
Topics in Advanced Machine Learning:

Reinforcement Learning

Master 2 Machine Learning and Data Mining - Saint-Etienne

Aurélien Garivier

2019-2020

Table of contents

1. What is Reinforcement Learning?

2. Policy Evaluation

3. Planning

4. Learning

1

What is Reinforcement Learning?

Outline

What is Reinforcement Learning?

Introduction

Reinforcement Learning Framework

Policy Evaluation

Bellman’s Equation for a Policy

Optimal Policies

Planning

Learning

The Q-table

Model-free Learning: Q-learning

2

Different Types of Learning

Machine Learning Unsupervised
Learning

Representation
learning

Clustering

Anomaly
detection

Bayesian
networks

Latent
variables

Density
estimation

Dimension
reduction

Supervised
Learning:

classification,
regression

Decition
Trees

SVM

Ensemble
Methods

Boosting

BaggingRandom
Forest

Neural
Networks

Sparse
dictionary
learning

Model
based

Similarity
/ metric
learning

Recommender
systems

Rule Learning

Inductive
logic pro-
gramming

Association
rule

learning

Reinforcement
Learning

Bandits MDP

• semi-supervised learning

Reinforcement Learning

• Dates back to

1950’s (Bellman)

• Stochastic

Optimal Control

• Dynamic

Programming

• Strong revival with

the work of

3

Example: Inverted Pendulum

The Learning algorithm used by Martin is Neural Fitted Q iteration, a

version of Q-iteration where neural networks are used as function

approximators

4

Some Applications

• TD-Gammon. [Tesauro ’92-’95]: backgammon world champion

• KnightCap [Baxter et al. ’98]: chess (2500 ELO)

• Computer poker [Alberta, ’08...]

• Computer go [Mogo ’06], [AlphaGo ’15, Alphazero ’18]

• Atari, Starcraft, etc. [Deepmind ’10 sqq]

• Robotics: jugglers, acrobots, ... [Schaal et Atkeson ’94 sqq]

• Navigation: robot guide in Smithonian Museum [Thrun et al. ’99]

• Lift command [Crites et Barto, 1996]

• Internet Packet Routing [Boyan et Littman, 1993]

• Task Scheduling [Zhang et Dietterich, 1995]

• Maintenance [Mahadevan et al., 1997]

• Social Networks [Acemoglu et Ozdaglar, 2010]

• Yield Management, pricing [Gosavi 2010]

• Load forecasting [S. Meynn, 2010]

• . . .

5

Outline

What is Reinforcement Learning?

Introduction

Reinforcement Learning Framework

Policy Evaluation

Bellman’s Equation for a Policy

Optimal Policies

Planning

Learning

The Q-table

Model-free Learning: Q-learning

6

A Model for RL: MDP

Agent

Environment

Learning

reward perception

Critic

actuation
action / state /

src: https://lilianweng.github.io

exploration

vs

exploitation

dilemma

7

https://lilianweng.github.io

Model: Markov Decision Process

Markov Decision Process = 4-uple (S,A, k , r):

• State space S = {1, . . . , p}
• Action space A = {1, . . . ,K}
• Transition kernel k ∈M1(S)S×A

• Random reward function r ∈M1(R)S×A

Dynamic = controlled Markov Process:

• Initial state S0

• At each time t ∈ N:

• choose action At

• get reward Xt ∼ r(·|St ,At)

• switch to new state St+1 ∼ k(·|St ,At)

Cumulated reward: W =
∞∑
t=0

γtXt where γ ∈ (0, 1) is a discount parameter

Goal

choose the actions so as to maximize the

cumulated reward in expectation.
8

Example: inverted pendulum

• State: horizontal position, angular position and velocity

State space: S = [0, 1]× [−π, π]× R
• Action: move left or right

Action space: A = {−1,+1}
• Reward = proportional to height of the stick end: if St = (xt , θt , θ̇t),

Xt = sin(θt)

• Transition: given by the laws of physics
9

Example: Retail Store Management 1/2

You owe a bike store. During week t, the (random) demand is Dt units.

On Monday morning you may choose to command At additional units:

they are delivered immediately before the shop opens. For each week:

• Maintenance cost: h(s) for s units in stock left from the previous

week

• Command cost: C (a) for a units

• Sales profit: f (q) for q units sold

• Constraint:

• your warehouse has a maximal capacity of M unit (any additionnal

bike gets stolen)

• you cannot sell bikes that you don’t have in stock

10

Example: Retail Store Management 2/2

• State: number of bikes in stock on Sunday

State space: S = {0, . . . ,M}
• Action: number of bikes commanded at the beginning of the week

Action space: A = {0, . . . ,M}
• Reward = balance of the week: if you command At bikes,

Xt = −C (At)− h(St) + f
(

min(Dt ,St + At ,M)
)

• Transition: you end the week with

St+1 = max
(
0,min(M,St + At)− Dt

)
bikes

We may assume for example that h(s) = h · s, f (q) = p · q and

C (a) = c01{a > 0}+ c · a

11

Policies: Controlled Markov Chain

Policy π : S → A
π(s) = action chosen every time the agent is in state s

• can be randomized π : S →M1(A)

π(s)a = probability to choose action a in state s

• can be non-stationary π : S × N→M1(A)

π(s, t)a = probability to choose action a in state s at time t

• . . . but it is useless: stationary, deterministic policies can do as well

For a given policy π, the sequence of states (St)t≥0 is a Markov chain of

kernel Kπ:

Kπ(s, s ′) = k
(
s ′|s, π(s)

)
and the sequence of rewards (Xt)t≥0 is a hidden Markov chain

12

Policy Evaluation

Outline

What is Reinforcement Learning?

Introduction

Reinforcement Learning Framework

Policy Evaluation

Bellman’s Equation for a Policy

Optimal Policies

Planning

Learning

The Q-table

Model-free Learning: Q-learning

13

Policy Value Function

Avg reward function r̄(s, a) = E
[
Xt |St = s,At = a

]
= mean of r(·|s, a)

The value function of π is Vπ : S → R defined by

Vπ(s) = Eπ

∑
t≥0

γtXt

∣∣∣S0 = s


= r̄
(
s, π(s)

)
+γ
∑
s1

k
(
s1|s, π(s)

)
r̄
(
s1, π(s1)

)
+γ2

∑
s1,s2

k
(
s1|s, π(s)

)
k
(
s2|s1, π(s1)

)
r̄
(
s2, π(s2)

)
+. . .

One can simulate runs of the policy and estimate Vπ by Monte-Carlo

14

Bellman’s Equation for a Policy

Average reward function for policy π: R̄π =
[
s 7→ r̄(s, π(s)

]
Matrix notation: identify functions S → R with R-valued vectors

Coordinatewise partial order: ∀U,V ∈ RS ,U ≤ V ⇐⇒ ∀s ∈ S,Us ≤ Vs

Bellman’s Equation for a policy

The values Vπ(s) of a policy π at states s ∈ S satisfy the linear system:

∀s ∈ S,Vπ(s) = r̄
(
s, π(s)

)
+ γ

∑
s′∈S

k
(
s ′|s, π(s)

)
Vπ(s ′)

In matrix form:

Vπ = R̄π + γKπVπ

Theorem

Bellman’s equation for a policy admits a unique solution given by

Vπ = (IS − γKπ)−1R̄π

15

Operator View

Bellman’s Transition Operator

Bellman’s Transition Operator Tπ : RS → RS is defined by

Tπ(V) = R̄π + γKπV

It is affine, isotonic (U ≤ V =⇒ TπU ≤ TπV) and γ-contractant:

∀U,V ∈ RS , ‖TπU − TπV ‖∞ ≤ γ‖U − V ‖∞
Proof: As a Markov kernel, Kπ is 1-contractant:

|||Kπ|||∞ = max
‖x‖∞≤1

‖Kπx‖∞ = max
‖x‖∞≤1

max
s∈S

∣∣∣∣∣∣∣
∑

s′∈S
Kπ (s, s′)xs′

∣∣∣∣∣∣∣ ≤ max
‖x‖∞≤1

max
s∈S

∑
s′∈S

∣∣Kπ (s, s′)
∣∣ ∣∣xs′ ∣∣ ≤ 1

and thus∥∥TπU−TπV
∥∥
∞ =

∥∥R̄π +γKπU− R̄π −γKπV‖∞ = γ
∥∥Kπ (U−V)‖∞ ≤ γ|||Kπ|||∞

∥∥U−V
∥∥∞ ≤ γ∥∥U−V

∥∥∞
Thus, Tπ has a unique fixed point equal to Vπ
Moreover, for all V0 ∈ RS , T n

πV0 →
n→∞

Vπ: denoting Vn = T n
πV0,

‖Vπ − Vn‖∞ = ‖TπVπ − TπVn−1‖∞ ≤ γ‖Vπ − Vn−1‖∞ ≤ γn‖Vπ − V0‖∞

Also note that T
n
πV0 = R̄π + γKπRπ + · · · + γ

nK n
πRπ + γ

nK n
πV0

→
(
IS + γKπ + γ

2K 2
π + . . .

)
R̄π = (IS − γKπ)−1R̄π = Vπ 16

Sample-based Policy Evaluation: TD(0)

As an alternative to plain Monte-Carlo evaluation, the Temporal

Difference method is based on the idea of stochastic approximation

Algorithm 1: TD(0)

Input : V0 = any function (e.g. V0 ← 0S)

T = number of iterations

1 V ← V0

2 for t ← 0 to T do

3 r ′ ← reward(s, π(s))

4 s ′ ← next state(s, π(s))

5 V (s)← (1− αt)V (s) + αt

(
r ′ + γV (s ′)

)
6 end

Return: V

17

Stochastic Approximation

Let (Xn)n≥1 be a sequence of iid variables with expectation µ. A

sequential estimator of µ is: µ̂1 = X1 and for all n ≥ 2,

µ̂n = (1− αn)µ̂n−1 + αnXn

Proposition

When (αn)n is a decreasing sequence such that
∑

n αn =∞ and∑
n α

2
n <∞, if the (Xn)n have a finite variance, µ̂n converges

almost-surely to µ.

Case αn =
1

n
: µ̂n =

X1 + · · · + Xn

n
and E

[
(µ̂n − µ)2] =

Var [X1]

n

In TD(0): V (s)← (1− αt)V (s) + αt

(
r ′ + γV (s ′)

)
At every step, if V = Vπ then the expectation of the rhs is equal to V (s)

18

Outline

What is Reinforcement Learning?

Introduction

Reinforcement Learning Framework

Policy Evaluation

Bellman’s Equation for a Policy

Optimal Policies

Planning

Learning

The Q-table

Model-free Learning: Q-learning

19

What are Optimal Policies – and How to Find them?

Goal

Among all possible policies π : S → A, find an optimal one π∗

maximizing the expected value on all states at the same time:

∀π : S → A,∀s ∈ S : Vπ∗(s) ≥ Vπ(s)

Questions:

• Is there always an optimal policy π∗?

• How to find π∗. . .

• . . . when the model (k, r) is known?

→ planning

• . . . when the model is unknown, but only sample trajectories can be

observed?

→ learning

20

Bellman’s Optimality Operator

Bellman’s Optimality Operator

Bellman’s Optimality Operator T∗ : RS → RS defined by

(
T∗(V)

)
s

= max
a∈A

{
r̄(s, a) + γ

∑
s′∈S

k(s ′|s, a)Vs′

}

is isotonic and γ-contractant. Besides, for every policy π, Tπ ≤ T∗ in

the sense that ∀U ∈ RS ,TπU ≤ T∗U

Note that T∗ is not affine, due to the presence of the max

Proof: Since for all functions f and g we have |max f − max g| ≤ max |f − g|,

∥∥T∗U − T∗V
∥∥
∞ = max

s∈S

∣∣∣∣∣∣∣ max
a∈A

r̄(s, a) + γ
∑

s′∈S
k(s′|s, a)Us′

 − max
a′∈A

r̄(s, a′) − γ
∑

s′∈S
k(s′|s, a′)Vs′


∣∣∣∣∣∣∣

≤ max
s∈S

max
a∈A

∣∣∣∣∣∣∣r̄(s, a) + γ
∑

s′∈S
k(s′|s, a)Us′ − r̄(s, a) − γ

∑
s′∈S

k(s′|s, a)Vs′

∣∣∣∣∣∣∣

= γ max
s∈S

∣∣∣∣∣∣∣ max
a∈A


∑

s′∈S
k(s′|s, a)

(
Us′ − Vs′

)
∣∣∣∣∣∣∣ ≤ γ max

s∈S
max
a∈A

∑
s′∈S

∣∣k(s′|s, a)
∣∣∥∥U − V‖∞ ≤ γ

∥∥U − V‖∞

21

Policy Improvement

Greedy Policy

For every V ∈ RS , there exist at least one policy π such that

TπV = T∗V . It is called greedy w.r.t. V , and is characterized as:

• ∀s ∈ S, π(s) ∈ arg max
a∈A

{
r̄(s, a) + γ

∑
s′∈S

k(s ′|s, a)Vs′

}
• π ∈ arg max

π′
R̄π + γKπV

Policy Improvement Lemma

For any policy π, the greedy policy π′ wrt Vπ improves on π: Vπ′ ≥ Vπ

Proof Using successively T∗ ≥ Tπ and the isotonicity of Tπ′ :

Tπ′Vπ = T∗Vπ ≥ TπVπ = Vπ =⇒ T 2
π′Vπ ≥ Tπ′Vπ ≥ Vπ =⇒ · · · =⇒ T n

π′Vπ ≥ Vπ

for all n ≥ 1, and since T n
π′Vπ →

n→∞
Vπ′ we get Vπ′ ≥ Vπ

22

Optimal Value Function

Since T∗ is γ-contractant, it has a unique fixed point V∗ and

∀V ∈ RS ,T n
∗V →

n→∞
V∗

Bellman’s Optimality Theorem

V∗ is the optimal value function:

∀s ∈ S,V∗(s) = max
π

Vπ(s)

and any policy π such that TπV∗ = V∗ is optimal

Proof: For any policy π, since Tπ ≤ T∗, Vπ = T n
πVπ ≤ T n

∗Vπ →
n→∞

V∗, and V∗ ≥ Vπ .

Now, let π∗ be the greedy policy w.r.t. V ∗: then Tπ∗V∗ = T∗V∗ = V∗, and hence its value Vπ∗

is V∗, the only fixed point of Tπ∗ . It is simultaneously optimal for all states s ∈ S.

Corollary

Any finite MDP admits an optimal (deterministic and stationary) policy

This optimal policy is not necessarily unique

23

Planning

Value Iteration

If you know V∗, computing the greedy policy w.r.t V∗ gives an optimal

policy. And V∗ is the fixed point of Bellman’s optimality operator T∗,

hence can be computed by a simple iteration process:

Algorithm 2: Value Iteration

Input : ε = required precision, V0 = any function (e.g. V0 ← 0S)

1 V ← V0

2 while ‖V − T∗(V)‖ ≥ (1−γ)ε
γ do

3 V ← T∗V

4 end

Return: T∗V

Theorem

The Value Iteration algorithm returns a value vector V such that

‖V − V∗‖∞ ≤ ε using at most
log M

(1−γ)ε

1−γ iterations where M = ‖T∗V0 − V0‖∞

Remark: if V0 is the value function of some policy π0 and if πt is the sequence of policies obtained

on line 3 (i.e. πt is the greedy policy w.r.t. Vt−1), then the returned function obtained after T

iterations is the value of the (non-stationary) policy (π′t)t , where π′t = π(T−t)+
. 24

Proof

Denoting Vn = T n
∗V0,

‖V∗−Vn‖∞ ≤ ‖V∗−T∗Vn‖∞+‖T∗Vn−Vn‖∞ ≤ γ‖V∗−Vn‖∞+γ‖Vn−Vn−1‖∞

gives ‖V∗ − Vn‖∞ ≤ γ
1−γ
‖Vn − Vn−1‖∞. Hence, if ‖Vn − Vn−1‖∞ ≤ (1−γ)ε

γ
,

then ‖V∗ − Vn‖∞ ≤ ε.

Now,

‖Vn+1 − Vn‖∞ = ‖T∗Vn − T∗Vn−1‖∞ ≤ γ‖Vn − Vn−1‖∞ ≤ γn‖T∗V0 − V0‖∞

Hence, if n ≥
log M

(1−γ)ε

1− γ ≥
log Mγ

(1−γ)ε

− log(γ)
, then γn ≤ (1−γ)ε

Mγ
and

‖Vn+1 − Vn‖∞ ≤ (1−γ)ε
γ

.

25

Policy Iteration

The Policy Improvement lemma directly suggests Policy Iteration:

starting from any policy, evaluate it (by solving the linear system

TπVπ = Vπ) and improve π greedily:

Algorithm 3: Policy Iteration

Input : π0 = any policy (e.g. chosen at random)

1 π ← π0

2 π′ ← NULL

3 while π 6= π′ do

4 compute Vπ
5 π′ ← π

6 π ← greedy policy w.r.t. Vπ

7 end

Return: π

NB: the iterations of PI are much more costly than those of VI

26

Convergence of Policy Iteration

Theorem

The Policy Iteration algorithm always returns an optimal policy in at

most |A||S| iterations.

Proof: the Policy Improvement lemma shows that the value of π raises

strictly at each iteration before convergence, and there are only |A||S|
different policies. Remark: better upper-bounds in O

(
|A||S|
|S|

)
are known.

Lemma

Let (Un) be the sequence of value functions generated by the Value

Iteration algorithm, and (Vn) be the one for the Policy Iteration

algorithm. If U0 = V0 (i.e. if U0 is the value function of π0), then

∀n ≥ 0,Un ≤ Vn

Proof: Assume by induction that Un ≤ Vn. Since T∗ and Tπn+1
are isotonic, and since

Vn ≤ Vn+1 by the policy improvement lemma:

Un+1 = T∗Un ≤ T∗Vn = Tπn+1
Vn ≤ Tπn+1

Vn+1 = Vn+1 27

Linear Programming

Proposition

Let α : S → (0,+∞). V∗ is the only solution of the linear program

min
V

∑
s∈S

α(s)V (s)

subject to ∀s ∈ S,∀a ∈ A,V (s) ≥ r̄(s, a) + γ
∑
s′∈S

k(s ′|s, a)V (s ′)

Proof: By Bellman’s optimality equation T∗V∗ = V∗, V∗ satisfies the constraint with equality.

If V satisfies the condition, then W = V − V∗ is such that

∀s, a,W (s) ≥ γ
∑

s′∈S k(s′|s, a)W (s′); thus if s− ∈ arg mins∈S W (s) one gets

W (s−) ≥ γ
∑

s′∈S k(s′|s, a)W (s′) ≥ −γ
∣∣W (s−)

∣∣, hence W (s−) ≥ 0 and W ≥ 0, and thus∑
s∈S α(s)V (s) ≥

∑
s∈S α(s)V∗(s) with equality iff V = V∗.

This linear program has |S| · |A| rows (constraints) and |S| columns

(variables). Solvers have a complexity typically larger in the number of

rows than columns. Hence, it may be more efficient to consider the dual

problem.

28

Learning

Outline

What is Reinforcement Learning?

Introduction

Reinforcement Learning Framework

Policy Evaluation

Bellman’s Equation for a Policy

Optimal Policies

Planning

Learning

The Q-table

Model-free Learning: Q-learning

29

State-Action Value Function

Definition

The state-action value function Qπ : S ×A → R for policy π is the

expected return for first taking action a in state s, and then following

policy π:

Qπ(s, a) = “Ea,π“

[∞∑
t=0

γtr(St ,At)
∣∣∣ S0 = s,A0 = a

]
= r̄(s, a) + γ

∑
s′

k(s ′|s, a)Vπ(s ′)

The state-action value function is a key-tool in the study of MDPs

Observe that Qπ
(
s, π(s)

)
= Vπ(s).

30

Policy Improvement Lemma

Lemma

For any two policies π and π′,[
∀s ∈ S,Qπ

(
s, π′(s)

)
≥ Qπ

(
s, π(s)

)]
=⇒

[
∀s ∈ S,Vπ′(s) ≥ Vπ(s)

]
Furthermore, if one of the inequalities in the LHS is strict, then at least

one of the inequalities in the RHS is strict

Proof: for any s ∈ S,

Vπ(s) = Qπ
(
s, π(s)

)
≤ Qπ

(
s, π′(s)

)
= r̄
(
s, π′(s)

)
+ γ

∑
s1∈S

k(s1|s, π′(s)) Vπ(s1)︸ ︷︷ ︸
=Qπ

(
s1,π(s1)

)
≤ r̄
(
s, π′(s)

)
+ γ

∑
s1∈S

k
(
s1|s, π′(s)

)
Qπ
(
s1, π

′(s1)
)

= r̄
(
s, π′(s)

)
+ γ

∑
s1∈S

k
(
s1|s, π′(s)

)
r̄
(
s1, π

′(s1)
)

+ γ
2
∑

s1,s2∈S
k
(
s1|s, π′(s)

)
k
(
s2|s1, π

′(s1)
)
Vπ(s2)

· · · = Vπ′ (s)

Furthermore, we see that Qπ
(
s, π(s)

)
< Qπ

(
s, π′(s)

)
implies Vπ(s) < Vπ′ (s)

31

Bellman’s Optimality Condition: Q-table formulation

Theorem

A policy π is optimal if and only if

∀s ∈ S, π(s) ∈ arg max
a∈A

Qπ(s, a)

Proof:

• A policy π such that

π(s) ∈ arg max
a∈A

Qπ(s, a) = arg max
a∈A

r̄(s, a) + γ
∑
s′∈S

k(s′|s, a)Vπ(s′)


is greedy w.r.t. Vπ and thus T∗Vπ = TπVπ = Vπ : Vπ is the unique fixed point V∗ of T∗

• If ∃s0 ∈ S, a ∈ A such that π(s0) < Qπ(s0, a), then by the policy improvement lemma the

policy π′ defined by π′(s) = π(s) for s 6= s0 and π′(s0) = a is better: Vπ′ (s0) > Vπ(s0)

32

Outline

What is Reinforcement Learning?

Introduction

Reinforcement Learning Framework

Policy Evaluation

Bellman’s Equation for a Policy

Optimal Policies

Planning

Learning

The Q-table

Model-free Learning: Q-learning

33

Q-Learning

Algorithm 4: Q-learning

Input : Q0 = any state-value function (e.g. chosen at random)

s0 = initial state (possibly chosen at random)

π = learning policy (may be ε-greedy w.r.t. current Q)

T = number of iterations

1 Q ← Q0

2 s ← s0

3 for t ← 0 to T do

4 a← select action(π(Q), s)

5 r ′ ← random reward(s, a)

6 s ′ ← next state(s, a)

7 Q(s, a)← Q(s, a) + αt

[
r ′ + γmaxa′∈AQ(s ′, a′)− Q(s, a)

]
8 s ← s ′

9 end

Return: Q

Off-policy learning: update rule 6= learning policy (on l.7, a′ may be different from played action a)
34

Convergence of Q-learning

Denote by (St)t (resp. (At)t) the sequence of states (resp. actions)

visited by the Q-learning algorithm. For all (s, a) ∈ S ×A, let

αt(s, a) = αt1{St = s,At = a}
Theorem

If for all s ∈ S and a ∈ A it holds that
∑

t≥0 αt(s, a) = +∞ and∑
t≥0 α

2
t (s, a) < +∞, then with probability 1 the Q-learning algorithm

converges to the optimal state-value function Q∗

This condition implies in particular that the policy select action

guarantees an infinite number of visits to all state-action pairs (s, a)

The proof is more involved, and based on the idea of stochastic approximation

35

SARSA

Algorithm 5: SARSA

Input : Q0 = any state-value function (e.g. chosen at random)

s0 = initial state (possibly chosen at random)

π = learning policy (may be ε-greedy w.r.t. current Q)

T = number of iterations

1 Q ← Q0

2 s ← s0

3 a← select action(π(Q), s)

4 for t ← 0 to T do

5 r ′ ← random reward(s, a)

6 s ′ ← next state(s, a)

7 a′ ← select action(π(Q), s ′)

8 Q(s, a)← Q(s, a) + αt

[
r ′ + γQ(s ′, a′)− Q(s, a)

]
9 s ← s ′

10 end

Return: Q
On-policy learning: update rule = learning policy 36

Q-learning with function approximation

If S ×A is large, it is necessary

• to do state aggregation

• or to assume a model Qθ(s, a) for Q(s, a), where θ is a

(finite-dimensional) parameter to be fitted. The obvious extension of

Q-learning is:

θt+1 = θt + αt

[
r ′ + γ max

a′∈A
Q(s ′, a′)− Q(s, a)

]
∇θQθt (St ,At)

For example, with a linear approximation method with Qθ = θTφ with

features map φ : S ×A → Rd , line 8 of Q-learning is replaced by:

θ ← θ + α
[
r ′ + γ max

a′∈A
θTφ(s ′, a′)− θTφ(s, a)

]
φ(s, a)

• possibility to use any function approximator, typically splines or

neural networks

• ...but very unstable and few guarantees of convergence!

• possiblity to update θ in batch and not at each step
37

Conclusion: What more?

• a lot !

• TD(λ) and eligibility traces

• Model-based learning: KL-UCRL

Build optimistic estimates of Q-table, and play greedily w.r.t. these estimates

• POMDP: Partially Observed Markov Decision Process

• Bandit models

= MDPs with only 1 state, but already a dilemma exploration vs exploitation

• MCTS: AlphaGo / AlphaZero

38

References

• C. Szepesvári Algorithms for Reinforcement Learning. Morgan &

Claypool, 2010

• M. Mohri, A. Rostamizadeh and A. Talwalkar Foundations of

Machine Learning, 2nd Ed., MIT Press, 2018

• T. Lattimore and C. Szepesvári Bandit Algorithms, Cambridge

Univeristy Press, 2019

• D. Bertsekas and J. Tsitsiklis Neuro-Dynamic Programming,

Athena Scientific, 1996

• M. L. Puterman. Markov Decision Processes, Discrete Stochastic

Dynamic Programming. Wiley-Interscience, 1994.

• R. S. Sutton & A. G. Barto. Reinforcement Learning, an

Introduction (2nd Ed.) MIT Press, 2018.

39

	What is Reinforcement Learning?
	Introduction
	Reinforcement Learning Framework

	Policy Evaluation
	Bellman's Equation for a Policy
	Optimal Policies

	Planning
	Learning
	The Q-table
	Model-free Learning: Q-learning

