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Asymptotic variance of logistic regression
The logistic model assumes that the random variables (X,Y ) ∈ Rp × 0, 1 are such that

P(Y = 1|X) =
exp(〈β?, X〉)

1 + exp(〈β?, X〉)
,

with β? ∈ Rp. In this case, the logistic regression estimator β̂n ∈ Rp is defined as the Maximum
Likelihood Estimator

β̂n ∈ arg max
β∈Rp

n∏
i=1

[( exp(〈β, xi〉)
1 + exp(〈β, xi〉)

)Yi
( 1

1 + exp(〈β, xi〉)
)1−Yi

]
,

and defines the classifier
ĥn : x 7→ 1〈β̂n,x〉>0 .

1. Compute the gradient and the Hessian Hn of the negative log-likelihood

`n : β 7→ − 1

n

n∑
i=1

[
Yi〈xi, β〉 − log(1 + exp(〈xi, β〉))

]
.

2. What can be said about the function `n when for all β ∈ Rp, Hn(β) is nonsingular?

This assumption is assumed to hold in the following questions.

3. Prove the there exists β̃n ∈ Rp such that

‖β̃n − β?‖2 ≤ ‖β̂n − β?‖2 and β̂n − β? = Hn(β̃n)
−1∇`n(β?) .

In the following we assume that β̂n → β? almost surely, and the exists a continuous and nonsingular
function H such that Hn(β) converges to H(β), uniformly in a ball around β?.

4. Define for all i ∈ [n], pi(β) = exp(〈xi, β〉)/(1 + exp(〈xi, β〉)) and check that for all t ∈ Rp,

E
[
exp

(
−
√
n〈t,∇`n(β?)〉

)]
=

n∏
i=1

(
1− pi(β?) + pi(β

?) exp(〈t, xi〉/
√
n)
)
exp(−pi(β?)〈t, xi〉/

√
n)

= exp
(1
2
〈t,Hn(β

?)t〉+ εn

)
,

where εn is a random variable such that for all δ > 0, there exists M,N such that

P(|
√
nεn| > M) < δ , ∀n > N .

This is denoted by εn = OP(n−
1
2 ).

5. Prove that

∀t ∈ Rp, E
[
exp

(
−
√
n〈t,∇`n(β?)〉

)]
→n→+∞ exp

(1
2
〈t,H(β?)t〉

)
.

It shows that
√
n∇`n(β?) converges in distribution to Np(0, H(β?)). Using Question 3 and Slut-

sky’s lemma one can prove that
√
n(β̂n − β?) converges in distribution to Np(0, H(β?)−1), this is

the asymptotic normality of the logistic regression estimator.
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