
Machine Learning 7:

Computational Complexity of Learning

Master 2 Computer Science

Aurélien Garivier

2019-2020



Table of contents

1. Computational Complexity of Learning

2. Learning Boolean functions

1



Computational Complexity of

Learning



Computational complexity of a learning algorithm 1/2

Definition

An algorithm A solves the learning task with domain set X × Y,

hypothesis class H and 0-1 loss in time O(f ) if there exists some

constant c > 0 such that for every probability distribution D over

X × Y, and every ε, δ > 0, when A receives as input iid samples of D:

• A terminates after performing at most cf (ε, δ) operations,

• the output of A, denoted by hA, can perform a prediction on a new

datapoint by performing at most cf (ε, δ) operations,

• hA is (ε, δ)−PAC: with probability at most 1− δ,

PD(hA(X ) 6= Y ) ≤ minh∈H PD(h(X ) 6= Y ) + ε.

NB: the second point is to ensure that the learning process is not ”hidden” in

the prediction function.

2



Computational complexity of a learning algorithm 2/2

Definition

A sequence Xn × Yn, Hn of learning problems is solved by algorithm A
in time O(g), where g : N×(0, 1)2 → N, if for all n A solves the task

(Xn × Yn,Hn, `n) in time O(fn), where fn : (0, 1)2 → N is defined by

fn(ε, δ) = g(n, ε, δ).

NB: in this definition the constant c of the O(f ) may depend on n.

A is efficient if one can choose g polynomial (wrt all variables).

Example: a finite hypothese class has polynomial sample complexity, but

the ERM can be long to find if
∣∣Hn

∣∣ is not polynomial in n.

3



Learning Boolean functions



Boolean conjunctions

For a positive integer n, 1 ≤ k , r ≤ n and 1 ≤ i1, . . . , ik , j1, . . . , jr ≤ n,

the boolean conjunction

vi1 ∧ · · · ∧ vik ∧ ¬vj1 ∧ · · · ∧ ¬vjr

defines the function h : X = {0, 1}n → Y = {0, 1} by

h(v) =

{
1 if vi1 = · · · = vik = 1 and vj1 = · · · = vjr = 0 ,

0 otherwise.

Ex: for n = 2, formula ¬v1 defines the function h(v1, v2) = 1− v1.

The class of all boolean conjunctions over {0, 1}n is denoted by Hn
C , and

has size at most 3n + 1
(
� 22n for large n

)
(either each variable appears at most

once, negated or not, or the formula is always false: think of n = 1).

Hence, its sample complexity is at most
n log(3/δ)

ε
.

4



Learning boolean conjunctions

Theorem

• In the realizable case, it is possible to compute an ERM in time

O(mn).

• Unless P=NP, there is no algorithm running in time polynomial in n

and m that is guaranteed to find an ERM hypothesis in the agnostic

case.

Proof for realizable case: start with formula h0 = v1 ∧ ¬v1 ∧

· · · ∧ vn ∧ ¬vn, and for 1 ≤ i ≤ m let hi = hi−1 if Yi = 0,

and otherwise hi is obtained from hi−1 by removing the literals

incompatible example (Xi , 1). Then hm is the most restrictive

formula agreeing with all positive examples (hence satisfying the

negative ones in the realizable case).

Reference: An Introduction to Computational

Learning Theory (Section 1.4),

by Michael J. Kearns and Umesh Vazirani,

MIT Press (1994). 5



Learning 3-term DNF

The class Hn
3DNF of 3-term Disjunctive Normal Form formulas is made of

the boolean functions of the form

h(v) = A1(v) ∨ A2(v) ∨ A3(v) ,

the Aj : {0, 1}n → {0, 1} being boolean conjunctions. It has size at most

33n and is thus learnable with sample complexity at most 3n log(3/δ)/ε.

But from a computational perspective, even the realizable case is hard.

Theorem

Unless RP=NP, no algorithm properly learns a sequence of 3-term DNF

problems in polynomial time.

Idea: if you can properly learn 3-term DNF, you have a random algorithm able

to compute an ERM whp by taking ε = 1/(2m) and D = uniform distribution

on the sample; but computing an ERM is NP-hard (see next slide).

Theorem

There exists a representation independent learning algorithm for 3-term

DNF problems in time O(n3m). 6



Proof: computing an ERM is NP-hard

Idea: reduction of the graph 3-coloring problem. A graph G = (V ,E) is

3-colorable if there exists a mapping f : V → {1, 2, 3} such that

(u, v) ∈ E =⇒ f (u) 6= f (v).

Assume that an algorithm computes an ERM for H in polynomial time in n and

m. For any graph G = (V ,E), where V = {1, . . . , n}, let m = |V |+ |E | and

S ∈
(
{0, 1}n × {0, 1}

)m
be the sample containing:

• for every i ∈ {1, . . . , n}, the pair (e−i , 1), where e−i = (1, . . . , 1)− ei ;

• for every edge (i , j) ∈ E , the pair
(
e−ij , 0

)
, where e−ij = e−j − ei .

Then:

• if there exists h ∈ Hn
3DNF that has zero error on S , then G is 3-colorable:

take f (i) = min{c : Ac(e−i ) = 1}. If f (i) = f (j) = c,

Ac(e−i ) = Ac(e−j) = 1; but (e−i )i = 0 whereas (e−j)i = 1, hence Ac does

not involve vi : as e−ij differs from ej just at vi , Ac(e−ij) = 1 = h(e−ij) and

hence (i , j) /∈ E .

• if G is 3-colorable, then there exists h ∈ Hn
3DNF with zero error on S : for

c ∈ {1, 2, 3} take Ac(v) =
∧

i :f (i) 6=c vi ; then h(e−i ) = Af (i)(e−i ) = 1 and if

(i , j) ∈ E , f (i) 6= f (j) implies Ac(e−ij) = 0 for all c.
7



Proof: 3-term DNF are representation-independent learnable

For every v ∈ {0, 1}n let uv ∈ {0, 1}2n by uvi = vi if 1 ≤ i ≤ n and

uvi = ¬vi if n + 1 ≤ i ≤ 2n. For c ∈ {1, 2, 3}, we write Ac =
∧

`∈Ac
`.

Since ∨ distributes over ∧,

h(v) =
∧

`1∈A1,`2∈A2,`3∈A3

`1 ∨ `2 ∨ `3 . (1)

Let ψ : {0, 1}n → {0, 1}(2n)3 be such that
[
ψ(v)

]
i1,i2,i3

= uvi1 ∨ uvi2 ∨ uvi3 .

By Equation (1), there exists a conjunction H : {0, 1}(2n)3 → {0, 1} such

that for every v ∈ {0, 1}n, h(v) = H(ψ(v)).

Hence, since we saw earlier that conjunctions of (2n)3 variables are

efficiently learnable with sample complexity at most n3 log(1/δ)/ε, there

exists an algorithm computing a function Ĥ : {0, 1}(2n3) → {0, 1}
compatible with all the examples

{(
ψ(x), y

)
: (x , y) ∈ S

}
in O(mn3)

operations. It permits to define ĥ : {0, 1}n → {0, 1} by ĥ(x) = Ĥ
(
ψ(x)

)
,

which agrees with all samples: it is an ERM. This does not contradict the

NP-hardness result above: ĥ is generically not a 3-term DNF.
8



Learning axis-aligned rectangles

Theorem

Let Hn
rec =

{
h(a1,b1,...,an,bn) : a1 ≤ b1, . . . , an ≤ bn

}
where

h(a1,b1,...,an,bn)(x1, . . . , xn) =

{
1 if a1 ≤ x1 ≤ b1, . . . , an ≤ xn ≤ bn ;

0 otherwise .

• In the realizable case, an ERM can be computed in O(nm)

operations: pick ai = min
{
xi : (x , 1) ∈ S

}
and

bi = max
{
xi : (x , 1) ∈ S

}
.

• In the agnostic case, solving the ERM is NP-hard: unless P=NP,

there is on algorithm whose running time is polynomial in m and n

that is guaranteed to find an ERM.

• However, for a fixed dimension n, the ERM can be computed in

polynomial time in m (try all subsets of the sample of size 2n).

9



Research Article 3

On the difficulty of approxi-

mately maximizing agreements

by Shai Ben-David, Nadav Eiron

and Philip M. Long

Journal of Computer and System

Sciences Vol. 66.3, May 2003,

pp. 496–514

https://dl.acm.org/citation.cfm?id=859224

10

https://dl.acm.org/citation.cfm?id=859224

	Computational Complexity of Learning
	Learning Boolean functions

