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Learnability of the class of
halfspaces



The class of halfspaces

Definition
The class of linear (affine) functions on X = R is defined as
Ly={hwp:weR! beR}, whereh,(x)= (w,x)+b.
The hypothesis class of halfspaces for binary classification is defined as
HSy = signoly = {x — sign (hw7b(x)) thwp € Ld}
where sign(u) = 1{u > 0} — 1{u < 0}. Depth 1 neural networks.

By taking X' = X x {1} and d’ = d + 1, we may omit the bias b and
focus on functions h,, (x) = (w, x).

Theorem

The VC-dimension of HSy is equal to d + 1.

Corollary: the class of halfspaces is learnable with sample complexity
O(d+1+|og(1/5))-

€2



Proof: VC-dimension of the class of halfspaces

Linear (homogeneous) case:

e >d: theset {e,...,eq} is shattered, since for every (y1,...,yq) € {—1, l}d the choice
w = (y1,...,Yq) yields (w, e;) = y; for every i.

o <d+1l:letxy,...,xg41 € RY. There exits a, . . ., ad+1 € R such that 27:1 aix; =0
and, if / = {i:a >0} and J = {j:a; <O} [fUJ|>0. Thus, 3=, aixi = >, laj|x.
If X1, ..., X441 is shattered, there exists w € RY™ such that Vi € I, (w, x;) > 0 and
Vj € J,(w, xj) < 0. Hence, if both | and J are not empty,

o< o) = (Do) = (s w> — 3" lal0gw) <0
i€l icl j€d j€Jd
If either | or J is empty, one of the two inequalities is an equality, but not both of them.

Affine case (with bias):

e >d+1:theset {er,...,eq,0} is shattered, since for every (y1,...,y4+1) € {—1, l}d
the choice w = (y1, ..., ya) and b = yq;1/2 yields y; ({w, e;) 4+ b) > 0 for every i and
ya+1({w,0) + b) > 0.

e <d+2:ifaset {xi,...,Xxq+2} were shattered by non-homogeneous halfspaces in RY,
then the set {& = (x;,1) € R*™ : 1 < i < d + 2} would be shattered by homogeneous
halfspaces in RY*1: for any (y1, ..., Ya+2) € {—1,1}%", there would exist w € R and

b € R such that Vi € {1,...,d + 2}, y:({(w, x;) + b) > 0. Then, taking W = (w, b) we
would have that Vi € {1,..., (W, %) = yi({w, x;) + b) > 0. But we proved
above that this is impossible.




The realizable case



Realizable case: Learning halfspaces with a linear program

solver

In the realizable case, there exists w* such that Vi € {1,..., m},
yi{w*,x;) >0, and even such that Vi € {1,..., m}, y;(w*, x;) > 0.

Then there exists w € RY such that Vi € {1,...,m}, yi(w,x) > 1: if we
can find one, we have an ERM.

Let A€ M, 4(R) be defined by A j = yix;j, and let
v=(1,...,1) € R™. Then any solution of the linear program

max (0, w) subject to Aw > v
weERd

is an ERM. It can thus be computed in polynomial time.



Rosenblatt’s Perceptron algorithm

Algorithm: Batch Perceptron

Data: training set (x1, Y1), - (Xm, Ym)
1 W0<—(0,...70)

2t>0
Yi ¢
Xi
4 Witl < Wy +)/itm

5 t+—t+1

6 return w;

Each updates helps reaching the solution, since

y/r<Wt+1’X/t>:yit< t+y/r || ||> ’r> .y’t< f7X/r>+||Xft|| .
’t

Relates to a coordinate descent (stepsize does not matter).



Convergence of the Perceptron algorithm

Theorem
Assume that the dataset S = {(Xl,yl), e (Xm,ym)} is linearly
separable and let the separation margin ~y be defined as:

i {w, x)
Y= max min —————
weR?:|w||=11<i<n  ||x;]]

Then the perceptron algorithm stops after at most 1/+? iterations.

y'<W*.X'> + o+ F
Proof: Let w* be such that V1 < i < m, - ——"'2 >~
e If iteration t is necessary, then Il o o %o
o o
.
(W™, West — we) = i <w T > > and hence (", w;) > 7t .
it
e |[f iteration t is necessary, then
2y (we, i, )
2 2 t) 2 2
a2 = [l 3 2 = e 4 2R 2 < 42
[EA [EA
2 =0
and hence ||w:||* < t, or ||we|| < V't

e As a consequence, the algorithm iterates at least t times if
1
vt < (whwe) < we| < VE = t< — .

In the worst case, the number of iterations can be exponentially large in the dimension d. Usually,

it converges quite fast. If Vi, ||x;|| = 1, v = d(S, D) where D = {x (w, x) = 0}.



The agnostic case




Computational difficulty of agnostic learning, and surrogates

NP-hardness of computing the ERM for halfspaces
Computing an ERM in the agnostic case is NP-hard.

See On the difficulty of approxii ly imizil by Ben-David, Eiron and Long.
Since the 0-1 loss 25
1 m 20 — o
LS(hw) = — E ]l{y, <W,X,'> < 0} s square
m i=1 absolute
A lOgis‘ic
is intractable to minimize in the hinge
0 g 0.5 boosting
agnostic case, one may consider
surrogate loss functions S0 -5 T

where the loss function ¢: R — Rt

e dominates the function ]l{u < 0},
e and leads to a "simple” optimization problem (e.g. convex). 7



Quadratic loss

0-1

square

Linear regression with least absolute

squares: \ logistic
\ hinge

0.5 boosting
-1.0 -0.5 0.5 1.0 1.5 20

m 2 10 )
Z ;;1_}/IWXI>) .

i=1

3\'—‘

If X = (x1,...,Xm) € Mpmq(R) and y = (y1,...,¥m) € R™, one obtains
w = (XTX)*XTy, where A~ = generalized inverse of A.



Absolute loss

0-1
square

Linear regression with absolute == absolute

loss: h logistic
hinge

05 boosting

Ls(h) = 2 3~ () =] = = 3 [1.- o)
m= .y’_m y/WI N

Can be solved by linear programming.

Interest: (statistical) robustness.



Logistic loss

Statistics: "logistic regression”: = 0-1
s square
absolute
PW(Y :y|X = X) ' s |0gistic
1 hinge
0.5 boosting

1+exp (= y(w,x))
-1.0 -0.5 05 710 15 20
log with base 2 here so that £(0) = 1

Ls(hy) = %ng (1 + exp(—yi(w, x1)))

convex minimization problem, can be solved by Newton's algorithm (in
small dimension).



Support Vector Machines (SVM)

0-1
square
Margin maximization leads to Iabs.d.me
n ogistic
=== hinge
0.5 boosting

-1.0 -05 0.5 1.0 1.5 20

1 m
Ls(hy) = . Z max{O, 1-— y;(w,x;)} ,
i=1

convex but non-smooth minimization problem, used with a penalization
term \||w|?: cf later.



0-1
square
Margin maximization leads to : ZZSI::IZ@
hinge
05 w== boosting

Ls( Zexp — yi{w,x3)) ,

with ad-hoc optimization procedure — cf later.
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