Machine Learning 7: Linear classifiers

Master 2 Computer Science

Aurélien Garivier 2018-2019

- 1. Learnability of the class of halfspaces
- 2. The realizable case
- 3. The agnostic case

Learnability of the class of halfspaces

The class of halfspaces

Definition

The class of linear (affine) functions on $\mathcal{X} = \mathbb{R}^d$ is defined as

$$L_d = ig\{h_{w,b}: w \in \mathbb{R}^d, b \in \mathbb{R}ig\}$$
 , where $h_{w,b}(x) = \langle w, x
angle + b$.

The hypothesis class of halfspaces for binary classification is defined as

$$\mathcal{H}S_d = \operatorname{sign} \circ L_d = \left\{ x \mapsto \operatorname{sign} \left(h_{w,b}(x) \right) : h_{w,b} \in L_d \right\}$$

where sign $(u) = \mathbb{1}\{u \ge 0\} - \mathbb{1}\{u < 0\}$. Depth 1 neural networks.

By taking $\mathcal{X}' = \mathcal{X} \times \{1\}$ and d' = d + 1, we may omit the bias b and focus on functions $h_w(x) = \langle w, x \rangle$.

Theorem

The VC-dimension of $\mathcal{H}S_d$ is equal to d + 1.

Corollary: the class of halfspaces is learnable with sample complexity $O(\frac{d+1+\log(1/\delta)}{\epsilon^2})$.

Proof: VC-dimension of the class of halfspaces

Linear (homogeneous) case:

- $\geq \mathbf{d}$: the set $\{e_1, \ldots, e_d\}$ is shattered, since for every $(y_1, \ldots, y_d) \in \{-1, 1\}^d$ the choice $w = (y_1, \ldots, y_d)$ yields $\langle w, e_i \rangle = y_i$ for every *i*.
- $< \mathbf{d} + \mathbf{1}$: let $x_1, \ldots, x_{d+1} \in \mathbb{R}^d$. There exits $a_1, \ldots, a_{d+1} \in \mathbb{R}$ such that $\sum_{i=1}^d a_i x_i = 0$ and, if $I = \{i : a_i > 0\}$ and $J = \{j : a_j < 0\}$, $|I \cup J| > 0$. Thus, $\sum_{i \in I} a_i x_i = \sum_{j \in J} |a_j| x_j$. If x_1, \ldots, x_{d+1} is shattered, there exists $w \in \mathbb{R}^{d+1}$ such that $\forall i \in I, \langle w, x_i \rangle > 0$ and $\forall j \in J, \langle w, x_j \rangle < 0$. Hence, if both I and J are not empty,

$$0 < \sum_{i \in I} a_i \langle x_i, w \rangle = \left\langle \sum_{i \in I} a_i x_i, w \right\rangle = \left\langle \sum_{j \in J} |a_j| x_j, w \right\rangle = \sum_{j \in J} |a_j| \langle x_j, w \rangle < 0 \; .$$

If either I or J is empty, one of the two inequalities is an equality, but not both of them.

Affine case (with bias):

- $\geq d + 1$: the set $\{e_1, \ldots, e_d, 0\}$ is shattered, since for every $(y_1, \ldots, y_{d+1}) \in \{-1, 1\}^d$ the choice $w = (y_1, \ldots, y_d)$ and $b = y_{d+1}/2$ yields $y_i(\langle w, e_i \rangle + b) > 0$ for every i and $y_{d+1}(\langle w, 0 \rangle + b) > 0$.
- $< \mathbf{d} + \mathbf{2}$: if a set $\{x_1, \ldots, x_{d+2}\}$ were shattered by non-homogeneous halfspaces in \mathbb{R}^d , then the set $\{\tilde{x}_i = (x_i, 1) \in \mathbb{R}^{d+1} : 1 \le i \le d+2\}$ would be shattered by homogeneous halfspaces in \mathbb{R}^{d+1} : for any $(y_1, \ldots, y_{d+2}) \in \{-1, 1\}^{d+1}$, there would exist $w \in \mathbb{R}^d$ and $b \in \mathbb{R}$ such that $\forall i \in \{1, \ldots, d+2\}, y_i(\langle w, x_i \rangle + b) > 0$. Then, taking $\tilde{w} = (w, b)$ we would have that $\forall i \{1, \ldots, d+2\}, y_i(\tilde{w}, \tilde{x}_i) \ge y_i(\langle w, x_i \rangle + b) > 0$. But we proved above that this is impossible.

The realizable case

In the realizable case, there exists w^* such that $\forall i \in \{1, \ldots, m\}$, $y_i \langle w^*, x_i \rangle \ge 0$, and even such that $\forall i \in \{1, \ldots, m\}$, $y_i \langle w^*, x_i \rangle > 0$. Then there exists $\bar{w} \in \mathbb{R}^d$ such that $\forall i \in \{1, \ldots, m\}$, $y_i \langle \bar{w}, x_i \rangle \ge 1$: if we can find one, we have an ERM.

Let $A \in \mathcal{M}_{m,d}(\mathbb{R})$ be defined by $A_{i,j} = y_i x_{i,j}$, and let $v = (1, \dots, 1) \in \mathbb{R}^m$. Then any solution of the linear program

 $\max_{w\in \mathbb{R}^d} \langle 0,w\rangle \quad \text{subject to} \quad Aw \geq v$

is an ERM. It can thus be computed in polynomial time.

Rosenblatt's Perceptron algorithm

Algorithm: Batch PerceptronData: training set $(x_1, y_1), \dots, (x_m, y_m)$ 1 $w_0 \leftarrow (0, \dots, 0)$ 223while $\exists i_t : y_{i_t} \langle w_t, x_{i_t} \rangle \leq 0$ do4 $w_{t+1} \leftarrow w_t + y_{i_t} \frac{x_{i_t}}{\|x_{i_t}\|}$ 5 $t \leftarrow t+1$ 6return w_t

Each updates helps reaching the solution, since

$$y_{i_t}\langle w_{t+1}, x_{i_t}\rangle = y_{i_t}\left\langle w_t + y_{i_t}\frac{x_{i_t}}{\|x_{i_t}\|}, x_{i_t}\right\rangle = y_{i_t}\langle w_t, x_{i_t}\rangle + \|x_{i_t}\|.$$

Relates to a coordinate descent (stepsize does not matter).

Convergence of the Perceptron algorithm

Theorem

Assume that the dataset $S = \{(x_1, y_1), \dots, (x_m, y_m)\}$ is linearly separable and let the separation margin γ be defined as:

$$\gamma = \max_{w \in \mathbb{R}^d : \|w\| = 1} \min_{1 \le i \le n} \frac{y_i \langle w, x_i \rangle}{\|x_i\|}$$

Then the perceptron algorithm stops after at most $1/\gamma^2$ iterations.

 $\frac{y_i \langle w^*, x_i \rangle}{\|x_i\|} \ge \gamma \; .$ **Proof:** Let w^* be such that $\forall 1 \leq i \leq m$,

If iteration t is necessary, then

$$\langle w^*, w_{t+1} - w_t \rangle = y_{i_t} \left\langle w^*, \frac{x_{i_t}}{\|x_{i_t}\|} \right\rangle \geq \gamma \quad \text{ and hence } \langle w^*, w_t \rangle \geq \gamma t \ .$$

If iteration t is necessary, then

$$\|w_{t+1}\|^{2} = \left\|w_{t} + y_{i_{t}} \frac{x_{i_{t}}}{\|x_{i_{t}}\|}\right\|^{2} = \|w_{t}\|^{2} + \underbrace{\frac{2y_{i_{t}}\langle w_{t}, x_{i_{t}}\rangle}{\|x_{i_{t}}\|}}_{\leq 0} + y_{i_{t}}^{2} \leq \|w_{t}\|^{2} + 1$$

and hence $||w_t||^2 < t$, or $||w_t|| < \sqrt{t}$.

As a consequence, the algorithm iterates at least t times if

$$\gamma t \leq \langle w^*, w_t \rangle \leq \|w_t\| \leq \sqrt{t} \implies t \leq \frac{1}{\gamma^2}$$

In the worst case, the number of iterations can be exponentially large in the dimension d. Usually, it converges quite fast. If $\forall i, ||x_i|| = 1$, $\gamma = d(S, D)$ where $D = \{x : \langle w^*, x \rangle = 0\}$.

The agnostic case

Computational difficulty of agnostic learning, and surrogates

NP-hardness of computing the ERM for halfspaces

Computing an ERM in the agnostic case is NP-hard.

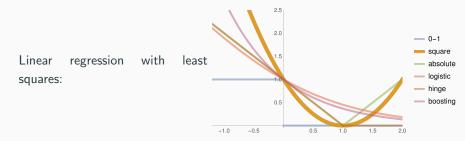
See On the difficulty of approximately maximizing agreements, by Ben-David, Eiron and Long.

Since the 0-1 loss $L_{S}(h_{w}) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1} \{ y_{i} \langle w, x_{i} \rangle < 0 \}$ is intractable to minimize in the agnostic case, one may consider surrogate loss functions

$$L_{\mathcal{S}}(h_w) = \frac{1}{m} \sum_{i=1}^m \ell(y_i \langle w, x_i \rangle) ,$$

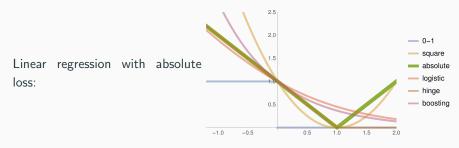
where the loss function $\ell:\mathbb{R}\to\mathbb{R}^+$

- dominates the function $\mathbb{1}\{u < 0\}$,
- and leads to a "simple" optimization problem (e.g. convex).



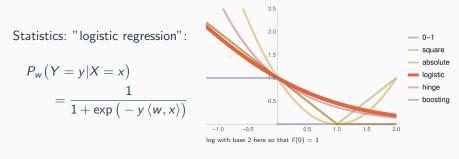
$$L_{\mathcal{S}}(h_w) = \frac{1}{m} \sum_{i=1}^m \left(h_w(x_i) - y_i\right)^2 = \frac{1}{m} \sum_{i=1}^m \left(1 - y_i \langle w, x_i \rangle\right)^2.$$

If $X = (x_1, \ldots, x_m) \in \mathcal{M}_{m,d}(\mathbb{R})$ and $y = (y_1, \ldots, y_m) \in \mathbb{R}^m$, one obtains $\hat{w} = (X^T X)^- X^T y$, where A^- = generalized inverse of A.



$$L_{S}(h_{w}) = \frac{1}{m} \sum_{i=1}^{m} |h_{w}(x_{i}) - y_{i}| = \frac{1}{m} \sum_{i=1}^{m} |1 - y_{i}h_{w}(x_{i})|.$$

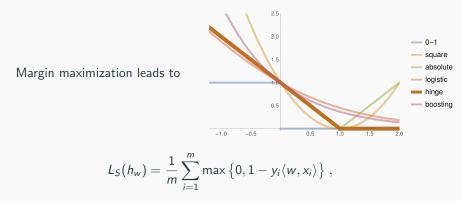
Can be solved by linear programming. Interest: (statistical) robustness.



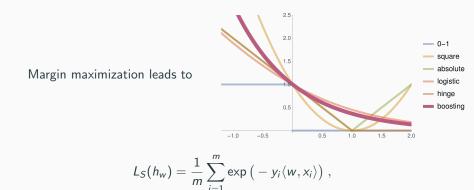
$$L_S(h_w) = rac{1}{m} \sum_{i=1}^m \log \left(1 + \exp(-y_i \langle w, x_i
angle)
ight),$$

convex minimization problem, can be solved by Newton's algorithm (in small dimension).

Support Vector Machines (SVM)



convex but non-smooth minimization problem, used with a penalization term $\lambda \|w\|^2$: cf later.



with ad-hoc optimization procedure - cf later.