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Different Types of Learning

Machine Learning Unsupervised
Learning

Representation
learning

Clustering

Anomaly
detection

Bayesian
networks

Latent
variables

Density
estimation

Dimension
reduction

Supervised
Learning:

classification,
regression

Decition
Trees

SVM

Ensemble
Methods

Boosting

BaggingRandom
Forest

Neural
Networks

Sparse
dictionary
learning

Model
based

Similarity
/ metric
learning

Recommender
systems

Rule Learning

Inductive
logic pro-
gramming

Association
rule

learning

Reinforcement
Learning

Bandits MDP

• semi-supervised learning

Reinforcement Learning

• Dates back to

1950’s (Bellman)

• Stochastic

Optimal Control

• Dynamic

Programming

• Strong revival with

the work of
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Example: Inverted Pendulum

The Learning algorithm used by Martin is Neural Fitted Q iteration, a

version of Q-iteration where neural networks are used as function

approximators
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Some Applications

• TD-Gammon. [Tesauro ’92-’95]: backgammon world champion

• KnightCap [Baxter et al. ’98]: chess (2500 ELO)

• Computer poker [Alberta, ’08...]

• Computer go [Mogo ’06], [AlphaGo ’15, Alphazero ’18]

• Atari, Starcraft, etc. [Deepmind ’10 sqq]

• Robotics: jugglers, acrobots, ... [Schaal et Atkeson ’94 sqq]

• Navigation: robot guide in Smithonian Museum [Thrun et al. ’99]

• Lift command [Crites et Barto, 1996]

• Internet Packet Routing [Boyan et Littman, 1993]

• Task Scheduling [Zhang et Dietterich, 1995]

• Maintenance [Mahadevan et al., 1997]

• Social Networks [Acemoglu et Ozdaglar, 2010]

• Yield Management, pricing [Gosavi 2010]

• Load forecasting [S. Meynn, 2010]

• . . .
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A Model for RL: MDP

Agent

Environment

Learning

reward perception

Critic

actuation
action / state /

src: https://lilianweng.github.io

exploration

vs

exploitation

dilemma
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Model: Markov Decision Process

Markov Decision Process = 4-uple (S,A, k , r):

• State space S = {1, . . . , p}
• Action space A = {1, . . . ,K}
• Transition kernel k ∈M1(S)S×A

• Random reward function r ∈M1(R)S×A

Dynamic = controlled Markov Process:

• Initial state S0

• At each time t ∈ N:

• choose action At

• get reward Xt ∼ r(·|St ,At)

• switch to new state St+1 ∼ k(·|St ,At)

Cumulated reward: W =
∞∑
t=0

γtXt where γ ∈ (0, 1) is a discount parameter

Goal

choose the actions so as to maximize the

cumulated reward in expectation.
8



Example: inverted pendulum

• State: horizontal position, angular position and velocity

State space: S = [0, 1]× [−π, π]× R
• Action: move left or right

Action space: A = {−1,+1}
• Reward = proportional to height of the stick end: if St = (xt , θt , θ̇t),

Xt = sin(θt)

• Transition: given by the laws of physics
9



Example: Retail Store Management 1/2

You owe a bike store. During week t, the (random) demand is Dt units.

On Monday morning you may choose to command At additional units:

they are delivered immediately before the shop opens. For each week:

• Maintenance cost: h(s) for s units in stock left from the previous

week

• Command cost: C (a) for a units

• Sales profit: f (q) for q units sold

• Constraint:

• your warehouse has a maximal capacity of M unit (any additionnal

bike gets stolen)

• you cannot sell bikes that you don’t have in stock
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Example: Retail Store Management 2/2

• State: number of bikes in stock on Sunday

State space: S = {0, . . . ,M}
• Action: number of bikes commanded at the beginning of the week

Action space: A = {0, . . . ,M}
• Reward = balance of the week: if you command At bikes,

Xt = −C (At)− h(St) + f
(

min(Dt ,St + At ,M)
)

• Transition: you end the week with

St+1 = max
(
0,min(M,St + At)− Dt

)
bikes

We may assume for example that h(s) = h · s, f (q) = p · q and

C (a) = c01{a > 0}+ c · a

11



Policies: Controlled Markov Chain

Policy π : S → A
π(s) = action chosen every time the agent is in state s

• can be randomized π : S →M1(A)

π(s)a = probability to choose action a in state s

• can be non-stationary π : S × N→M1(A)

π(s, t)a = probability to choose action a in state s at time t

• . . . but it is useless: stationary, deterministic policies can do as well

For a given policy π, the sequence of states (St)t≥0 is a Markov chain of

kernel Kπ:

Kπ(s, s ′) = k
(
s ′|s, π(s)

)
and the sequence of rewards (Xt)t≥0 is a hidden Markov chain
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Policy Value Function

Avg reward function r̄(s, a) = E
[
Xt |St = s,At = a

]
= mean of r(·|s, a)

The value function of π is Vπ : S → R defined by

Vπ(s) = Eπ

∑
t≥0

γtXt

∣∣∣S0 = s


= r̄
(
s, π(s)

)
+γ
∑
s1

k
(
s1|s, π(s)

)
r̄
(
s1, π(s1)

)
+γ2

∑
s1,s2

k
(
s1|s, π(s)

)
k
(
s2|s1, π(s1)

)
r̄
(
s2, π(s2)

)
+. . .

One can simulate runs of the policy and estimate Vπ by Monte-Carlo
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Bellman’s Equation for a Policy

Average reward function for policy π: R̄π =
[
s 7→ r̄(s, π(s)

]
Matrix notation: identify functions S → R with R-valued vectors

Coordinatewise partial order: ∀U,V ∈ RS ,U ≤ V ⇐⇒ ∀s ∈ S,Us ≤ Vs

Bellman’s Equation for a policy

The values Vπ(s) of a policy π at states s ∈ S satisfy the linear system:

∀s ∈ S,Vπ(s) = r̄
(
s, π(s)

)
+ γ

∑
s′∈S

k
(
s ′|s, π(s)

)
Vπ(s ′)

In matrix form:

Vπ = R̄π + γKπVπ

Theorem

Bellman’s equation for a policy admits a unique solution given by

Vπ = (IS − γKπ)−1R̄π

15



Operator View

Bellman’s Transition Operator

Bellman’s Transition Operator Tπ : RS → RS is defined by

Tπ(V ) = R̄π + γKπV

It is affine, isotonic (U ≤ V =⇒ TπU ≤ TπV ) and γ-contractant:

∀U,V ∈ RS , ‖TπU − TπV ‖∞ ≤ γ‖U − V ‖∞
Proof: As a Markov kernel, Kπ is 1-contractant:

|||Kπ|||∞ = max
‖x‖∞≤1

‖Kπx‖∞ = max
‖x‖∞≤1

max
s∈S

∣∣∣∣∣∣∣
∑

s′∈S
Kπ (s, s′)xs′

∣∣∣∣∣∣∣ ≤ max
‖x‖∞≤1

max
s∈S

∑
s′∈S

∣∣Kπ (s, s′)
∣∣ ∣∣xs′ ∣∣ ≤ 1

and thus∥∥TπU−TπV
∥∥
∞ =

∥∥R̄π +γKπU− R̄π −γKπV‖∞ = γ
∥∥Kπ (U−V )‖∞ ≤ γ|||Kπ|||∞

∥∥U−V
∥∥∞ ≤ γ∥∥U−V

∥∥∞
Thus, Tπ has a unique fixed point equal to Vπ
Moreover, for all V0 ∈ RS , T n

πV0 →
n→∞

Vπ: denoting Vn = T n
πV0,

‖Vπ − Vn‖∞ = ‖TπVπ − TπVn−1‖∞ ≤ γ‖Vπ − Vn−1‖∞ ≤ γn‖Vπ − V0‖∞

Also note that T
n
πV0 = R̄π + γKπRπ + · · · + γ

nK n
πRπ + γ

nK n
πV0

→
(
IS + γKπ + γ

2K 2
π + . . .

)
R̄π = (IS − γKπ)−1R̄π = Vπ 16



Sample-based Policy Evaluation: TD(0)

As an alternative to plain Monte-Carlo evaluation, the Temporal

Difference method is based on the idea of stochastic approximation

Algorithm 1: TD(0)

Input : V0 = any function (e.g. V0 ← 0S)

T = number of iterations

1 V ← V0

2 for t ← 0 to T do

3 r ′ ← reward(s, π(s))

4 s ′ ← next state(s, π(s))

5 V (s)← (1− αt)V (s) + αt

(
r ′ + γV (s ′)

)
6 end

Return: V
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Stochastic Approximation

Let (Xn)n≥1 be a sequence of iid variables with expectation µ. A

sequential estimator of µ is: µ̂1 = X1 and for all n ≥ 2,

µ̂n = (1− αn)µ̂n−1 + αnXn

Proposition

When (αn)n is a decreasing sequence such that
∑

n αn =∞ and∑
n α

2
n <∞, if the (Xn)n have a finite variance, µ̂n converges

almost-surely to µ.

Case αn =
1

n
: µ̂n =

X1 + · · · + Xn

n
and E

[
(µ̂n − µ)2] =

Var [X1]

n

In TD(0): V (s)← (1− αt)V (s) + αt

(
r ′ + γV (s ′)

)
At every step, if V = Vπ then the expectation of the rhs is equal to V (s)

18
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What are Optimal Policies – and How to Find them?

Goal

Among all possible policies π : S → A, find an optimal one π∗

maximizing the expected value on all states at the same time:

∀π : S → A,∀s ∈ S : Vπ∗(s) ≥ Vπ(s)

Questions:

• Is there always an optimal policy π∗?

• How to find π∗. . .

• . . . when the model (k, r) is known?

→ planning

• . . . when the model is unknown, but only sample trajectories can be

observed?

→ learning

20



Bellman’s Optimality Operator

Bellman’s Optimality Operator

Bellman’s Optimality Operator T∗ : RS → RS defined by

(
T∗(V )

)
s

= max
a∈A

{
r̄(s, a) + γ

∑
s′∈S

k(s ′|s, a)Vs′

}

is isotonic and γ-contractant. Besides, for every policy π, Tπ ≤ T∗ in

the sense that ∀U ∈ RS ,TπU ≤ T∗U

Note that T∗ is not affine, due to the presence of the max

Proof: Since for all functions f and g we have |max f − max g| ≤ max |f − g|,

∥∥T∗U − T∗V
∥∥
∞ = max

s∈S

∣∣∣∣∣∣∣ max
a∈A

r̄(s, a) + γ
∑

s′∈S
k(s′|s, a)Us′

 − max
a′∈A

r̄(s, a′) − γ
∑

s′∈S
k(s′|s, a′)Vs′


∣∣∣∣∣∣∣

≤ max
s∈S

max
a∈A

∣∣∣∣∣∣∣r̄(s, a) + γ
∑

s′∈S
k(s′|s, a)Us′ − r̄(s, a) − γ

∑
s′∈S

k(s′|s, a)Vs′

∣∣∣∣∣∣∣

= γ max
s∈S

∣∣∣∣∣∣∣ max
a∈A


∑

s′∈S
k(s′|s, a)

(
Us′ − Vs′

)
∣∣∣∣∣∣∣ ≤ γ max

s∈S
max
a∈A

∑
s′∈S

∣∣k(s′|s, a)
∣∣∥∥U − V‖∞ ≤ γ

∥∥U − V‖∞
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Policy Improvement

Greedy Policy

For every V ∈ RS , there exist at least one policy π such that

TπV = T∗V . It is called greedy w.r.t. V , and is characterized as:

• ∀s ∈ S, π(s) ∈ arg max
a∈A

{
r̄(s, a) + γ

∑
s′∈S

k(s ′|s, a)Vs′

}
• π ∈ arg max

π′
R̄π + γKπV

Policy Improvement Lemma

For any policy π, the greedy policy π′ wrt Vπ improves on π: Vπ′ ≥ Vπ

Proof Using successively T∗ ≥ Tπ and the isotonicity of Tπ′ :

Tπ′Vπ = T∗Vπ ≥ TπVπ = Vπ =⇒ T 2
π′Vπ ≥ Tπ′Vπ ≥ Vπ =⇒ · · · =⇒ T n

π′Vπ ≥ Vπ

for all n ≥ 1, and since T n
π′Vπ →

n→∞
Vπ′ we get Vπ′ ≥ Vπ

22



Optimal Value Function

Since T∗ is γ-contractant, it has a unique fixed point V∗ and

∀V ∈ RS ,T n
∗V →

n→∞
V∗

Bellman’s Optimality Theorem

V∗ is the optimal value function:

∀s ∈ S,V∗(s) = max
π

Vπ(s)

and any policy π such that TπV∗ = V∗ is optimal

Proof: For any policy π, since Tπ ≤ T∗, Vπ = T n
πVπ ≤ T n

∗Vπ →
n→∞

V∗, and V∗ ≥ Vπ .

Now, let π∗ be the greedy policy w.r.t. V ∗: then Tπ∗V∗ = T∗V∗ = V∗, and hence its value Vπ∗

is V∗, the only fixed point of Tπ∗ . It is simultaneously optimal for all states s ∈ S.

Corollary

Any finite MDP admits an optimal (deterministic and stationary) policy

This optimal policy is not necessarily unique
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Value Iteration

If you know V∗, computing the greedy policy w.r.t V∗ gives an optimal

policy. And V∗ is the fixed point of Bellman’s optimality operator T∗,

hence can be computed by a simple iteration process:

Algorithm 2: Value Iteration

Input : ε = required precision, V0 = any function (e.g. V0 ← 0S)

1 V ← V0

2 while ‖V − T∗(V )‖ ≥ (1−γ)ε
γ do

3 V ← T∗V

4 end

Return: T∗V

Theorem

The Value Iteration algorithm returns a value vector V such that

‖V − V∗‖∞ ≤ ε using at most
log M

(1−γ)ε

1−γ iterations where M = ‖T∗V0 − V0‖∞

Remark: if V0 is the value function of some policy π0 and if πt is the sequence of policies obtained

on line 3 (i.e. πt is the greedy policy w.r.t. Vt−1), then the returned function obtained after T

iterations is the value of the (non-stationary) policy (π′t )t , where π′t = π(T−t)+
. 24



Proof

Denoting Vn = T n
∗V0,

‖V∗−Vn‖∞ ≤ ‖V∗−T∗Vn‖∞+‖T∗Vn−Vn‖∞ ≤ γ‖V∗−Vn‖∞+γ‖Vn−Vn−1‖∞

gives ‖V∗ − Vn‖∞ ≤ γ
1−γ
‖Vn − Vn−1‖∞. Hence, if ‖Vn − Vn−1‖∞ ≤ (1−γ)ε

γ
,

then ‖V∗ − Vn‖∞ ≤ ε.

Now,

‖Vn+1 − Vn‖∞ = ‖T∗Vn − T∗Vn−1‖∞ ≤ γ‖Vn − Vn−1‖∞ ≤ γn‖T∗V0 − V0‖∞

Hence, if n ≥
log M

(1−γ)ε

1− γ ≥
log Mγ

(1−γ)ε

− log(γ)
, then γn ≤ (1−γ)ε

Mγ
and

‖Vn+1 − Vn‖∞ ≤ (1−γ)ε
γ

.

25



Policy Iteration

The Policy Improvement lemma directly suggests Policy Iteration:

starting from any policy, evaluate it (by solving the linear system

TπVπ = Vπ) and improve π greedily:

Algorithm 3: Policy Iteration

Input : π0 = any policy (e.g. chosen at random)

1 π ← π0

2 π′ ← NULL

3 while π 6= π′ do

4 compute Vπ
5 π′ ← π

6 π ← greedy policy w.r.t. Vπ

7 end

Return: π

NB: the iterations of PI are much more costly than those of VI

26



Convergence of Policy Iteration

Theorem

The Policy Iteration algorithm always returns an optimal policy in at

most |A||S| iterations.

Proof: the Policy Improvement lemma shows that the value of π raises

strictly at each iteration before convergence, and there are only |A||S|
different policies. Remark: better upper-bounds in O

(
|A||S|
|S|

)
are known.

Lemma

Let (Un) be the sequence of value functions generated by the Value

Iteration algorithm, and (Vn) be the one for the Policy Iteration

algorithm. If U0 = V0 (i.e. if U0 is the value function of π0), then

∀n ≥ 0,Un ≤ Vn

Proof: Assume by induction that Un ≤ Vn. Since T∗ and Tπn+1
are isotonic, and since

Vn ≤ Vn+1 by the policy improvement lemma:

Un+1 = T∗Un ≤ T∗Vn = Tπn+1
Vn ≤ Tπn+1

Vn+1 = Vn+1 27



Linear Programming

Proposition

Let α : S → (0,+∞). V∗ is the only solution of the linear program

min
V

∑
s∈S

α(s)V (s)

subject to ∀s ∈ S,∀a ∈ A,V (s) ≥ r̄(s, a) + γ
∑
s′∈S

k(s ′|s, a)V (s ′)

Proof: By Bellman’s optimality equation T∗V∗ = V∗, V∗ satisfies the constraint with equality.

If V satisfies the condition, then W = V − V∗ is such that

∀s, a,W (s) ≥ γ
∑

s′∈S k(s′|s, a)W (s′); thus if s− ∈ arg mins∈S W (s) one gets

W (s−) ≥ γ
∑

s′∈S k(s′|s, a)W (s′) ≥ −γ
∣∣W (s−)

∣∣, hence W (s−) ≥ 0 and W ≥ 0, and thus∑
s∈S α(s)V (s) ≥

∑
s∈S α(s)V∗(s) with equality iff V = V∗.

This linear program has |S| · |A| rows (constraints) and |S| columns

(variables). Solvers have a complexity typically larger in the number of

rows than columns. Hence, it may be more efficient to consider the dual

problem.
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State-Action Value Function

Definition

The state-action value function Qπ : S ×A → R for policy π is the

expected return for first taking action a in state s, and then following

policy π:

Qπ(s, a) = “Ea,π“

[ ∞∑
t=0

γtr(St ,At)
∣∣∣ S0 = s,A0 = a

]
= r̄(s, a) + γ

∑
s′

k(s ′|s, a)Vπ(s ′)

The state-action value function is a key-tool in the study of MDPs

Observe that Qπ
(
s, π(s)

)
= Vπ(s).

30



Policy Improvement Lemma

Lemma

For any two policies π and π′,[
∀s ∈ S,Qπ

(
s, π′(s)

)
≥ Qπ

(
s, π(s)

)]
=⇒

[
∀s ∈ S,Vπ′(s) ≥ Vπ(s)

]
Furthermore, if one of the inequalities in the LHS is strict, then at least

one of the inequalities in the RHS is strict

Proof: for any s ∈ S,

Vπ(s) = Qπ
(
s, π(s)

)
≤ Qπ

(
s, π′(s)

)
= r̄
(
s, π′(s)

)
+ γ

∑
s1∈S

k(s1|s, π′(s)) Vπ(s1)︸ ︷︷ ︸
=Qπ

(
s1,π(s1)

)
≤ r̄
(
s, π′(s)

)
+ γ

∑
s1∈S

k
(
s1|s, π′(s)

)
Qπ
(
s1, π

′(s1)
)

= r̄
(
s, π′(s)

)
+ γ

∑
s1∈S

k
(
s1|s, π′(s)

)
r̄
(
s1, π

′(s1)
)

+ γ
2
∑

s1,s2∈S
k
(
s1|s, π′(s)

)
k
(
s2|s1, π

′(s1)
)
Vπ(s2)

· · · = Vπ′ (s)

Furthermore, we see that Qπ
(
s, π(s)

)
< Qπ

(
s, π′(s)

)
implies Vπ(s) < Vπ′ (s)
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Bellman’s Optimality Condition: Q-table formulation

Theorem

A policy π is optimal if and only if

∀s ∈ S, π(s) ∈ arg max
a∈A

Qπ(s, a)

Proof:

• A policy π such that

π(s) ∈ arg max
a∈A

Qπ(s, a) = arg max
a∈A

r̄(s, a) + γ
∑
s′∈S

k(s′|s, a)Vπ(s′)


is greedy w.r.t. Vπ and thus T∗Vπ = TπVπ = Vπ : Vπ is the unique fixed point V∗ of T∗

• If ∃s0 ∈ S, a ∈ A such that π(s0) < Qπ(s0, a), then by the policy improvement lemma the

policy π′ defined by π′(s) = π(s) for s 6= s0 and π′(s0) = a is better: Vπ′ (s0) > Vπ(s0)

32
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Q-Learning

Algorithm 4: Q-learning

Input : Q0 = any state-value function (e.g. chosen at random)

s0 = initial state (possibly chosen at random)

π = learning policy (may be ε-greedy w.r.t. current Q)

T = number of iterations

1 Q ← Q0

2 s ← s0

3 for t ← 0 to T do

4 a← select action(π(Q), s)

5 r ′ ← random reward(s, a)

6 s ′ ← next state(s, a)

7 Q(s, a)← Q(s, a) + αt

[
r ′ + γmaxa′∈AQ(s ′, a′)− Q(s, a)

]
8 s ← s ′

9 end

Return: Q

Off-policy learning: update rule 6= learning policy (on l.7, a′ may be different from played action a)
34



Convergence of Q-learning

Denote by (St)t (resp. (At)t) the sequence of states (resp. actions)

visited by the Q-learning algorithm. For all (s, a) ∈ S ×A, let

αt(s, a) = αt1{St = s,At = a}
Theorem

If for all s ∈ S and a ∈ A it holds that
∑

t≥0 αt(s, a) = +∞ and∑
t≥0 α

2
t (s, a) < +∞, then with probability 1 the Q-learning algorithm

converges to the optimal state-value function Q∗

This condition implies in particular that the policy select action

guarantees an infinite number of visits to all state-action pairs (s, a)

The proof is more involved, and based on the idea of stochastic approximation
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SARSA

Algorithm 5: SARSA

Input : Q0 = any state-value function (e.g. chosen at random)

s0 = initial state (possibly chosen at random)

π = learning policy (may be ε-greedy w.r.t. current Q)

T = number of iterations

1 Q ← Q0

2 s ← s0

3 a← select action(π(Q), s)

4 for t ← 0 to T do

5 r ′ ← random reward(s, a)

6 s ′ ← next state(s, a)

7 a′ ← select action(π(Q), s ′)

8 Q(s, a)← Q(s, a) + αt

[
r ′ + γQ(s ′, a′)− Q(s, a)

]
9 s ← s ′

10 end

Return: Q
On-policy learning: update rule = learning policy 36



Q-learning with function approximation

If S ×A is large, it is necessary

• to do state aggregation

• or to assume a model Qθ(s, a) for Q(s, a), where θ is a

(finite-dimensional) parameter to be fitted. The obvious extension of

Q-learning is:

θt+1 = θt + αt

[
r ′ + γ max

a′∈A
Q(s ′, a′)− Q(s, a)

]
∇θQθt (St ,At)

For example, with a linear approximation method with Qθ = θTφ with

features map φ : S ×A → Rd , line 8 of Q-learning is replaced by:

θ ← θ + α
[
r ′ + γ max

a′∈A
θTφ(s ′, a′)− θTφ(s, a)

]
φ(s, a)

• possibility to use any function approximator, typically splines or

neural networks

• ...but very unstable and few guarantees of convergence!

• possiblity to update θ in batch and not at each step
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Conclusion: What more?

• a lot !

• TD(λ) and eligibility traces

• Model-based learning: KL-UCRL

Build optimistic estimates of Q-table, and play greedily w.r.t. these estimates

• POMDP: Partially Observed Markov Decision Process

• Bandit models

= MDPs with only 1 state, but already a dilemma exploration vs exploitation

• MCTS: AlphaGo / AlphaZero
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