Machine Learning 7: Linear classifiers

Master 2 Computer Science

Aurélien Garivier
2018-2019

Table of contents

1. Learnability of the class of halfspaces
2. The realizable case
3. The agnostic case

Learnability of the class of halfspaces

The class of halfspaces

Definition

The class of linear (affine) functions on $\mathcal{X}=\mathbb{R}^{d}$ is defined as

$$
L_{d}=\left\{h_{w, b}: w \in \mathbb{R}^{d}, b \in \mathbb{R}\right\}, \quad \text { where } h_{w, b}(x)=\langle w, x\rangle+b .
$$

The hypothesis class of halfspaces for binary classification is defined as

$$
\mathcal{H} S_{d}=\operatorname{sign} \circ L_{d}=\left\{x \mapsto \operatorname{sign}\left(h_{w, b}(x)\right): h_{w, b} \in L_{d}\right\}
$$

where $\operatorname{sign}(u)=\mathbb{1}\{u \geq 0\}-\mathbb{1}\{u<0\}$. Depth 1 neural networks.
By taking $\mathcal{X}^{\prime}=\mathcal{X} \times\{1\}$ and $d^{\prime}=d+1$, we may omit the bias b and focus on functions $h_{w}(x)=\langle w, x\rangle$.

Theorem

The VC-dimension of $\mathcal{H} S_{d}$ is equal to $d+1$.
Corollary: the class of halfspaces is learnable with sample complexity $O\left(\frac{d+1+\log (1 / \delta)}{\epsilon^{2}}\right)$.

Proof: VC-dimension of the class of halfspaces

Linear (homogeneous) case:

- $\geq \mathbf{d}$: the set $\left\{e_{1}, \ldots, e_{d}\right\}$ is shattered, since for every $\left(y_{1}, \ldots, y_{d}\right) \in\{-1,1\}^{d}$ the choice $w=\left(y_{1}, \ldots, y_{d}\right)$ yields $\left\langle w, e_{i}\right\rangle=y_{i}$ for every i.
$\bullet<\mathbf{d}+1$: let $x_{1}, \ldots, x_{d+1} \in \mathbb{R}^{d}$. There exits $a_{1}, \ldots, a_{d+1} \in \mathbb{R}$ such that $\sum_{i=1}^{d} a_{i} x_{i}=0$ and, if $I=\left\{i: a_{i}>0\right\}$ and $J=\left\{j: a_{j}<0\right\},|I \cup J|>0$. Thus, $\sum_{i \in I} a_{i} x_{i}=\sum_{j \in J}\left|a_{j}\right| x_{j}$. If x_{1}, \ldots, x_{d+1} is shattered, there exists $w \in \mathbb{R}^{d+1}$ such that $\forall i \in I,\left\langle w, x_{i}\right\rangle>0$ and $\forall j \in J,\left\langle w, x_{j}\right\rangle<0$. Hence, if both I and J are not empty,

$$
0<\sum_{i \in I} a_{i}\left\langle x_{i}, w\right\rangle=\left\langle\sum_{i \in I} a_{i} x_{i}, w\right\rangle=\left\langle\sum_{j \in J}\right| a_{j}\left|x_{j}, w\right\rangle=\sum_{j \in J}\left|a_{j}\right|\left\langle x_{j}, w\right\rangle<0 .
$$

If either I or J is empty, one of the two inequalities is an equality, but not both of them.

Affine case (with bias):

$\bullet \geq \mathbf{d}+1$: the set $\left\{e_{1}, \ldots, e_{d}, 0\right\}$ is shattered, since for every $\left(y_{1}, \ldots, y_{d+1}\right) \in\{-1,1\}^{d}$ the choice $w=\left(y_{1}, \ldots, y_{d}\right)$ and $b=y_{d+1} / 2$ yields $y_{i}\left(\left\langle w, e_{i}\right\rangle+b\right)>0$ for every i and $y_{d+1}(\langle w, 0\rangle+b)>0$.

- $<\mathbf{d}+2$: if a set $\left\{x_{1}, \ldots, x_{d+2}\right\}$ were shattered by non-homogeneous halfspaces in \mathbb{R}^{d}, then the set $\left\{\tilde{x}_{i}=\left(x_{i}, 1\right) \in \mathbb{R}^{d+1}: 1 \leq i \leq d+2\right\}$ would be shattered by homogeneous halfspaces in \mathbb{R}^{d+1} : for any $\left(y_{1}, \ldots, y_{d+2}\right) \in\{-1,1\}^{d+1}$, there would exist $w \in \mathbb{R}^{d}$ and $b \in \mathbb{R}$ such that $\forall i \in\{1, \ldots, d+2\}, y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)>0$. Then, taking $\tilde{w}=(w, b)$ we would have that $\forall i\{1, \ldots, d+2\}, y_{i}\left\langle\tilde{w}, \tilde{x}_{i}\right\rangle=y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)>0$. But we proved above that this is impossible.

The realizable case

Realizable case: Learning halfspaces with a linear program solver

In the realizable case, there exists w^{*} such that $\forall i \in\{1, \ldots, m\}$, $y_{i}\left\langle w^{*}, x_{i}\right\rangle \geq 0$, and even such that $\forall i \in\{1, \ldots, m\}, y_{i}\left\langle w^{*}, x_{i}\right\rangle>0$.

Then there exists $\bar{w} \in \mathbb{R}^{d}$ such that $\forall i \in\{1, \ldots, m\}, y_{i}\left\langle\bar{w}, x_{i}\right\rangle \geq 1$: if we can find one, we have an ERM.

Let $A \in \mathcal{M}_{m, d}(\mathbb{R})$ be defined by $A_{i, j}=y_{i} x_{i, j}$, and let
$v=(1, \ldots, 1) \in \mathbb{R}^{m}$. Then any solution of the linear program

$$
\max _{w \in \mathbb{R}^{d}}\langle 0, w\rangle \text { subject to } \quad A w \geq v
$$

is an ERM. It can thus be computed in polynomial time.

Rosenblatt's Perceptron algorithm

```
Algorithm: Batch Perceptron
Data: training set \(\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\)
\(1 w_{0} \leftarrow(0, \ldots, 0)\)
\(2 t \geq 0\)
3 while \(\exists i_{t}: y_{i_{t}}\left\langle w_{t}, x_{i_{t}}\right\rangle \leq 0\) do
\(4 \quad w_{t+1} \leftarrow w_{t}+y_{i_{t}} \frac{x_{i t}}{\left\|x_{i t}\right\|}\)
\(5 \quad t \leftarrow t+1\)
6 return \(w_{t}\)
```

Each updates helps reaching the solution, since

$$
y_{i_{t}}\left\langle w_{t+1}, x_{i_{t}}\right\rangle=y_{i_{t}}\left\langle w_{t}+y_{i_{t}} \frac{x_{i_{t}}}{\left\|x_{i_{t}}\right\|}, x_{i_{t}}\right\rangle=y_{i_{t}}\left\langle w_{t}, x_{i_{t}}\right\rangle+\left\|x_{i_{t}}\right\| .
$$

Relates to a coordinate descent (stepsize does not matter).

Convergence of the Perceptron algorithm

Theorem

Assume that the dataset $S=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\right\}$ is linearly separable and let the separation margin γ be defined as:

$$
\gamma=\max _{w \in \mathbb{R}^{d}:\|w\|=1} \min _{1 \leq i \leq n} \frac{y_{i}\left\langle w, x_{i}\right\rangle}{\left\|x_{i}\right\|}
$$

Then the perceptron algorithm stops after at most $1 / \gamma^{2}$ iterations.
Proof: Let w^{*} be such that $\forall 1 \leq i \leq m, \quad \frac{y_{i}\left\langle w^{*}, x_{i}\right\rangle}{\left\|x_{i}\right\|} \geq \gamma$.

- If iteration t is necessary, then

$$
\left\langle w^{*}, w_{t+1}-w_{t}\right\rangle=y_{i_{t}}\left\langle w^{*}, \frac{x_{i_{t}}}{\left\|x_{i_{t}}\right\|}\right\rangle \geq \gamma \quad \text { and hence }\left\langle w^{*}, w_{t}\right\rangle \geq \gamma t
$$

- If iteration t is necessary, then

$$
\left\|w_{t+1}\right\|^{2}=\left\|w_{t}+y_{i_{t}} \frac{x_{i_{t}}}{\left\|x_{i_{t}}\right\|}\right\|^{2}=\left\|w_{t}\right\|^{2}+\underbrace{\frac{2 y_{i_{t}}\left\langle w_{t}, x_{i_{t}}\right\rangle}{\left\|x_{i_{t}}\right\|}}_{\leq 0}+y_{i_{t}}^{2} \leq\left\|w_{t}\right\|^{2}+1
$$

and hence $\left\|w_{t}\right\|^{2} \leq t$, or $\left\|w_{t}\right\| \leq \sqrt{t}$.

- As a consequence, the algorithm iterates at least t times if

$$
\gamma t \leq\left\langle w^{*}, w_{t}\right\rangle \leq\left\|w_{t}\right\| \leq \sqrt{t} \quad \Longrightarrow \quad t \leq \frac{1}{\gamma^{2}}
$$

In the worst case, the number of iterations can be exponentially large in the dimension d. Usually, it converges quite fast. If $\forall i,\left\|x_{i}\right\|=1, \gamma=d(S, D)$ where $D=\left\{x:\left\langle w^{*}, x\right\rangle=0\right\}$.

The agnostic case

Computational difficulty of agnostic learning, and surrogates

NP-hardness of computing the ERM for halfspaces

Computing an ERM in the agnostic case is NP-hard.
See On the difficulty of approximately maximizing agreements, by Ben-David, Eiron and Long.
Since the 0-1 loss
$L_{S}\left(h_{w}\right)=\frac{1}{m} \sum_{i=1}^{m} \mathbb{1}\left\{y_{i}\left\langle w, x_{i}\right\rangle<0\right\}$ agnostic case, one may consider surrogate loss functions

$$
L_{S}\left(h_{w}\right)=\frac{1}{m} \sum_{i=1}^{m} \ell\left(y_{i}\left\langle w, x_{i}\right\rangle\right)
$$

where the loss function $\ell: \mathbb{R} \rightarrow \mathbb{R}^{+}$

- dominates the function $\mathbb{1}\{u<0\}$,
- and leads to a "simple" optimization problem (e.g. convex).

Quadratic loss

Linear regression with least squares:

$$
L_{S}\left(h_{w}\right)=\frac{1}{m} \sum_{i=1}^{m}\left(h_{w}\left(x_{i}\right)-y_{i}\right)^{2}=\frac{1}{m} \sum_{i=1}^{m}\left(1-y_{i}\left\langle w, x_{i}\right\rangle\right)^{2} .
$$

If $X=\left(x_{1}, \ldots, x_{m}\right) \in \mathcal{M}_{m, d}(\mathbb{R})$ and $y=\left(y_{1}, \ldots, y_{m}\right) \in \mathbb{R}^{m}$, one obtains $\hat{w}=\left(X^{\top} X\right)^{-} X^{\top} y$, where $A^{-}=$generalized inverse of A.

Absolute loss

Linear regression with absolute loss:

$$
L_{S}\left(h_{w}\right)=\frac{1}{m} \sum_{i=1}^{m}\left|h_{w}\left(x_{i}\right)-y_{i}\right|=\frac{1}{m} \sum_{i=1}^{m}\left|1-y_{i} h_{w}\left(x_{i}\right)\right| .
$$

Can be solved by linear programming.
Interest: (statistical) robustness.

Logistic loss

Statistics: "logistic regression":

log with base 2 here so that $\ell(0)=1$

$$
L_{S}\left(h_{w}\right)=\frac{1}{m} \sum_{i=1}^{m} \log \left(1+\exp \left(-y_{i}\left\langle w, x_{i}\right\rangle\right)\right),
$$

convex minimization problem, can be solved by Newton's algorithm (in small dimension).

Support Vector Machines (SVM)

Margin maximization leads to

$$
L_{S}\left(h_{w}\right)=\frac{1}{m} \sum_{i=1}^{m} \max \left\{0,1-y_{i}\left\langle w, x_{i}\right\rangle\right\},
$$

convex but non-smooth minimization problem, used with a penalization term $\lambda\|w\|^{2}$: cf later.

Boosting

Margin maximization leads to

$$
L_{s}\left(h_{w}\right)=\frac{1}{m} \sum_{i=1}^{m} \exp \left(-y_{i}\left\langle w, x_{i}\right\rangle\right),
$$

with ad-hoc optimization procedure - cf later.

