until *convergence* repeat:
 - $\theta^{k+1} \leftarrow \theta^k \alpha_k \nabla f(\theta^k)$ where $\nabla f(\theta^k)$ is any subgradient of f at θ^k

Step/Learning Rate Choice

- Choice of α_k crucial!
- Provable convergence toward a minimum for suitable choice!
- Subject of a full course in the master!

Supervised Learning

Various approaches for Classification, a short review

In the realizable case, there exists w^* such that $\forall i \in \{1, \dots, m\}$, $y_i\langle w^*,x_i\rangle \geq 0$, and even such that $\forall i\in\{1,\ldots,m\}$, $y_i\langle w^*,x_i\rangle > 0$. Then there exists $\bar{w}\in\mathbb{R}^d$ such that $\forall i\in\{1,\ldots,m\}$, $y_i\langle w,x_i\rangle \geq 1$: if we

can find one, we have an ERM.

Let $A \in \mathcal{M}_{m,d}(\mathbb{R})$ be defined by $A_{i,j} = y_i x_{i,j}$, and let $v=(1,\ldots,1)\in\mathbb{R}^m$. Then any solution of the linear program

$$\max_{w \in \mathbb{R}^d} \langle 0, w \rangle$$
 subject to $Aw \geq v$

is an ERM. It can thus be computed in polynomial time.

Algorithm: Batch Perceptron

Data: training set
$$(x_1, y_1), \ldots, (x_m, y_m)$$

1
$$w_0 \leftarrow (0, \ldots, 0)$$

3 while
$$\exists i_t : y_{i_t} \langle w_t, x_{i_t} \rangle \leq 0$$
 do

$$\mathbf{4} \quad | \quad \mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \mathbf{y}_{i_t} \frac{\mathbf{x}_{i_t}}{\|\mathbf{x}_{i_t}\|}$$

$$t \leftarrow t+1$$

6 return Wt

Each updates helps reaching the solution, since

$$y_{i_t}\langle w_{t+1}, x_{i_t} \rangle = y_{i_t} \left\langle w_t + y_{i_t} \frac{x_{i_t}}{\|x_{i_t}\|}, x_{i_t} \right\rangle = y_{i_t}\langle w_t, x_{i_t} \rangle + \|x_{i_t}\|.$$

Relates to a coordinate descent (stepsize does not matter).

Theorem

Assume that the dataset $S = \{(x_1, y_1), \dots, (x_m, y_m)\}$ is linearly separable and let the separation margin γ be defined as:

$$\gamma = \max_{w \in \mathbb{R}^d: \|w\| = 1} \min_{1 \leq i \leq n} \frac{y_i \left\langle w, x_i \right\rangle}{\left\| x_i \right\|} \ .$$

Then the perceptron algorithm stops after at most $1/\gamma^2$ iterations.

Proof: Let w^* be such that $\forall 1 \leq i \leq m$, $\frac{y_i \langle w^*, x_i \rangle}{||x_i||} \geq \gamma$.

If iteration t is necessary, then

$$\left\langle w^*, w_{t+1} - w_{t} \right\rangle = y_{i_t} \left\langle w^*, \frac{x_{i_t}}{\|x_{i_t}\|} \right\rangle \geq \gamma \quad \text{ and hence } \left\langle w^*, w_{t} \right\rangle \geq \gamma t \ .$$

If iteration t is necessary, then

$$\|w_{t+1}\|^{2} = \left\|w_{t} + y_{i_{t}} \frac{x_{i_{t}}}{\|x_{i_{t}}\|}\right\|^{2} = \|w_{t}\|^{2} + \underbrace{\frac{2y_{i_{t}}\langle w_{t}, x_{i_{t}}\rangle}{\|x_{i_{t}}\|}}_{<0} + y_{i_{t}}^{2} \le \|w_{t}\|^{2} + 1$$

and hence $||w_t||^2 < t$, or $||w_t|| < \sqrt{t}$.

As a consequence, the algorithm iterates at least t times if

$$\gamma t \leq \langle w^*, w_t \rangle \leq ||w_t|| \leq \sqrt{t} \implies t \leq \frac{1}{\gamma^2}$$
.

In the worst case, the number of iterations can be exponentially large in the dimension d. Usually, it converges quite fast. If $\forall i, ||x_i|| = 1$, $\gamma = d(S, D)$ where $D = \{x : \langle w^*, x \rangle = 0\}$.

NP-hardness of computing the ERM for halfspaces

Computing an ERM in the agnostic case is NP-hard.

See On the difficulty of approximately maximizing agreements, by Ben-David, Eiron and Long.

Since the 0-1 loss

$$L_{\mathcal{S}}(h_w) = \frac{1}{m} \sum_{i=1}^m \mathbb{1}\{y_i \langle w, x_i \rangle < 0\}$$

is intractable to minimize in the agnostic case, one may consider *surrogate* loss functions

$$L_{\mathcal{S}}(h_{w}) = \frac{1}{m} \sum_{i=1}^{m} \ell(y_{i} \langle w, x_{i} \rangle),$$

where the loss function $\ell: \mathbb{R} \to \mathbb{R}^+$

$$L_S(h_w) = \frac{1}{m} \sum_{i=1}^m (h_w(x_i) - y_i)^2 = \frac{1}{m} \sum_{i=1}^m (1 - y_i \langle w, x_i \rangle)^2$$
.

If
$$X = (x_1, \dots, x_m) \in \mathcal{M}_{m,d}(\mathbb{R})$$
 and $y = (y_1, \dots, y_m) \in \mathbb{R}^m$, one obtains $\hat{w} = (X^T X)^- X^T y$, where A^- = generalized inverse of A .

Linear regression with absolute loss:

$$L_S(h_w) = \frac{1}{m} \sum_{i=1}^m |h_w(x_i) - y_i| = \frac{1}{m} \sum_{i=1}^m |1 - y_i h_w(x_i)|.$$

Can be solved by linear programming.

Interest: (statistical) robustness.

Statistics: "logistic regression":

$$P_{w}(Y = y | X = x)$$

$$= \frac{1}{1 + \exp(-y \langle w, x \rangle)}$$

$$L_S(h_w) = \frac{1}{m} \sum_{i=1}^m \log \left(1 + \exp(-y_i \langle w, x_i \rangle) \right),$$

convex minimization problem, can be solved by Newton's algorithm (in small dimension).

convex but non-smooth minimization problem, used with a penalization term
$$\lambda ||w||^2$$
: cf later.

$$L_S(h_w) = \frac{1}{m} \sum_{i=1}^m \exp(-y_i \langle w, x_i \rangle),$$

with ad-hoc optimization procedure – cf later.

$$R_{m}(f) = \mathbb{E}_{n}\left(1_{Y_{i}} = f(x_{i})\right)$$

$$= \frac{1}{n} \sum_{i=1}^{m} 1_{Y_{i}} * f(x_{i})$$

$$f_{K} \in argmin R_{n}(f)$$

(Bayes Clanifie) f*

f* € argmin R(f) f meas.

fr Eugmin R(f)

$$0 \le R(\hat{f}_{\mathcal{K}}) - R(\hat{f}^{*})$$

$$= R(\hat{f}^{*}_{\mathcal{K}}) - R(\hat{f}^{*}_{\mathcal{K}}) + R(\hat{f}_{\mathcal{K}}) - R(\hat{f}^{*}_{\mathcal{K}})$$
approx. even to destic even

Chap 9 P 186

Bound on stochastic ever.

VC-dim cef VC.