Machine Learning 9:
 Regularization and Stability

Master 2 Computer Science

Aurélien Garivier
2018-2019

Table of contents

1. Regularization and Structural Risk Minimization
2. Regularization and Stability
3. Support Vector Machines

Regularization and Structural Risk Minimization

Overfitting

Example: linear classification with polynomial features

Src: http://mlwiki.org
\rightarrow how to get the best from several hypothesis classes?

Nonuniform Learnability

Definition

A hypothesis class \mathcal{H} is nonuniformy learnable if there exists a learning algorithm A and a function $m_{\mathcal{H}}^{N U L}:(0,1)^{2} \times \mathcal{H} \rightarrow \mathbb{N}$ such that for every $\epsilon, \delta \in(0,1)$ and for every $h \in \mathcal{H}$, if $m \geq m_{\mathcal{H}}^{N U L}(\epsilon, \delta, h)$ then with probability at least $1-\delta$ over the sample $S \sim D^{\otimes m}$,

$$
L_{D}(A(S)) \leq L_{D}(h)+\epsilon .
$$

Theorem

A hypothesis calss \mathcal{H} of binary classifiers is nonuniformly learnable if and only if fit is a countable union of agnostic PAC learnable hypothesis classes.

Structural Risk Minimization 1/2

Let $\mathcal{H}=\cup_{d \in \mathbb{N}} \mathcal{H}_{d}$, where each hypothesis class \mathcal{H}_{d} is PAC learnable with uniform convergence rate $m_{\mathcal{H}_{d}}^{U C}$, and let $\epsilon_{d}: \mathbb{N} \times(0,1) \rightarrow(0,1)$ be defined as

$$
\epsilon_{d}(m, \delta)=\min \left\{\epsilon \in(0,1): m_{\mathcal{H}_{d}}^{U C}(\epsilon, \delta) \leq m\right\} .
$$

For every $h \in \mathcal{H}$ let $d(h)=\min \left\{d: h \in \mathcal{H}_{d}\right\}$. Let also $w: \mathbb{N} \rightarrow[0,1]$ be such that $\sum_{d=0}^{\infty} w(d) \leq 1$.

Lemma

For every $\delta \in(0,1)$ and for every distribution D, with probability at least $1-\delta$ over the sample $S \sim D^{\otimes m}$,

$$
\forall h \in \mathcal{H}, \quad L_{D}(h) \leq L_{S}(h)+\epsilon_{d(h)}(m, w(d(h)) \delta) .
$$

Structural Risk Minimization 2/2

Structural Risk Minimization (SRM)

$$
A(S) \in \underset{h \in \mathcal{H}}{\arg \min } L_{s}(h)+\epsilon_{d(h)}(m, w(d(h)) \delta)
$$

Typical choice: $w(d)=\frac{6}{\pi^{2}(d+1)^{2}}$ gives for SRM the nonuniform learning rate

$$
m_{\mathcal{H}}^{N U L}(\epsilon, \delta, h) \leq m_{\mathcal{H}_{d(h)}}^{U C}\left(\frac{\epsilon}{2}, \frac{6 \delta}{\pi^{2} d(h)^{2}}\right)
$$

If $\operatorname{VCdim}\left(\mathcal{H}_{d}\right)=d, m_{\mathcal{H}_{d}}^{U C}(\epsilon / 2, \delta)=C \frac{d+\log (1 / \delta)}{\epsilon^{2}}$ and hence

$$
m_{\mathcal{H}}^{N U L}(\epsilon, \delta, h)-m_{\mathcal{H}_{d}}^{U C}(\epsilon / 2, \delta) \leq \frac{8 C \log (2 d)}{\epsilon^{2}}
$$

Remark: other strategy $=$ aggregation, cf PAC-Bayes learning.

Minimum Description Length and Occam's razor

Entiae non sunt multiplicanda praeter necessitatem
(Entities are not to be multiplied without necessity) Here: A short explanation tends to be more valid (generalize better) than a long explanation

Suggests a choice for $w(d)$: should penalize complexity.
More precisely: if $|h|$ is the length of a prefix-free binary code for the hypothesis h, set

$$
w(h)=2^{-|h|} .
$$

By Hoeffding's inequality, this typically yields the

Minimum Description Length (MDL) estimator:

$$
A(S) \in \underset{h \in \mathcal{H}}{\arg \min } L_{S}(h)+\sqrt{\frac{|h|+\log \frac{2}{\delta}}{2 m}} .
$$

This heuristic needs to be justified statistically (often possible).

Regularization and Stability

Stable Rules do not overfit

Theorem

Let D be a distribution on $\mathcal{X} \times\{ \pm 1\}, S=\left(z_{1}, \ldots, z_{m}\right)$ be an iid sequence of examples, z^{\prime} be another independent sample of D, and let I be an independent sample of the uniform distribution on $\{1, \ldots, m\}$. For all $1 \leq i \leq m$, let $S^{(i)}=\left(z_{1}, \ldots, z_{i-1}, z^{\prime}, z_{i+1}, \ldots, z_{m}\right)$. Then, for any learning alogrithm A,

$$
\mathbb{E}_{S}\left[L_{D}(A(S))-L_{S}(A(S))\right]=\mathbb{E}_{S, z^{\prime}, l}\left[\ell\left(A\left(S^{(l)}\right), z_{l}\right)-\ell\left(A(S), z_{l}\right)\right]
$$

Indeed, $\mathbb{E}_{S, z^{\prime}, l}\left[\ell\left(A\left(S^{(1)}\right), z_{1}\right)\right]=\mathbb{E}_{S}\left[L_{D}(A(S))\right]$, and $\mathbb{E}_{S, l}\left[\ell\left(A(S), z_{1}\right)\right]=\mathbb{E}_{S}\left[L_{S}(A(S))\right]$.

Definition

Algorithm A is said to be on-average-replace-one-stable with rate $\epsilon: \mathbb{N} \rightarrow \mathbb{R}$ if for every distribution D and every sample size $m \in \mathbb{N}$,

$$
\mathbb{E}_{S, z^{\prime}, l}\left[\ell\left(A\left(S^{(I)}\right), z_{l}\right)-\ell\left(A(S), z_{l}\right)\right] \leq \epsilon_{m} .
$$

Tikhonov Regularization as a Stabilizer

We consider a class $\mathcal{H}=\left\{h_{w}: w \in \bigcup_{d \geq 0} \mathbb{R}^{d}\right\}$.

Definition

Tikhonov's Regularized Loss Minimizer is defined as

$$
A(S) \in \underset{h_{w} \in \mathcal{H}}{\arg \min } L_{S}(h)+\lambda\|w\|^{2},
$$

where $\lambda>0$ is a parameter.
With square loss on \mathbb{R}^{d}, the resulting estimator is called ridge regression:
$\hat{w}=\underset{w \in \mathbb{R}^{d}}{\arg \min } \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2}\left(\left\langle w, x_{i}\right\rangle-y_{i}\right)^{2}+\lambda\|w\|^{2}=\left(2 \lambda m I_{d}+X^{\top} X\right)^{-1} X^{T} y$,
where $X=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \ldots \\ x_{m}\end{array}\right)$ and $y=\left(\begin{array}{c}y_{1} \\ y_{2} \\ \ldots \\ y_{m}\end{array}\right)$.

Tikhonov's RLM for convex loss is stable

Denote $f_{S}(w)=L_{s}(w)+\lambda\|w\|^{2}$. If ℓ is convex, then f is 2λ-strongly convex, and thus

$$
f_{S}\left(A\left(S^{(i)}\right)-f_{S}(A(S)) \geq \lambda\left\|A\left(S^{(i)}\right)-A(S)\right\|^{2}\right.
$$

and

$$
\begin{gathered}
f_{S}\left(A\left(S^{(i)}\right)\right)-f_{S}(A(S))=\underbrace{L_{S(i)}\left(A\left(S^{(i)}\right)\right)+\lambda \mid A\left(\left.S^{(i)}\right|^{2}-L_{S(i)}(A(S))-\lambda|A(S)|^{2}\right.}_{\leq 0} \\
+ \\
+\frac{\ell\left(A\left(S^{(i)}\right), z_{i}\right)-\ell\left(A(S), z_{i}\right)}{m}+\frac{\ell\left(A(S), z^{\prime}\right)-\ell\left(A\left(S^{(i)}\right), z^{\prime}\right)}{m},
\end{gathered}
$$

and hence
$\lambda\left\|A\left(S^{(i)}\right)-A(S)\right\|^{2} \leq \frac{\ell\left(A\left(S^{(i)}\right), z_{i}\right)-\ell\left(A(S), z_{i}\right)}{m}+\frac{\ell\left(A(S), z^{\prime}\right)-\ell\left(A\left(S^{(i)}\right), z^{\prime}\right)}{m}$

Lipschitz loss

When the loss $\ell(\cdot, z)$ is ρ-Lipschitz for every z, we obtain that

$$
\lambda\left\|A\left(S^{(i)}\right)-A(S)\right\|^{2} \leq \frac{2 \rho\left\|A\left(S^{(i)}\right)-A(S)\right\|}{m},
$$

when entails $\left\|A\left(S^{(i)}\right)-A(S)\right\| \leq \frac{2 \rho}{\lambda m}$.

RLM generalizes well Lispchitz Losses

When the loss function $\ell(\cdot, z)$ is convex and ρ-Lipschitz for all z, Tihkohnov's RLM is on-average-one-stable with rate $\frac{2 \rho^{2}}{\lambda m}$, and hence

$$
\mathbb{E}_{S}\left[L_{D}(A(S))-L_{S}(A(S))\right] \leq \frac{2 \rho^{2}}{\lambda m}
$$

Remark: when ℓ is β-smooth and non-negative, and when $\ell(0, z) \leq C$ for all z, one can prove that for $\lambda \geq \frac{2 \beta}{m}$ Tikhonov's RLM satisfies

$$
\mathbb{E}_{S}\left[L_{D}(A(S))-L_{S}(A(S))\right] \leq \frac{48 \beta}{\lambda m} \mathbb{E}\left[L_{S}(A(S))\right] \leq \frac{48 \beta C}{\lambda m}
$$

Controlling Fitting-Stability Tradeoff

Fitting-stability tradeoff:

$$
\mathbb{E}_{S}\left[L_{D}(A(S))\right]=\underbrace{\mathbb{E}_{S}\left[L_{S}(A(S))\right]}_{\text {fitting error }}+\underbrace{\mathbb{E}_{S}\left[L_{D}(A(S))-L_{S}(A(S))\right]}_{\text {generalization error }=\text { stability }} .
$$

The stronger the regularization (the larger λ), the better the stability BUT the higher the bias.

But for every $h_{w} \in \mathcal{H}$,

$$
\mathbb{E}_{S}\left[L_{S}(A(S))\right] \leq \mathbb{E}_{S}\left[L_{S}\left(h_{w}\right)+\lambda\|w\|^{2}\right]=L_{D}\left(h_{w}\right)+\lambda\|w\|^{2} .
$$

Oracle inequality

If the loss function $\ell(\cdot, z)$ is convex and ρ-Lipschitz for all z, Tikhonov's RLM satisfies

$$
\mathbb{E}_{S}\left[L_{D}(A(S))\right] \leq \inf _{h_{w} \in \mathcal{H}} L_{D}\left(h_{w}\right)+\lambda\|w\|^{2}+\frac{2 \rho^{2}}{\lambda m}
$$

Corollary

If $\forall h_{w} \in \mathcal{H},\|w\| \leq B$ and if the loss function $\ell(\cdot, z)$ is convex and ρ-Lipschitz for all z, Tikhonov's RLM with $\lambda=\sqrt{\frac{2 \rho^{2}}{B^{2} m}}$ satisfies:

$$
\mathbb{E}_{S}\left[L_{D}(A(S))\right] \leq \inf _{h_{w} \in \mathcal{H}} L_{D}\left(h_{w}\right)+\rho B \sqrt{\frac{8}{m}} .
$$

Hence, for every $\epsilon>0$, if $m \geq \frac{8 \rho^{2} B^{2}}{\epsilon^{2}}$ then for every distribution D $\mathbb{E}_{S}\left[L_{D}(A(S))\right] \leq \inf _{h_{w} \in \mathcal{H}} L_{D}\left(h_{w}\right)+\epsilon$.

The same kind of result can be obtained for β-smooth, non-negative losses: with $\lambda=\epsilon /\left(3 B^{2}\right)$, for every $m \geq \frac{150 \beta B^{2}}{\epsilon^{2}}$, whatever the distribution $D, \mathbb{E}_{S}\left[L_{D}(A(S))\right] \leq \inf _{h_{w} \in \mathcal{H}} L_{D}\left(h_{w}\right)+\epsilon$.
In practice, λ is most often chosen by cross-validation.

Example: Ridge regression generalizes well

Theorem

Let D be a distribution over $\mathcal{X} \times[-1,1]$, where $\mathcal{X}=\left\{x \in \mathbb{R}^{d}:\|x\| \leq 1\right\}$. Let $\mathcal{H}=\left\{w \in \mathbb{R}^{d}:\|w\| \leq B\right\}$. For any $\epsilon \in(0,1)$, let $m \geq m_{\mathcal{H}}(\epsilon)=150 B^{2} / \epsilon^{2}$. Then ridge regression with parameter $\lambda=\epsilon /\left(3 B^{2}\right)$ satisfies:

$$
\mathbb{E}_{S}\left[L_{D}(A(S))\right] \leq \min _{w \in \mathcal{H}} L_{D}(w)+\epsilon .
$$

Furthermore, for every $\delta \in(0,1)$ and every $m \geq m_{\mathcal{H}}(\epsilon, \delta)=m_{\mathcal{H}}(\epsilon \delta)$,

$$
\mathbb{P}_{S}\left(L_{D}(A(S)) \leq \min _{w \in \mathcal{H}} L_{D}(w)+\epsilon\right) \geq 1-\delta .
$$

Expectation to high-probability PAC learning: the sample complexity can be reduced to $m_{\mathcal{H}}(\epsilon, \delta)=m_{\mathcal{H}}(\epsilon / 2)\left\lceil\log _{2}(1 / \delta)\right\rceil+\left\lceil\frac{\log (4 / \delta)+\log \left(\left\lceil\log _{2}(1 / \delta)\right\rceil\right.}{\epsilon^{2}}\right\rceil$ when the loss function is bounded by 1 .

Support Vector Machines

Margin for linear separation

- Training sample $S=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\right\}$, where $x_{i} \in \mathbb{R}^{d}$ and $y_{i} \in\{ \pm 1\}$.
- Linearly separable if there exists a halfspace $h=(w, b)$ such that $\forall i, y_{i}=\operatorname{sign}\left(\left\langle w, x_{i}\right\rangle+b\right)$.
- What is the best separating hyperplane for generalization?

Distance to hyperplane

If $\|w\|=1$, then the distance from \times to the hyperplane $h=(w, b)$ is $d(x, \mathcal{H})=|\langle w, x\rangle+b|$.

Proof: Check that min $\left\{\|x-v\|^{2}: v \in h\right\}$ is reached at $v=x-(\langle w, x\rangle+b) w$.

Hard-SVM

Formulation 1:

$$
\underset{(w, b):\|w\|=1}{\arg \max } \min _{1 \leq i \leq m}\left|\left\langle w, x_{i}\right\rangle+b\right| \quad \text { such that } \forall i, y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)>0
$$

Formulation 2:

$$
\min _{w, b}\|w\|^{2} \quad \text { such that } \forall i, y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right) \geq 1
$$

Remark: b is not penalized.

Proposition

The two formulations are equivalent.
Proof: if $\left(w_{0}, b_{0}\right)$ is the solution of Formulation 2, then $\hat{w}=\frac{w_{0}}{\left\|w_{0}\right\|}, \hat{b}=\frac{b_{0}}{|w|}$ is a solution of Formulation 1: if $\left(w^{*}, b^{*}\right)$ is another solution, then letting $\gamma^{*}=\min _{1 \leq i \leq m} y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right)$ we see that $\left(\frac{w^{*}}{\gamma^{*}}, \frac{b^{*}}{\gamma^{*}}\right)$ satisfies the constraint of Formulation 2, hence $\left\|w_{0}\right\| \leq \frac{\left\|w^{*}\right\|}{\gamma^{*}}=\frac{1}{\gamma^{*}}$ and thus $\min _{1 \leq i \leq m}\left|\left\langle\hat{w}, x_{i}\right\rangle+\hat{b}\right|=\frac{1}{\left\|w_{0}\right\|} \geq \gamma^{*}$.

Sample Complexity

Definition

A distribution D over $\mathbb{R}^{d} \times\{ \pm 1\}$ is separable with a (γ, ρ)-margin if there exists $\left(w^{*}, b^{*}\right)$ such that $\left\|w^{*}\right\|=1$ and with probability 1 on a pair $(X, Y) \sim D$, it holds that $\|X\| \leq \rho$ and $Y\left(\left\langle w^{*}, X\right\rangle+b\right) \geq \gamma$.

Remark: by multiplying the x_{i} by α, the margin is mutliplied by α.

Theorem

For any distribution D over $\mathbb{R}^{d} \times\{ \pm 1\}$ that satisfies the (γ, ρ)-separability with margin assumption using a homogenous halfspace, with probability at least $1-\delta$ over the training set of size m the $0-1$ loss of the output of Hard-SVM is at most

$$
\sqrt{\frac{4(\rho / \gamma)^{2}}{m}}+\sqrt{\frac{2 \log (2 / \delta)]}{m}}
$$

Remark: depends on dimension d only thru ρ and γ.

Soft-SVM

When the data is not linearly separable, allow slack variables ξ_{i} :

$$
\begin{aligned}
& \min _{w, b, \xi} \lambda\|w\|^{2}+\frac{1}{m} \sum_{i=1}^{m} \xi_{i} \quad \text { such that } \forall i, y_{i}\left(\left\langle w, x_{i}\right\rangle+b\right) \geq 1-\xi_{i} \text { and } \xi_{i} \geq 0 \\
= & \min _{w, b} \lambda\|w\|^{2}+L_{S}^{\text {hinge }}(w, b) \quad \text { where } \ell^{\text {hinge }}(u)=\max (0,1-u) .
\end{aligned}
$$

Theorem

Let D be a distribution over $B(0, \rho) \times\{ \pm 1\}$. If $A(S)$ is the output of the soft-SVM algorithm on the sample S of D of size m,

$$
\mathbb{E}\left[L_{D}^{0-1}(A(S))\right] \leq \mathbb{E}\left[L_{D}^{\text {hinge }}(A(S))\right] \leq \inf _{u} L_{D}^{\text {hinge }}(u)+\lambda\|u\|^{2}+\frac{2 \rho^{2}}{\lambda m}
$$

For every $B>0$, setting $\lambda=\sqrt{\frac{2 \rho^{2}}{B^{2} m}}$ yields:

$$
\mathbb{E}\left[L_{D}^{0-1}(A(S))\right] \leq \mathbb{E}\left[L_{D}^{\text {hinge }}(A(S))\right] \leq \inf _{w:\|w\| \leq B} L_{D}^{\text {hinge }}(w)+\sqrt{\frac{8 \rho^{2} B^{2}}{m}} .
$$

Dual Form of the SVM Optimization Problem

To simplify, we consider only the homogeneous case of hard-SVM. Let

$$
g(w)=\max _{\alpha \in[0,+\infty)^{m}} \sum_{i=1}^{m} \alpha_{i}\left(1-y_{i}\left\langle w, x_{i}\right\rangle\right)= \begin{cases}0 & \text { if } \forall i, y_{i}\left\langle w, x_{i}\right\rangle \geq 1 \\ +\infty & \text { otherwise }\end{cases}
$$

Then the hard-SVM problem is equivalent to

$$
\begin{aligned}
\min _{w: \forall i, y_{i}\left\langle w, x_{i}\right\rangle \geq 1} \frac{1}{2}\|w\|^{2} & =\min _{w} \frac{1}{2}\|w\|^{2}+g(w) \\
& =\min _{w} \max _{\alpha \in[0,+\infty)^{m}} \frac{1}{2}\|w\|^{2}+\sum_{i=1}^{m} \alpha_{i}\left(1-y_{i}\left\langle w, x_{i}\right\rangle\right) \\
& m \stackrel{\min -\max }{=} \operatorname{thm} \max _{\alpha \in[0,+\infty)^{m}} \min _{w} \frac{1}{2}\|w\|^{2}+\sum_{i=1}^{m} \alpha_{i}\left(1-y_{i}\left\langle w, x_{i}\right\rangle\right)
\end{aligned}
$$

The inner min is reached at $w=\sum_{i=1}^{m} \alpha_{i} y_{i} x_{i}$ and can thus be written as

$$
\max _{\alpha \in \mathbb{R}^{m}, \alpha \geq 0} \sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{1 \leq i, j \leq m} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle
$$

Support vectors

Still for the homogeneous case of hard-SVM:

Property

Let w_{0} be a solution of and let $I=\left\{i:\left|\left\langle w_{0}, x_{i}\right\rangle\right|=1\right\}$. There exist $\alpha_{1}, \ldots, \alpha_{m}$ such that

$$
w_{0}=\sum_{i \in I} \alpha_{i} x_{i}
$$

The dual problem involves the x_{i} only thru scalar products $\left\langle x_{i}, x_{j}\right\rangle$.
It is of size m (independent of the dimension d).
These computations can be extended to the non-homogeneous soft-SVM
\rightarrow Kernel trick.

Numerically solving Soft-SVM

$f(w)=\frac{\lambda}{2}\|w\|^{2}+L_{S}^{\text {hinge }}(w)$ is λ-strongly convex.
\rightarrow Stochastic Gradient Descent with learning rate $1 /(\lambda t)$. Stochastic subgradient of $L_{S}^{\text {hinge }}(w): v_{t}=-y_{I_{t}} x_{I_{t}} \mathbb{1}\left\{y_{I_{t}}\left\langle w, x_{I_{t}}\right\rangle<1\right\}$.

$$
w_{t+1}=w_{t}-\frac{1}{\lambda t}\left(\lambda w_{t}+v_{t}\right)=\frac{t-1}{t} w_{t}-\frac{1}{\lambda t} v_{t}=-\frac{1}{\lambda t} \sum_{i=1}^{t} v_{t}
$$

Algorithm: SGD for Soft-SVM
1 Set $\theta_{0}=0$
2 for $t=0 \ldots T-1$ do
3 Let $w_{t}=\frac{1}{\lambda t} \theta_{t}$
$4 \quad$ Pick $I_{t} \sim \mathcal{U}(\{1, \ldots, m\})$
5 if $y_{I_{t}}\left\langle w_{t}, x_{I_{t}}\right\rangle<1$ then
$6 \quad \mid \quad \theta_{t+1} \leftarrow \theta_{t}+y_{I_{t}} x_{I_{t}}$
7 else
$8 \quad \leq \theta_{t+1} \leftarrow \theta_{t}$
9 return $\bar{w}_{T}=\frac{1}{T} \sum_{t=0}^{T-1} w_{t}$

