
Machine Learning 8:

Linear classifiers

Master 2 Computer Science
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Learnability of the class of

halfspaces



The class of halfspaces

Definition

The class of linear (affine) functions on X = Rd is defined as

Ld =
{
hw ,b : w ∈ Rd , b ∈ R} , where hw ,b(x) = 〈w , x〉+ b .

The hypothesis class of halfspaces for binary classification is defined as

HSd = sign ◦Ld =
{
x 7→ sign

(
hw ,b(x)

)
: hw ,b ∈ Ld

}
where sign(u) = 1{u ≥ 0} − 1{u < 0}. Depth 1 neural networks.

By taking X ′ = X × {1} and d ′ = d + 1, we may omit the bias b and

focus on functions hw (x) = 〈w , x〉.

Theorem

The VC-dimension of HSd is equal to d + 1.

Corollary: the class of halfspaces is learnable with sample complexity

O
( d+1+log(1/δ)

ε2

)
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Proof: VC-dimension of the class of halfspaces

Linear (homogeneous) case:

• ≥ d : the set {e1, . . . , ed} is shattered, since for every (y1, . . . , yd ) ∈ {−1, 1}d the choice

w = (y1, . . . , yd ) yields 〈w , ei 〉 = yi for every i .

• < d + 1 : let x1, . . . , xd+1 ∈ Rd . There exits a1, . . . , ad+1 ∈ R such that
∑d

i=1 aixi = 0

and, if I = {i : ai > 0} and J = {j : aj < 0}, |I ∪ J| > 0. Thus,
∑

i∈I aixi =
∑

j∈J |aj |xj .
If x1, . . . , xd+1 is shattered, there exists w ∈ Rd+1 such that ∀i ∈ I , 〈w , xi 〉 > 0 and

∀j ∈ J, 〈w , xj〉 < 0. Hence, if both I and J are not empty,

0 <
∑
i∈I

ai 〈xi ,w〉 =
〈∑

i∈I
aixi ,w

〉
=

〈∑
j∈J
|aj |xj ,w

〉
=
∑
j∈J
|aj |〈xj ,w〉 < 0 .

If either I or J is empty, one of the two inequalities is an equality, but not both of them.

Affine case (with bias):

• ≥ d + 1 : the set {e1, . . . , ed , 0} is shattered, since for every (y1, . . . , yd+1) ∈ {−1, 1}d

the choice w = (y1, . . . , yd ) and b = yd+1/2 yields yi
(
〈w , ei 〉 + b

)
> 0 for every i and

yd+1

(
〈w , 0〉 + b

)
> 0.

• < d + 2 : if a set {x1, . . . , xd+2} were shattered by non-homogeneous halfspaces in Rd ,

then the set {x̃i = (xi , 1) ∈ Rd+1 : 1 ≤ i ≤ d + 2} would be shattered by homogeneous

halfspaces in Rd+1: for any (y1, . . . , yd+2) ∈ {−1, 1}d+1, there would exist w ∈ Rd and

b ∈ R such that ∀i ∈ {1, . . . , d + 2}, yi
(
〈w , xi 〉 + b

)
> 0. Then, taking w̃ = (w , b) we

would have that ∀i ∈ {1, . . . , d + 2}, yi 〈w̃ , x̃i 〉 = yi
(
〈w , xi 〉 + b

)
> 0. But we proved

above that this is impossible.
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The realizable case



Realizable case: Learning halfspaces with a linear program

solver

In the realizable case, there exists w∗ such that ∀i ∈ {1, . . . ,m},
yi 〈w∗, xi 〉 ≥ 0, and even such that ∀i ∈ {1, . . . ,m}, yi 〈w∗, xi 〉 > 0.

Then there exists w̄ ∈ Rd such that ∀i ∈ {1, . . . ,m}, yi 〈w̄ , xi 〉 ≥ 1: if we

can find one, we have an ERM.

Let A ∈Mm,d(R) be defined by Ai,j = yi xi,j , and let

v = (1, . . . , 1) ∈ Rm. Then any solution of the linear program

max
w∈Rd

〈0,w〉 subject to Aw ≥ v

is an ERM. It can thus be computed in polynomial time.
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Rosenblatt’s Perceptron algorithm

Algorithm: Batch Perceptron

Data: training set (x1, y1), . . . , (xm, ym)

1 w0 ← (0, . . . , 0)

2 t ≥ 0

3 while ∃it : yit 〈wt , xit 〉 ≤ 0 do

4 wt+1 ← wt + yit
xit
‖xit ‖

5 t ← t + 1

6 return wt

Each updates helps reaching the solution, since

yit 〈wt+1, xit 〉 = yit

〈
wt + yit

xit
‖xit‖

, xit

〉
= yit 〈wt , xit 〉+ ‖xit‖ .

Relates to a coordinate descent (stepsize does not matter).
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Convergence of the Perceptron algorithm

Theorem

Assume that the dataset S =
{

(x1, y1), . . . , (xm, ym)
}

is linearly

separable and let the separation margin γ be defined as:

γ = max
w∈Rd :‖w‖=1

min
1≤i≤n

yi 〈w , xi 〉
‖xi‖

.

Then the perceptron algorithm stops after at most 1/γ2 iterations.

Proof: Let w∗ be such that ∀1 ≤ i ≤ m,
yi 〈w∗, xi 〉
‖xi‖

≥ γ . γ

• If iteration t is necessary, then

〈w∗,wt+1 − wt〉 = yit

〈
w∗,

xit
‖xit ‖

〉
≥ γ and hence 〈w∗,wt〉 ≥ γt .

• If iteration t is necessary, then

‖wt+1‖2 =

∥∥∥∥wt + yit
xit
‖xit ‖

∥∥∥∥2 = ‖wt‖2 +
2yit 〈wt , xit 〉
‖xit ‖︸ ︷︷ ︸
≤0

+y2
it
≤ ‖wt‖2 + 1

and hence ‖wt‖2 ≤ t, or ‖wt‖ ≤
√
t.

• As a consequence, the algorithm iterates at least t times if

γt ≤ 〈w∗,wt〉 ≤ ‖wt‖ ≤
√
t =⇒ t ≤

1

γ2
.

In the worst case, the number of iterations can be exponentially large in the dimension d . Usually,

it converges quite fast. If ∀i, ‖xi‖ = 1, γ = d(S,D) where D =
{
x : 〈w∗, x〉 = 0

}
.
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The agnostic case



Computational difficulty of agnostic learning, and surrogates

NP-hardness of computing the ERM for halfspaces

Computing an ERM in the agnostic case is NP-hard.

See On the difficulty of approximately maximizing agreements, by Ben-David, Eiron and Long.

Since the 0-1 loss

LS(hw ) =
1

m

m∑
i=1

1
{
yi 〈w , xi 〉 < 0

}
is intractable to minimize in the

agnostic case, one may consider

surrogate loss functions

LS(hw ) =
1

m

m∑
i=1

`
(
yi 〈w , xi 〉

)
,

where the loss function ` : R→ R+

• dominates the function 1
{
u < 0

}
,

• and leads to a ”simple” optimization problem (e.g. convex). 7



Quadratic loss

Linear regression with least

squares:

LS(hw ) =
1

m

m∑
i=1

(
hw (xi )− yi

)2
=

1

m

m∑
i=1

(
1− yi 〈w , xi 〉

)2
.

If X = (x1, . . . , xm) ∈Mm,d(R) and y = (y1, . . . , ym) ∈ Rm, one obtains

ŵ =
(
XTX )−XT y , where A− = generalized inverse of A.
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Absolute loss

Linear regression with absolute

loss:

LS(hw ) =
1

m

m∑
i=1

∣∣hw (xi )− yi
∣∣ =

1

m

m∑
i=1

∣∣1− yihw (xi )
∣∣ .

Can be solved by linear programming.

Interest: (statistical) robustness.

9



Logistic loss

Statistics: ”logistic regression”:

Pw

(
Y = y |X = x

)
=

1

1 + exp
(
− y 〈w , x〉

)
log with base 2 here so that `(0) = 1

LS(hw ) =
1

m

m∑
i=1

log
(
1 + exp(−yi 〈w , xi 〉)

)
,

convex minimization problem, can be solved by Newton’s algorithm (in

small dimension).
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Support Vector Machines (SVM)

Margin maximization leads to

LS(hw ) =
1

m

m∑
i=1

max
{

0, 1− yi 〈w , xi 〉
}
,

convex but non-smooth minimization problem, used with a penalization

term λ‖w‖2: cf later.
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Boosting

Margin maximization leads to

LS(hw ) =
1

m

m∑
i=1

exp
(
− yi 〈w , xi 〉

)
,

with ad-hoc optimization procedure – cf later.
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