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I statistics 101

Lecture 1 (2 hours, notes by
Eliot Tron)
17th January 2020

1 Definition (Statistical model). A statistical model is a pair (X n, P ) where n is
the sample size (integer), X is a set, and P is the set of probability distributions
on X n.

I.1 example. n = sample size, X = {0, 1} and P =
{
B(p)⊗n, p ∈ [0, 1]

}
where

B(p)⊗n correspond to the distribution (x1, ..., xn) on {0, 1}n, Pp (X1 = x1, ..., Xn = xn) =
n∏
i=1

pxi (1 − p)1−xi .
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2 Definition. A model is parametric if P = {Pθ, θ ∈ Θ} where Θ ⊂ Rd for
some d ∈ N.

3 Definition. A product model is when

∀θ ∈ Θ, Pθ = Q⊗n
θ

A parametric product model is described by:

• a sample size n

• a set of observation X

• a family {Qθ, θΘ} of probabilities distributions on X

4 Definition. a sample (X1, ..., Xn) of distribution P ∈ P is a random vector
(X1, ..., Xn) ∼ P . In a product model, the (Xi) are independent.

5 Definition (Statistic). A statistic is a function of the sample (X1, ..., Xn).

I.2 example. T1 = X1 + ... + Xn is a statistic but not T2 = p − X1.

6 Definition (Estimator). An estimator is a statistic. It aims at approximating
a quantity of interest g(θ), for a parametric model.

I.3 example. E1 = X1, E2 = Xn = X1+...+Xn
n and E3 =

X1+...+Xbn/2c
n/2 are estimators.

7 Definition. An estimator Tn is called:

• unbiased if ∀θ ∈ Θ, Eθ [Tn] = g(θ).

• consistant (strongly) if ∀θ ∈ Θ, limn→∞ Tn
P−a.s.= g(θ). It is weakly consis-

tant if the convergence is in law.

I.4 example. E1, E2 and E3 are unbiased, and E2, E3 are (strongly) consistant.

8 Definition. The quadratic risk of estimator Tn for g(θ) is:

Rn(Tn, θ) = Eθ
[
‖Tn − g(θ)‖2

]
The maximal risk of Tn for g(θ) is:

Rn(Tn) = sup
θ∈Θ

Eθ
[
‖Tn − g(θ)‖2

]
I.5 example. Bernoulli model:

• E1: EP

[
(X1 − p)2

]
= VarP(X1) = p(1 − p)

• E2: EP

[
(Xn − p)2

]
= VarP(Xn) = p(1−p)

n −−−−−→
n→∞

0

• E3: EP

[
(Xn/2 − p)2

]
= p(1−p)

n/2
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i. statistics 101

• E4 = 1
2

9 Definition (Minimax estimator). An estimator Tn for g(θ) is called minimax
if, whatever another estimator Un,

Rn(Tn) ≤ Rn(Un)

or
max
θ∈Θ
Rn(Tn, θ) = min

Unestimator
max
θ∈Θ
Rn(Un, θ)

Question: is E2 minimax-optimal ? No.

I.1 Building estimators

Method 1: Method of moments. For a product model, if g(θ) = φ
(
Eθ [X1] , ...,Eθ

[
Xk

1

])
then ĝn = φ

(
1
n

n∑
i=1

Xi , ...,
1
n

n∑
i=1

Xk
i

)
.

1 Proposition. The moment estimator is strongly consistent if φ is continuous
and Eθ

[
|X1|k

]
< ∞.

Method 2: Maximum Likelihood method

10 Definition. the likelihood function

l(θ, X1, ..., Xn) =

Pθ(X1, ..., Xn) in a discret model

fθ(X1, ..., Xn) when Pθ has density f over X n

The Maximum Likelihood Estimator (MLE) of θ is

θ̂n = argmax
θ∈Θ

l(θ, X1, ..., Xn)

I.6 example. Bernoulli likelihood:

l(p, X1, ..., Xn) =
n∏
i=1

pXi (1 − p)1−Xi

= p

n∑
i=1

Xi
(1 − p)

n∑
i=1

1−Xi

Maximizing l(·, X1, ..., Xn) ⇐⇒ minimizing g(p) = ln(l(p, X1, ..., Xn))
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g(p) =

 n∑
i=1

Xi

 ln(p) +

n − n∑
i=1

Xi

 ln(1 − p)

g ′(p) =

 n∑
i=1

Xi

 1
p
−

n − n∑
i=1

Xi

 1
1 − p

g ′(p) equals zero for p = Xn =

n∑
i=1

Xi

n , so Xn is the MLE.

II unsupervised learning : clustering

Lecture 2 (2 hours, notes by
Jérôme Boillot)
23rd January 2020

We have training data Dn = {x1, . . . , xn} with xi ∈ Rd and we want to recover
Latent groups.

The idea is to construct f : Rd → {1, . . . , K}, f : xi → ki which affects cluster
number to xi .

II.1 K-means problem

11 Definition. Quantification error

n∑
i=1

min
k=1,...,K

‖xi − ck‖22

12 Definition. K-means algorithm

• Fix K ≥ 2, n data points xi ∈ Rd .

• Find centroids c1, . . . , ck that minimize the quantification error.

Impossible to find the exact solution (NP Complete).

13 Definition. K-means algorithm (Lloyd, 1981)

• Choose at random K centroids {c1, . . . , cK}

• For each k ∈ {1, . . . , K}, find the set Ck of points that are closer to ck than
any ck′ for k′ , k

• Update the centroids:

ck =
1
|Ck |

∑
i∈Ck

xi

• Repeat the two previous steps until the sets CK don’t change

II.1 remark. K-means computes a Voronoi partitioning, it implicitly assumes
convex clusters that are uniquely defined by their centroids.
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ii. unsupervised learning: clustering

II.2 remark. Initialization problem: K-means is very sensitive to the choice of
initial points.

Easy solution :

• Pick a first point at random

• Choose the next point the farthest from the previous ones

II.3 remark. However, this solution is very sensitive to outliers

II.2 K-means++

We want a solution which is less sensitive to outliers: K-means++.

The idea is to pick the first centroid uniformly at random among the xi .

Then, the next centroids will be taken among the xi with a probability linear
in their distance to the closer centroid already chosen.

The formal algorithm is:

1. k ← 1

2. Pick uniformly at random xi ∈ {x1, . . . , xn}, put c1 ← xi

3. k ← k + 1

4. Sample xi ∈ {x1, . . . , xn} with probability

mink′=1,...,k−1‖xi − ck′‖22
n∑

j=1
mink′=1,...,k−1‖xj − ck′‖22

5. Put ck ← xi

6. If k < K go back to step 3.

Then we use K-means based on these initial centroids.

This algorithm is between random initialization and furthest point initializa-
tion.

II.4 remark. The complexity of the K-means++ algorithm is in O(n × K × nit)
with nit the number of iterations of the algorithm.

2 Proposition. Arthur and Vassilvitskii (2006)

If c1, . . . , cK are centroids obtained with K-means++, then:

E[Qn(c1, . . . , cK)] ≤ 8(log K + 2) min
c′1,...,c

′
K

Qn(c′1, . . . , c
′
K)
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ii.3. model-based clustering

II.5 remark. Pro and Cons of K-means++

Pros:

• Simple: easy to implement

• Efficient: cf complexity

• Popular

Cons:

• Notion of mean which is not defined

• Number of clusters K which needs to be specified

• Sensitive to outliers (can be fixed by subsampling and/or outlier detec-
tion)

• Roundish clusters: not suited for spherical data, fails if clusters are not
convex/round

2 4 6 8 10 12

2

4

6

0

II.3 Model-based clustering

Idea:

• Use a model on data with clusters

• Using a mixture of distributions with different location/mean eg Gaus-
sian mixture

7



ii. unsupervised learning: clustering

II.3.1 Gaussian mixture models (GMM)

We have a mixture of densities f1, . . . , fK and (p1, . . . , pK) ∈ (R+)K st
K∑

k=1
pk = 1.

14 Definition. Mixture density

f =
K∑

k=1

pkfk

15 Definition. Gaussian Mixtures Model (GMM)

fk = ϕµk ,Σk
= density of N(µk ,Σk)

,
1

(2π)d/2
√

det(ΣK)
exp

(
− 1

2
(x − µk)>Σ−1

k (x − µk)
)

with Σk > 0

16 Definition. Latent variable

• Let {Pθ = fθµ : θ ∈ Θ} be a statistical model dominated by µ and
(θ1, . . . , θK) ∈ ΘK.

• Let (p1, . . . , pK) be a probability vector.

• Let Z ∼ M(1, p1, . . . , pK) be a multinomial variable.

• Y :=
K∑

k=1
k1Zk=1

Then
∀k ∈ [K] : P(Y = k) = pk

In addition, let X be a random variable such that X|Y ∼ PθY
. Then,

X ∼
K∑

k=1

pkPθk

We have properties that link together mixture models and clustering:

• When X is distributed with respect to a mixture model with K com-
ponents, we describe it with K clusters defined by a latent variable
Y ∈ [K].

• Conversely, clustering is naturally modeled by a mixture model: clusters
are distributed with respect to conditional variables X|Y.

8



ii.4. em algorithm

3 Proposition. The marginal distribution of X is, by Bayes’ theorem :

∀x ∈ Rd : f (x) =
K∑

k=1

pkfθk (x)

where pk = P(Y = k).

17 Definition. Bayes rule for clustering

g∗ : x→ argmax
1≤k≤K

P(p1,...,pK,θ)(Y = k|X = x) = argmax
1≤k≤K

pkfθk (x)

18 Definition. Then the partitioning (C1, . . . , CK) is:

∀k ∈ [K] : Ck = {x ∈ Rd : g∗(x) = k}

II.3.2 Study of the GMM

In the case of the model GMM we study the parameter θ = (p1, . . . , pK, µ1, . . . , µK,Σ1, . . . ,ΣK).

We define the goodness of the statistical model with density fθ =
K∑

k=1
pkϕµk ,Σk

by :

Rn(θ) = − log-likelihood = −
n∑
i=1

log
( K∑
k=1

pkϕµk ,Σk
(xi)

)
In fact, a local minimizer θ̂ can be obtained using an algorithm called

Expectation-Minimization (EM) algorithm.

II.4 EM Algorithm

II.4.1 When do we use it?

It is an algorithm that allows to optimize a likelihood with missing or latent
data. For a mixture distribution we come up with natural latent variables that
simplify the original optimization problem.

II.4.2 The idea

Their is a hidden structure in the model and knowing this structure the
optimization problem is easier.

Indeed each point Xi belongs to an unknown class k ∈ [K].

So, we can define Ci,k = 1 when i belongs to class k, Ci,k = 0 otherwise.

These variables are unknown, we say that they are latent variables.

Then, Ck := i : Ci,j = 1 and C1, . . . , CK is a partition of [n].
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ii. unsupervised learning: clustering

II.4.3 Generative model

i belongs to class Ck with probability pk , namely:

Ci = (Ci,1, . . . , Ci,K) ∼ M(1, p1, . . . , pK)

and Xi ∼ ϕµk ,Σk
if Ci,k = 1.

Then the joint distribution of (X, C) is:

fθ(x, c) =
K∏

k=1

(pkϕµk ,Σk
(x))ck

We know that ck = 1 for only one k and 0 elsewhere so the marginal density
in X is the one of the mixture:

fθ(x) =
K∑

k=1

pkϕµk ,Σk
(x)

II.6 remark. C is indeed a latent variable, in such way that the marginal
distribution of (X, C) in X is indeed the one of the mixture fθ.

II.7 remark. Complete Likelihood Let X = (X1, . . . , Xn) and C = (C1, . . . , Cn).

Do as if we observed the latent variable C. Then, the completed likelihood
for these ”virtual” observations is:

Lc(θ,X,C) =
n∏
i=1

K∏
k=1

(pkϕµk ,Σk
(Xi))

C
i,k

and the completed log-likelihood:

lc(θ,X,C) =
n∑
i=1

K∑
k=1

Ci,k(log pk + logϕµk ,Σk
(Xi))

II.4.4 Description of the EM-Algorithm - Dempster et al. (1977)

1. Initialize θ(0)

2. for t = 0 until convergence, repeat:

(a) E-step: Expectation with respect to the latent variables, for the
previous value of θ. Compute:

θ→ Q(θ, θ(t) = Eθ(t)

[
lc(θ,X,C)

∣∣∣X]
(b) M-step: Maximize this expectation. Compute:

θ(t+1) ∈ argmax
θ∈Θ

Q(θ, θ(t))

10



ii.5. em and gmm (soft k-means)

1 Theorem. The sequence θ(t) obtained using EM-Algorithm satisfies:

l(θ(t+1),X) ≥ l(θ(t),X)

II.8 remark. The initialization step will be very important for the EM-Algorithm.
It is usually done using K-Means or K-Means++.

Proof. We have to check that Q1(θ(t+1), θ(t)) − Q1(θ(t), θ(t)) ≤ 0.

Q1(θ(t+1), θ(t)) − Q1(θ(t), θ(t)) = Eθ(t)[l(θ(t+1),X|X) − l(θ(t),X|X)|X]

=
∫

log
(
fθ(t+1)(x|X)
fθ(t)(x|X)

)
fθ(t)(c|X)µ(dc)

≤
(Jensen)

log
∑

fθ(t+1)(x|X)µ(dc) = 0

This proves l(θ(t+1),X) ≥ l(θ(t),X) for any t.

II.5 EM and GMM (soft K-means)

With GMM the completed log-likelihood is:

lc(θ,X,C) =
n∑
i=1

K∑
k=1

Ci,k(log pk + logϕµk ,Σk
(Xi)

where
θ = (p1, . . . , pK, µ1, . . . , µK,Σ1, . . . ,ΣK)

The E-Step is:

Eθ(t)

[
lc(θ,X,C)

∣∣∣X]
=

n∑
i=1

K∑
k=1

Eθ(t)[Ci,k |X](log pk + logϕµk ,Σk
(Xi))

= Pθ(Ci,k = 1|Xi) =: πi,k(θ)

where

πi,k(θ) =
pkϕµk ,Σk

(Xi)
K∑

k′=1
pk′ϕµk′ ,Σk′ (Xi)

We call πi,k(θ) the ”soft-assignment” of i in class k.
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ii. unsupervised learning: clustering

The M-Step is:

θ(t+1) = (p(t+1)
1 , . . . , p

(t+1)
K , µ

(t+1)
1 , . . . , µ

(t+1)
K ,Σ

(t+1)
1 , . . . ,Σ

(t+1)
K )

where

p
(t+1)
k =

1
n

n∑
i=1

πi,k(θ(t))

µ
(t+1)
k =

n∑
i=1
πi,k(θ(t))Xi

n∑
i=1
πi,k(θ(t))

Σ
(t+1)
k =

n∑
i=1
πi,k(θ(t))(Xi − µ(t+1)

k )(Xi − µ(t+1)
k )>

n∑
i=1
πi,k(θ(t))

II.9 remark. The complexity of this algorithm is O(n × K × nit) with nit the
number of iterations.

19 Definition. Maximum a posteriori (MAP) rule

Given θ̂, how to affect a cluster number k to a given x ∈ Rd?

We compute the soft-assignments πk(x) and then i ∈ Ck if πk(x) > πk′ (x) for
any k′ , k.

II.6 Point-based objectives

Contrarily to center-based objectives, point-based objectives do not require
to compute a cluster center. With center-based approach we are making sure
that points in the same cluster are similar whereas with point-based objectives
approach we are making sure that points separated into different clusters
should be dissimilar. We use a distortion D(C1, . . . , CK) to minimize which is
computed on pair of points belonging to clusters. For example, the sum of
in-cluster distances is:

D̂(C1, . . . , CK) =
K∑

k=1

∑
X,Y∈Ĉk

d(X, Y)

with Ĉk = Ck ∩ {Xi : i ∈ [n]}.

We also define a similarity measure s : X × X → [0, 1]. Another example
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ii.6. point-based objectives

of distortion is defined by the sum of interclass similarities:

D(C1, . . . , CK) = E

( K∑
k=1

s(X, Y)1X∈Ck∩Y<Ck

)
We can represent this similarity measure by a similarity graph:

• each vertex represents a data point Xi

• vertices are connected by an edge whose weight is their similarity

Such a graph can be defined by the similarity (or adjacency) matrix W =
(s(Xi , Xj ))1≤i,j≤n. Then:

D̂(C1, . . . , CK) =
k∑

j=1

∑
i∈Ij∧l<Ij

Wi,l

with Ik the index sets of each empirical cluster Ĉk .

Minimizing D̂(X1, . . . , CK is often referred as the graph cut problem.

II.10 remark. Generalities about similarity graphs (A ⊂ V)

• Two vertices are connected their similarity is > 0 or > τ with τ a thresh-
old.

• The graph is undirected: the similarity measure is symmetric.

• The size of A = |A| = the number of its vertices.

• The volume of A, vol(A) =
∑

i∈[n]:Xi∈A
di (with di the degree of Xi).

• A is said connected if any two vertices of A can be joined by a path such
that all intermediate points also lie in A.

• A is called a connected component if it is connected and if there are no
connections between vertices in A and V − A.

20 Definition. The ε-neighborhood graph

• Xi and Xj are connected iff d(Xi , Xj ) ≤ ε.

• If ε is small enough, all connected points are roughly at the same distance
then we put a weight of 1 if d(Xi , Xj) ≤ ε and 0 otherwise. It is usually
considered as an unweighted graph.

21 Definition. k-nearest neighbor (kNN) graph

Xi and Xj are connected iff Xi ∈ kNN(Xj ) ∨ Xj ∈ kNN(Xi). We put a weight
of 1 if two vertices are connected and 0 otherwise.

13



ii. unsupervised learning: clustering

22 Definition. Mutual k-nearest neighbor (kNN) graph

Xi and Xj are connected iff Xi ∈ kNN(Xj ) ∧ Xj ∈ kNN(Xi). We put a weight
of 1 if two vertices are connected and 0 otherwise.

23 Definition. Fully connected graph

Xi and Xj are connected iff they have a similarity s(Xi , Xj) > 0. Then, the
edges are weighted by s(Xi , Xj ).

A popular choice of similarity is the Gaussian similarity:

s(x, x′) = exp
(
− d(x, x′)2

2σ2

)
In this definition, σ2 plays a role similar to ε and k.

II.7 Spectral clustering

For k = 2, finding a minimal cut of a graph can be done efficiently with the
Stoer-Wagner algorithm. A problem is often results in separating a vertex from
the rest.

A solution is to normalize the empirical distorsion either by the size of the
clusters or by their volume:

D̂r(C1, . . . , CK) =
K∑

k=1

1

|Ĉk |

∑
i∈Ik∧l<Ik

Wi,l (Ratio cut)

D̂n(C1, . . . , CK) =
K∑

k=1

1

vol(Ĉk)

∑
i∈Ik∧l<Ik

Wi,l (Normalized cut)

A problem remains: the balancing introduced by the cluster importance
makes the minimization problem computationally hard to solve. However, a
can study a relaxation procedure: the spectral clustering algorithm.

24 Definition. Unnormalized Laplacian graph

Let W ∈ Rn×n be a symmetric matrix.

• The diagonal matrix D ∈ Rn×n such that ∀i ∈ [n], Di,i =
n∑

j=1
Wi,j is called

the degree matrix of the graph defined by W.

• L = D −W is called the Laplacian of the graph defined by W.

II.11 remark. Let W and L be respectively the adjacency matrix and Laplacian
of the similarity graph of (X1, . . . , Xn). For any positive integer K and for all
partitioning (C1, . . . , CK) of (X1, . . . , Xn) we have:

D̂r(C1, . . . , CK) = tr(H>LH)

14



ii.7. spectral clustering

where H =
(

1√
|Ik |

1i∈Ik

)
1≤i≤n∧1≤k≤K

.

[1em] In addition, the columns of H are orthonormal to each other (H>H = I).

Proof. Let’s denote hj ∈ Rn the columns of H (for j ∈ [K]. We have:

tr(H>LH) = tr((L1/2H)>(L1/2H)) =
K∑
j=1

(L1/2hj )
>(L1/2hj ) =

K∑
j=1

h>j Lhj

In addition, for all u ∈ Rn :

u>Lu = u>Du − u>Wu

=
n∑
i=1

Di,iu
2
i −

∑
1≤i,l≤n

Wi,luiul

=
1
2

( n∑
i=1

Di,iu
2
i +

n∑
l=1

Dl,lu
2
l − 2

∑
1≤i,l≤n

Wi,luiul

)

=
1
2

( ∑
1≤i,l≤n

Wi,lu
2
i +

∑
1≤i,l≤n

Wi,lu
2
l − 2

∑
1≤i,l≤n

Wi,luiul

)
(Wi,l symmetric)

=
1
2

∑
1≤i,l≤n

Wi,l(ui − ul)2

Therefore, for all j ∈ [K] :

h>k Lhj =
1
2

∑
1≤i,l≤n

Wi,l(Hi,j − Hl,j )
2

=
1
2

∑
i∈Ij∧l<Ij

Wi,l

since Hi,j − Hl,j is nonzero only if i ∈ Ij and l < Ij or the other way around.

Gathering everything we have:

tr(H>LH) =
K∑
j=1

h>j Lhj =
K∑
j=1

1
|Ij |

∑
i∈Ij∧l<Ij

Wi,l = D̂r(C1, . . . , CK)

Up to normalization, H represents the one-hot-encoding. For example, for
K = 3 if we recognize the sample (X1, . . . , Xn) such that Ĉ1 appears first, then

15



ii. unsupervised learning: clustering

Ĉ2 and so on, we get:

H =



1

|Ĉ1|
0 0

...
...

...
1

|Ĉ1|
0 0

0
1

|Ĉ2|
0

...
...

...

0
1

|Ĉ2|
0

0 0
1

|Ĉ3|
...

...
...

0 0
1

|Ĉ3|


II.12 remark. We have shown that the ratio-cut problem:

min
(Ĉ1,...,ĈK)∈P({X1,...,Xn})

K∑
k=1

1
|Ik |

∑
i∈Ik∧l<Ik

Wi,l

is equivalent to:

min
H∈Rn×K

tr(H>LH)

s.t.


H>H = I

∀j ∈ [K],∀i ∈ [n] : Hi,j ∈
{

0,
1√
|Ij |

}

II.7.1 Relaxation for ratio-cut

The equivalent program that we have found is an integer programming prob-
lem which we may not be able to solve efficiently. The idea to be able to
approach it is to discard the last constraint (the values (|I1|, . . . , |IK|) are known
in advance):

min
H∈Rn×K

tr(H>LH)

s.t.H>H = I

This problem is solved by the matrix H for which the columns are the
minor eigenvectors of L. We have an algorithm:

25 Definition. Unnormalized spectral clustering

16



ii.7. spectral clustering

Require: W ∈ Rn×n

1. L← Laplacian of W

2. H← K minor eigenvectors of L as columns

3. Yi ← ith row of H ∀i ∈ [n]. Yi ∈ RK.

4. (Ĉ1, . . . , ĈK ← output of K-means algorithm based on (Y1, . . . , Yn)

Ensure: (Ĉ1, . . . , ĈK)

4 Proposition. Reformulation for normalized cut

Let W and L be the usual matrices of the similarity graph of (X1, . . . , Xn). For
any positive integer k and for all partitioning (C1, . . . , CK) we have:

D̂n(C1, . . . , CK) = tr(H>LH)

where H =
(

1
√

vol
1i∈Ij

)
1≤i≤n∧1≤j≤K

.

[1em]
In addition, the columns of D1/2H are orthonormal to each other (H>DH = I).

The proof of this property is similar to the one of the previous proposition
except that we have for all j ∈ [K]:

h>j Lhj =
1

vol(Ĉj )

∑
i∈Ij∧l<Ij

Wi,l

In fact, the normalized cut problem:

min
(Ĉ1,...,ĈK)∈P({X1,...,Xn})

K∑
k=1

1

vol(Ĉj )

∑
i∈Ik∧l<Ik

Wi,l

is equivalent to:

min
H∈Rn×K

tr(H>LH)

s.t.


H>DH = I

∀j ∈ [K],∀i ∈ [n] : Hi,j ∈
{

0,
1√

vol(Ĉj )

}

and can be relaxed to:

min
H∈Rn×K

tr(H>LH)

s.t.H>DH = I

17



ii. unsupervised learning: clustering

what can be reformulated in:

min
H∈Rn×K

tr(U>LSU)

s.t.

H = D−1/2U

U>U = I

where LS = D−1/2LD−1/2.

This problem is solved by U for which the columns are minor eigenvectors
of LS. There is a correlation to H for which columns are minor eighenvectors
of LW = D−1L. The resulting algorithm is the following:

26 Definition. Normalized spectral clustering

Require: W ∈ Rn×n

1. LW ← Laplacian of W

2. H← K minor eigenvectors of LW as columns (similar to the generalized
eigenproblem Lu = λDu)

3. Yi ← ith row of H∀i ∈ [n]. Yi ∈ RK.

4. (Ĉ1, . . . , ĈK ← output of K-means algorithm based on (Y1, . . . , Yn)

Ensure: (Ĉ1, . . . , ĈK)

II.13 remark. λ ∈ R+ is eigenvalue of LW with eigenvector u iff λ and u solve
the generalized eigenvalue problem Lu = λDu.

II.7.2 Comparison of Ratio cut vs. normalized cut i

Both have objective functions such that points separated into different clusters
are dissimilar and take into account the importance of the clusters (by their
size or their volume).

However, they have different behavior on cluster importance:∑
i∈Ij∧l∈Ij

Wi,l = vol(Ĉj ) −
∑

i∈Ij∧l<Ij

Wi,l

In other words, the intra-cluster similarity is maximized as soon as the volume
is maximized and the cut with rest of the vertices is minimized; which is
achieved by normalized cut minimization.

On the other hand, the size |Ĉj | of a cluster is not necessarily related to the
intra-cluster similarity.

18



ii.7. spectral clustering

II.14 remark.

(+) Normalized spectral clustering: LW behaves as expected when n→∞.

(-) L can lead to completely unreliable results, even for small sample size
(cf Von Luxburg, 2007).

27 Definition. Another Normalized spectral clustering (with LS)

Require: W ∈ Rn×n

1. LS ← Laplacian of W

2. H← K minor eigenvectors of LS as columns

3. Yi ← ith row of H normalized to 1 for all i ∈ [n]. Yi ∈ RK,
K∑
j=1

(Yi)
2
j = 1.

4. (Ĉ1, . . . , ĈK ← output of K-means algorithm based on (Y1, . . . , Yn)

Ensure: (Ĉ1, . . . , ĈK)
II.15 remark.

• There is no theorical guaratees concerning the ”quality” of these two
relaxations.

• There exists many other relaxations: relying on semidefinite program-
ming.

• Spectral relaxations are not appealing for the quality of the solutions
they provide but for the simplicity of the problem in which they result
(standard linear algebra - eigenvalue - problems).

28 Definition. Definitions of Laplacian graph

• Unnormalized Laplacian: L = D −W

• Normalized Laplacian 1: LS = D−1/2LD−1/2 = I − D−1/2WD−1/2

• Normalized Laplacian 2: LW = D−1L = I − D−1W

For the two last definitions, they are respected symmetrically normalized
by D−1/2 and whitened by D.

5 Proposition. Properties of Laplacian graph

1. ∀u ∈ Rn:

u>Lu =
1
2

∑
1≤i,l≤n

Wi,l(ui − ul)2

u>LSu =
1
2

∑
1≤i,l≤n

Wi,l

(
ui√
Di,i

− ul√
Dl,l

)2

19



ii. unsupervised learning: clustering

2. 0 is eigenvalue of L and LW with eigenvector 1. 0 is eigenvalue of LS
with eigenvector D1/21.

3. λ ∈ R+ is eigenvalue of LW with eigenvector u iff λ is eigenvalue of LS
with eigenvector D1/2u.

4. L, LS and LW are symmetric SDP (semi-definite positive) matrices.
Proof.

1. See above

2. Obvious

3. λu = LWu ⇔ λu = D−1Lu ⇔ λ(D1/2u = D−1/2LD1/2(D1/2u)

4. Symmetry comes from symmetry of W and SDPness comes from Point 1
and Point 3.

6 Proposition. Let G be an undirected graph with non-negative weights.

• The multiplicities of the eigenvalues 0 of L, LS and LW are the same and
equal the number k of connected components (A1, . . . , Ak) in G.

• The eigenspace of 0 for both L and LW is spanned by {1A1
, . . . ,1Ak

} and
the eigenspace of 0 for LS is spanned by {D−1/21A1

, . . . , D−1/21Ak
}.

II.8 Hierarchical clustering

With the method K-means we have a lack of hierarchy in clusters: decreasing
K does not lead to merging clusters.

Then we will focus on agglomerative approaches (which is based on merging
clusters) ∼ bottom-up or on divisive ones (based on splitting clusters) ∼ top-
down.

29 Definition. Agglomerative approach

We start from the partitioning of the training set (X1, . . . , Xn) in which each
cluster is a unit set {Xi} and then we will merge successively the closest
clusters.

Then, the number of clusters decreases at each iteration, the clusters are
nested and a cluster at iteration t denoted by Ĉt is either the same (Ĉt = Ĉt−1)
or the union of two previous clusters (Ĉt = Ĉt−1

1 ∪ Ĉt−1
2 ).

Two parameters have to be defined in such a procedure :

• the (dis)similarity (or linkage) between two clusters

20



ii.8. hierarchical clustering

• the merging stopping rule

II.16 remark. Examples of cluster dissimilarities

The dissimilarities will be denoted by D : P({X1, . . . , Xn})2 → R+.

• Simple linkage:
D(A, B) = min

x∈A,y∈B
d(x, y)

• Complete linkage:
D(A, B) = max

x∈A,y∈B
d(x, y)

• Average linkage:

D(A, B) =
1
|A||B|

∑
x∈A,y∈B

d(x, y)

• Ward’s minimum variance:

Given the intraclass inertia for a generic subset C ⊂ (X1, . . . , Xn):

I(C) =
∑
x∈C

d(x, mC)2

where mC =
1
|C|

∑
u∈C

y,

D(A, B) = I(A∪ B) − I(A) − I(B)

which is the increase of intraclass inertia when merging A and B.

• The Euclidian distance:

D(A, B) =
|A||B|
|A| + |B|

‖mA −mB‖2

This method is very similar to K-means but with a greedy procedure
since Ward’s method merges clusters by minimizing the increase in the
total intraclass inertia.

• We can also use the Manhattan distance (or Cityblock, or l1), the cosine
distance or any precomputed affinity matrix.

30 Definition. Stopping rules

We can choose to use a fixed number of clusters or a distance upper bound
D̄ (or alternatively a scaled distance upper bound α ∈ R+ such that D̄ =
αmax1≤i,j≤n d(Xi , Xj ) for single, complete and average linkages).

II.17 remark. The resulting sequence of partitioning can be represented as
a tree, called dendrogram. In this tree the root is the unique cluster that
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iii. dimensionality reduction

gathers all points (the final cluster) and the leaved are the unit set clusters
(the algorithm initialization).

II.18 remark. The complexity of such an algorithm is O(n3) if there is no
restriction on the merging possibilities and O(n2) if there is only a bounded
number of merging possible for a given cluster.

Lecture 3 (2 hours, notes by
Guillaume Rousseau)
31st January 2020

III dimensionality reduction

31 Definition. Random Gaussian Vector A random vector X ∈ Rk is Gaussian
if, for all a ∈ Rk , 〈X, a〉 is a real Gaussian variable. In particular, if the compo-
nents of X are independent Gaussian variables, then X is a Gaussian vector. If
the covariance Σ of X is invertible, then the density of X is:

f (x1, . . . , xk) =
1√

2πdet(Σ)
e
−x̃TΣx̃

2

Where x̃ = x − u, with u = (E[X1], . . . , E[Xn])

Data:

X =


xT

1
...
xT
n

 ∈ Mn,p(R)

i.e. n points in Rp. We assume p to be extremely large. We want to reduce the
dimension, i.e. replace each xi by a yi ∈ Rd with d << p. In this section we will
look at linear reduction:

yi = Wxi

with W ∈ (M)d,p(R).
We also want to formalize the fact that we do not loose too much informa-

tion. We introduce two notions:

• Quasi-invertibility: there exists a pseudo-inverse U : Rd → Rp such that
∀i ∈ {1, . . . , n}, (̃xi) = Uyi ≈ xi .

• Distance preserving property: ∀i, j ∈ {1, . . . , n}, ‖yi − yj‖ ≈ ‖xi − xj‖.

III.1 First approach: Principal Component Analysis

We consider the following optimization problem:

arg min
W∈(M)d,p(R),U∈(M)p,d (R)

n∑
i=1

‖xi − UWxi‖2 (1)

7 Proposition. A solution (W, U) of (1) is of the form (U = V, W = VT) such
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iii.1. first approach: principal component analysis

that VTV = Id . In other words:

(1) ⇐⇒ arg min
V∈(M)p,d (R),VT V=Id

n∑
i=1

‖xi − VVTxi‖2

Proof. take W ∈ (M)d,p(R), U ∈ (M)p,d(R). Define:

R = {UWx|x ∈ Rp} = Im(UW) ⊆ Rp

dim(R) ≤ d. Let us assume that dim(R) = d, without loss of generality. Let
v1, . . . , vd be an orthonormal basis of R, and V = (v1|v2| . . . |vd) ∈ (M)p,d(R).

Then VTV = Id . Besides, for all x̃ ∈ R, there exists y ∈ Rd such that x̃ = Vy.
Then for every x ∈ Rp and (̃x) ∈ R such that x̃ = Vy:

‖x − x̃‖2 = ‖x − Vy‖2 = ‖x‖2 − 2xTVy + yTVTVy = ‖x‖2 + ‖y‖2 − 2xTVy

Let us denote this quantity g(y). g is minimal at the point y∗ such that ∇g(y∗) =
−2VTx + 2y∗ = 0, i.e. in y∗ = VTx. So g(y) ≥ g(y∗) = ‖x − VVTx‖2 Hence the
result.

III.1 remark. VVTxi is the orthogonal projection of xi onto R.

Since ‖xi−VVTxi‖2 = ‖xi‖2−2xT
i VVTxi+xT

i VVTVVTxi = ‖xi‖2−Tr(xT
i VVTxi) =

‖xi‖2 − Tr(VTxix
T
i V), we have:

(1) ⇐⇒ argmax
V∈(M)p,d (R),VT V=Id

Tr(VTATV)

with A =
n∑
i=1

xix
T
i .

The matrix A is in S+
p(R), so by spectral theorem:

∃W ∈ Op(R), D =


d1 (0)

. . .

(0) dn

 , A = WDW−1 = WDWT.

III.2 theorem. Let v1, . . . , vd be the eigenvectors of A associated to the d largest
eigenvalues of A, and V = (v1, . . . , vd). Then (U = V, W = VT) is a solution to (1).

Proof. Let U ∈ (M)p,d(R) such that UTU = Id and let B = WTU.

Then:
WB = UandUTAU = BTWTAWB = BTBD

Hence:

Tr(UTAU) =
p∑

j=1

dj

p∑
i=1

B2
ji
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iii. dimensionality reduction

But:
BTB = UTWWTU = UTU = Id

Hence the columns of B are orthonormal, and so

p∑
j=1

d∑
i=1

B2
ji =

d∑
i=1

(
p∑

j=1

B2
ji) = d

In addition, the columns of B can be completed into an orthonormal basis
of Rp which yields a matrix B̃ ∈ (M)p(R) that is orthonormal. In particular:

d∑
i=1

B2
ji ≤

p∑
i=1

B2
ji = 1

Hence :

Tr(UTAU) ≤ maxβ∈[0,1]p ,‖β‖1=d

p∑
j=1

djβj

The problem is now easy to solve: we assign 1 to the d first βi . This yields

Tr(UTAU) =
d∑

j=1
dj , reached by U = V = (v1, . . . , vd), hence the result.

III.3 remark. A =
n∑
i=1

xix
T
i ∈ (M)p(R). Denote:

X =


xT

1
...
xT
n


if p > n, B = XXT ∈ (M)n(R) is smaller than A. But if Bu = λu then for
v = XT U

‖XT U‖ , Av = λv.

PCA looks for the direction where the variance of the data is maximal.

III.2 Approach 2: Johnson-Lindenstrauss lemma

III.4 theorem. There exists A ∈ (M)d,p(R) such that ∀i, j ∈ 1, ..., n:

(1 − ε)‖xi − xj‖2 ≤ ‖Axi − Axj‖2 ≤ (1 + ε)‖xi − xj‖2

as soon as d ≥ 4log(n)
ε−log(1+ε)

In fact, if d ≥ 4log(n)+2log( 1
δ
)

ε−log(1+ε) , a matrix A ∈ (M)d,p(R) such that the Aij are

independent, identically distributed, following N (0, 1
δ
), has probability at least

1−δ of satisfying the theorem. In other words, picking a random matrix will provide
a good projection with high probability.
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iii.2. approach 2: johnson-lindenstrauss lemma

Proof. Let y ∈ Rn and Y = Ay. For i ∈ {1, ..., d}, Yi =
p∑

j=1
Aijyj ∼ N (0, ‖y‖

2

d ).

Thus:

E[‖Y‖2] = E[
d∑
i=1

Y2
i = ‖y‖2

III.5 lemma. If Ui ∼ N (0, 1
δ
) i.i.d., then:

P

 d∑
i=1

U2
i ≥ (1 + ε)d

 ≤ e−dφ
∗(ε)

with φ∗(ε) = ε−log(1+ε
2

Proof.

P(
d∑
i=1

U2
i ≥ (1 + ε)d)

= P(e
λ

d∑
i=1

U2
i ≥ eλ(1+ε)d)

≤ E[e
λ

d∑
i=1

U2
i
]

eλ(1+ε)d

≤ E[eλU2
1 ]d

eλ(1+ε)d

≤ e−d(λ(1+ε)−φ(λ))

where φ(λ) = log(E[eλU2
i ]) = log(

+∞∫
−∞

eλu
2 e−

u2
2 du√
2π

) = −1
2 log(1 − 2λ)

So for λ > 0, P(
d∑
i=1

U2
i ≥ (1 + ε)d) ≤ e−dg(λ). Now we choose λ so as to minimize

the upper bound found, i.e. such that g ′(λ) = 1 + ε − 1
2

2
1−2λ = 0.

This yields λ∗ = 1
2

ε
1+ε , and so:

φ∗(ε) = g(λ∗) =
1
2

(ε − log(1 + ε))
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iv. on overfitting and how to avoid it

So, by applying this lemma to the components of Y:

P(‖Y‖2 ≥ (1 + ε)‖y‖2)

= P(
d∑
i=1

Y2
i ≥ (1 + ε)‖y‖2)

= P(
d∑
i=1

(√
dYi

‖y‖

)2

≥ d(1 + ε))

≤ e−dφ
∗(ε)

Similarly, P(‖Y‖2 ≥ (1 + ε)‖y‖2) ≤ e−dφ
∗(ε)

Now let us look at the following probability:

p = P(
⋂

1≤i,j≤n
(‖A(Xi−Xj )‖2 ≤ (1+ε)‖Xi−Xj‖2)∩(‖A(Xi−Xj )‖2 ≥ (1−ε)‖Xi−Xj‖2))

= 1−P(
⋃

1≤i<j≤n
(‖A(Xi−Xj )‖2 > (1+ε)‖Xi−Xj‖2)∩(‖A(Xi−Xj )‖2 < (1−ε)‖Xi−Xj‖2))

≥ 1−
∑

1≤i<j≤n
(P(‖A(Xi−Xj )‖2 > (1+ε)‖Xi−Xj‖2)+P(‖A(Xi−Xj )‖2 < (1−ε)‖Xi−Xj‖2))

≥ 1 − n(n − 1)e−dφ
∗(ε)

So, for d such that e−dφ
∗(ε) < 1

n2 , p ≥ 1 − n(n−1)
n2 > 0

Lecture 4 (2 hours, notes by
Gabriel Bathie)
14th February 2020

IV on overfitting and how to avoid it

The course starts with a remark on expectation of maximum and maximum of
expectation :

IV.1 remark. Let X1, . . . , Xn be i.i.d. random variables.
Then E [maxi Xi] ≥ maxiE [Xi].

IV.2 example. If the Xi ∼ N (0, 1), then ∀i,E [Xi] = 0⇒ maxi E [Xi] = 0.
Yet, one can show (Exercise) that E[maxi Xi] ∼

√
2 log(n).

IV.3 example. Bit Guessing game
Consider the following game : the professor chooses secretely a uniformly

random 10-bit string. Then, every student tries to guess the bit string.
Let us consider the random variable Xi = number of bits that student i

guessed correctly. On average, a student will get 5 bits correctly. However, on
average, the student who guesses the most bits correctly will have guessed
correctly 7 or 8 bits.
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iv.1. case of the k-nearest neighbors algorithm

However, if we restart the game, that student will most likely not be the
have the highest number of correct guesses again. It can be seen as a kind of
overfitting for a specific bit-string.

IV.1 Case of the k-Nearest Neighbors algorithm

When doing k-Nearest Neighbors classification, we must a priori choose a
good value for k. However, if we take k too small (e.g. 1 or 2), we will be
overfitting (the model does not generalize), and if we take k too large, we will
be underfitting (the model can not learn).

Let us first look at a specific case. The dataset1 is data about US citizens
in 1994, and contains information like age and number of years of education.
They are classified in two categories, depending on whether their annual
income is lower than $50.000.

First, one can remark that there is no absolute answer for a given pair
(age, education), but rather a probability. Therefore, the Bayes classifier is not
perfect (but still optimal).

We would like to get a classifier that is as close as possible to the Bayes
classifier. However, we do not know the Bayes classifier for the dataset.

Instead, we can do the following to evaluate a modelM (that will give us
a classifier): we create a similar problem, and use it to generate fake data for
which we will know the Bayes classifier. In our setting, creating a similar prob-
lem means define a probability p = p(age, education) such that the dataset is
a likely outcome of this probability distribution.

We then run our model on the fake data, and obtain a classifier C.

Remember that we have seen that the risk of a classifier can be expressed
as a function of the risk of the Bayes classifier plus the difference between C
and the Bayes classifier (BC):

R(C) = L∗ + E
[
2
∣∣∣∣∣η(X) − 1

2

∣∣∣∣∣1C(X),BC(X)

]
We use this formula to compare C to the Bayes classifier: if they differ a lot,

i.e. if our model did not manage to learn the model of the fake (yet similar)
data, it is unlikely that it will learn the model of the actual data.

IV.2 Computing the risk of a classifier

We would now like to compute the risk of our k-Nearest Neighbors classifier,
as a function of k, to find an optimal value. There are multiple methods to do
so, and we will introduce two of them here: using a validation set, and cross
validation.

1Adult Data Set, UCI ML repository http://archive.ics.uci.edu/ml/datasets/Adult
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iv. on overfitting and how to avoid it

IV.2.1 Method 1: Validation set

Instead of using the whole dataset to train, we split it in two parts: the training
set and the validation set.

We use the training set to, well, train the model, and then use the validation
set to measure its accuracy. It is important that these two sets are disjoint
because a lot of models are 100% accurate on all the examples they have seen
(e.g. nearest neighbor classifiers).

There are two main questions:

• How to choose the validation set in the dataset?

• How big should the validation set be?

How to choose the validation set: it may be tempting to take the first p% of
the dataset as the training set, and the remainder as the validation set, but
this should be avoided: the layout of the data may contain some bias. Instead,
the choice should involve randomization.

Size of the validation set: there is no absolute rule. The only requirement
is that it should be large enough to allow the evaluation of the mean of a
Bernoulli random variable (1prediction(X)=label(X)) to the desired accuracy.

Problem: When the dataset is small (because measurements are expensive,
for example), this does not feel right. There is a workaround:

IV.2.2 Cross Validation

Cross validation (CV) aims to solve the previous problem, using all of the
data, but yet, having disjoint training and validation sets.

The idea is the following : choose v such that the dataset D can be parti-
tioned in v parts of equal size, D1, . . . , Dv .

Then, for i = 1 to v, build a classifier Ci(k) with validation set Di and
training set D \ Di , and compute its loss li(k).

One can compute which k̂ has the highest accuracy by computing L(k) =
1
v

v∑
i=1

li(k): we then have k̂ ∈ arg mink L(k).

We then have to build a final classifier to solve the problem. A first idea
could be to build a k-Nearest Neighbors classifier with parameter k̂ and train
it on the whole dataset, but there might be issues: perhaps k̂ is optimal only
when the dataset has size v−1

v |D|.
Another idea is to keep the v classifier that we built for each k, and when

we must make a prediction, use all of them and aggregate the results: in the
case of classification, do a majority vote (there is no particular rule to handle
ties). In the case of regression, take the average of all the outputs.

Finally, we have to choose v to run such an algorithm. Again, there is no
universal rule: the most standard is to pick v = 5 to 10, but one may try low
values such as v = 2,3 or v = |D| (called “LOO”, for Leave One Out, as the
training composed of all the entries of the dataset bar one).
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V other algorithm for classification :
classification and regression tree (cart )

The CART algorithm is a classification algorithm built using basic blocks:
simple binary decision rules.

Decision rules have the following form : for a variable vj :

• if vj is quantitative (i.e. it is a number), choose a threshold s and decide
vj ≤ s versus vj > s.

• if vj takes values in a set R, choose S ⊆ R, and decide vj ∈ S versus
vj < S.

In other words, we look at a variable and we split the dataset in two,
according to a simple criterion on that variable. We then want to apply recur-
sively and independently the process on each part of the dataset (that is, not
necessarily using the same decision rules on each part) until we obtain only
homogeneous datasets.

This process creates a decision tree that can be easily interpreted, where
the leaves correspond to a set of individual mapped to a unique prediction.

Figure 1: Example of classification tree

We would then like to know how to obtain the smallest tree that gives
the highest accuracy on our dataset. However, this problem is really hard.
Brieman2 proposes a nontrivial greedy algorithm that yields good results.

The two main questions that we need to answer to run the algorithm are :

• How to do the first cut ? This is sufficient because every cut can be seen
as the first cut on its own part of the dataset.

2Classification and regression trees, 1984
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v. other algorithm for classification: classification and

regression tree (cart)
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Figure 2: Plot of candidate heterogeneity measures : Shannon’s surprisal, variance
of Bernoulli RV, etc.

• When do we stop ?

In order to find the best cut, we first define admissible cuts : cuts such that
it splits the dataset into two non-empty datasets. If vj is quantitative and takes
cj values over the dataset, there are cj − 1 admissible cuts. If vj takes values in
R of cardinality cj , there are 2cj − 2 admissible cuts (every S ⊆ R except ∅ and
R define admissible cuts).

We must then define a quality measure on a cut. We do that by defining a
notion of heterogeneity of a node of the tree: a function such that

• it has value 0 if and only if a modality appears with frequency 1 in that
node.

• it is maximal when the variance is large.

V.1 example. Binary classification :
We assume that the variable we are interested in takes two values, 0 or

1. When the frequency of 1 in a node is 0 or 1, our function must have value
0. Furthermore, when the frequency of 1 if 1/2, the variance is maximized,
therefore the function should have value 1. Any function that satisfies these
requirements may work, and using different functions yields different results
in the algorithm.

V.2 example. Regression :
If we are interested in regression, we instead want the heterogeneity mea-

sure to be large when the points are far, for example we can use the empirical
variance.

First cut: The algorithm to find the cut is then: try all possible cut for all
possible variables, and choose the one that minimizes h(c1)− h(c2), where c1,c2
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Figure 3: Example of dataset for which the first cut is very heterogeneous, but
continuing the process yields a high quality estimator.

are the nodes obtained after cutting, and h is the heterogeneity function.

Stopping: A node is terminal if it is homogeneous (i.e. h(node) = 0) or if its
size is smaller than some predetermined threshold.

Affectation: A terminal node has the value of the class that is the most
represented inside.

After growing the tree fully, we have to prune it, otherwise we might
overfit, for examples if the leaves contain one individual each.

To do that, we fix a number of leaves, and we remove exceeding nodes:
starting from the leaves, we remove a split if ∆h = h(root) − h(lef t) − h(right)
is small, that is if the split did not improve the homogeneity.

It is important to grow the tree and then prune it, and not to grow it and
stop whenever we do a split with low ∆h. If we did that, we might stop on
first split of a highly heterogeneous dataset, where the second or third splits
could have had a high ∆h. See for example Figure 3.

VI statistical learning for binary classification
Lecture 5 (1h30 hours,
notes by Justine Sauvage)
21st February 2020

Reference : Mathematical Foundations of Statistical Learning, Christophe Giraud
( http://www.math.polytechnique.fr/xups/textes-provisoires13/giraud.pdf )

VI.1 Modeling

In this section, we will fix notations and framework for the following subsec-
tion(s).

First, note that we restrict our-self to binary classification.
Let :
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vi. statistical learning for binary classification

• X be a measurable space

• Y = {−1, 1}.

• (X, Y) be a random variable over X × Y

Intuitively (X, Y) is a tuple (”input data”,”output data”) and, as a remainder,
or goal in to predict y given a x input by X.

32 Definition (Classifier, Risk). A classifier is a function, that we will of-
ten note h from X to Y . h can be seen as a ”prediction” functions, try to
class the element of X by their output. Hence, we defined the probability of
misclassification, or risk :

R(h) = P(Y , h(X))

Remark. The loss function in our case is l : y, y′ → 1y,y′ . If you recall
the general definition of the risk was E(l(Y, h(X)). In our case this is equal to
E(1Y,h(X) = P(Y , h(X)), hence the two definitions agree.

33Definition (Bayes classification). Let hx be such that hx ∈ argminh measurableR(h).
hx is called the Bayes classification.

8 Proposition. Recall that we have hx(x) = sign(E(Y‖X = x)), or, equivalently,

hx(x) =

1 if P(Y = 1‖X = x) ≥ P(Y = −1‖X = x)

−1 otherwise

Proof. Immediate with the fact that E(Y|X = x) = P(Y = 1‖X = x) − P(Y =
−1‖X = x).

VI.2 Empirical risk minimization

Our goal is to find a classifier that minimize the risk, ie a classifier that predict
with a minimum amount of mistakes the label y of a given label x.

VI.2.1 Simplifying the problem

We first need to be able to compute the risk of a classifier, or at least to give
a ”good” bounding or estimation of it. Unfortunately, in ”real life”, we don’t
have access to the law of X and Y, but to a set of inputs associated to their
respective outputs. To model that, we thus consider that we have a data set
Dn = {(Xi , yi), i ∈ [n]} ∈ X × Y where for all i ∈ [n], (Xi , Yi) ∼ (X, Y) and all
(Xi , Yi)i∈[n] mutually independent.

Hence, there is not point in trying to compute the risk directly. So we
focused on a similar quantity : the empirical risk ( and hope for a way to link
them with each other ).

34 Definition (Empirical risk, empirical law). Let h be a classifier. Its empiri-

cal risk is : Rn(h) = 1
n

n∑
i=1

1(h(Xi ),Yi
.
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vi.3. bias - variance decomposition

Note that, if we define the empirical law Pn by : Pn = 1
n

n∑
i=1
δ(Xi ,Yi ), then :

Rn(h) = Pn(Y , h(X))

Then, we want to optimize the empirical risk over all measurable function
of YX . But even it is usually still too complicated. So, the idea will be to mini-
mize the risk on a small set of measurable functions. That why we introduce
the dictionaries.

35 Definition (Dictionary). A dictionary H is a set of classifier.

Now, assume that we have found a H such that it is not ”too complicated”
to optimize on it. Let then :

36 Definition (hH). hH = argminh∈HRn(h)

Remark. In practice, finding a such dictionary is also a very important and
difficult problem, for the rest of this part, we assume that we have found such
a dictionary.

Now, the question is : How to certificate that our solution - say hH - is
”good” ?

VI.3 Bias - Variance decomposition

9 Proposition. R(hH) − R(hX) ≥ 0

Our goal is then to make this difference get as close as possible to zero
( more the risk over the dicitonary is close to the risk over all measurable
function, ”better” it is ).

But, event by considering this differences, the problem is still too com-
plicated : we hence cut it into too error expression, and we will study both
separately.

10 Proposition. R(hH) − R(hX) ≤ [minh∈HR(h) − R(hX)]approximation error +
[R(hH) −minh∈HR(h)]stochastic error

Let first concentrate on the stochastic error.

VI.4 Misclassification probability of hH

37Definition (Shattering coefficient). Let Sn(H) = maxx1,x2,..xn∈X n#{h(x1), ..., h(xn), h ∈
H}.

Sn(H) is the shattering coefficient. It gives the max number of different
labelling of n points that the classifiers in H can produce.

38 Definition. Let now, Hl im = {sign(〈β, x〉)β ∈ Rp}

11 Proposition. Sn(Hl im) ≤ (n + 1)p
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vii. bagging

VI.1 theorem (Control of the stochastic error). ∀t > 0, with probability at least
1 − e−t we have :

R(hH) −minh∈HR(h) ≤ 4 ∗
√

2log(2Sn(H))
n +

√
2t
n

VI.5 Dictionary selection

Let {H1,H2, ...HM} collection of classifiers. We would like to select among
this collection, the dictionary with the smallest misclassification probability
dictionaries.

VI.2 theorem. Consider the following procedure :
m̂ = argminm=1,..,MR(hHm + pen(Hm where

pen(H) = 2
√

2log(2Sn(H)
n .

Then, f orallt > 0, with probability 1 − e−t, we have

R(hHm̂
) ≤ minm=1,..,M{infh∈HmR(h)+2pen(Hm)} +

√
2log(M)+2t

M

Remark. • The second term is negligible as soon as M = o(en)

• Since we have minh∈HR(h) ≤ R(hH), we have that : R(hHm̂
) ≤ R(hm∗) +

2pen(Hm∗) +
√

2log(M)+2t
M with m* the argmin of the inf in the expression

above.

Remark. If you check the proof in the reference, it appears that we obtain the
confidence interval for the misclassification probability :
P (R(hHm̂

) ∈ [Rn(hHm̂
) + / − δ(m̂, t)]) ≥ 1 − e−t

with δ(m, t) = pen(Hm) +
√

log(M)+t
2M

VI.6 VC dimension

39 Definition (Vapnik-Chervonenski dimension). VC − dim(H) = sup{d ∈
N , Sd(H) = 2d}

( translate : to which extent, H perfectly model the set of measurable
functions in X {+1,−1} ).

12 Proposition (Saver’s Lemma). If dH = VC(H) is finite.
Then, ∀n ≥ 0, Sn(H) ≤ (n + 1)dH .

Lecture 6 (2 hours, notes
by Dina El Zein and Emile
Sorci)
28th February 2020 VII bagging

VII.1 Bootstrap Aggregation

Introduction to Bootstrap:

X1, ..Xn ∼ P independent.

µ = E[X]
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vii.2. application to supervised learning

µ̂ = X̄n = x1+x2+...xn
n

θ = sample property of X

θ̂n = ψn(x1, ...xn)

How to give an idea of the precision of my estimator?

case of µ CLT:

σ2 = E[(X − µ2)]

√
n, µ̂n−µ√

σ̂2
n

→ N(0, 1), with probability 95%

∣∣∣∣∣√n, µ̂n−µ√σ̂2
n

∣∣∣∣∣ ≤ 1.96 so µ ∈
[
µn +− 1.96

√
σ̂2
n√

n

]
The problem here is that for distribution with heavy tails, the convergence of
the CCT is slow.

fµ(x) = c

|1+(µ−x)|α+1 s.t α > 2

case of θ or if the central limit theorem is not reliable:

• reproduce the experiment k times, θ̂1
n, θ̂

2
n, ...̂θ

k
n

• the idea here is as follows: for n sufficiently large Pn ≈ P : f oreveryA ∈
ρ, Pn(A) −−−−−→

n→∞
P(A)

Bootstrap: (re-sampling):

• X?,1
1 , ...X?,n

n identically distributed Pn → θ̂
?,1
n = ψn(X?,1

1 , ...X?,1
n )

• X?,k
1 , ...X?,k

n identically distributed Pn → θ̂
?,k
n

VII.2 Application to Supervised Learning

here we have a weak learner (meaning doesn’t have to be very efficient)

• ψn(x, y)n → yx

(x1, y1), ...(xn, yn)→ hn : x→ y

• Meta Learner: Bagging (ψ1)

In: (x1, y1)...(xn, yn)

out:h̄n : x→ y

for k=1 to K
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ix. support vector machines

compute a bootstrap sample (x?k1 , y?k1 )....(x?nk, y
?k
n )

call ψn on it to obtain h?kn

end for

• ĥn = aggregation(h?1
n , ...h?kn )

• for Regression:

aggregation(h?1
n , ...h?kn )(x) = 1

k

k∑
i=1

h?,kn (x)

• for classification (majority vote):

aggregation(h?1
n , ...h?kn )(x) = 1

k argmax
y∈Y

k∑
i=1

1h?,kn (x) = y

Random Forest Algorithm: (bagging classification or regression trees)

• no prunning

• subsample the variables candidate for splits at every step

• grow the tree only up to depth d (d=2, 3, 4)

VIII boosting

Read the slides

Lecture 7 (2 hours, notes by
Zoé Varin)
13th March 2020

IX support vector machines

IX.1 The linearly-separable case

Let X ⊆ Rp and Y = {−1, 1}.
We assume that : ∃w∗ ∈ Rp : P(Y〈w∗, X〉 > 0) = 1.

Remarks. • We saw that this separation can be done using the perceptron
algorithm

• We also remarked that affinely separable data can be reduced to the
linear case by the mapping :

36



ix.1. the linearly-separable case

Rp → Rp+1

x =


x1
...
xp

 7−→ x̃ =


x1
...
xp
1


• illustration of the main objective :

We see that there can be many sepa-
rators with no error, but some seem
more robust (see the one associated
to the green line). So we would like
to have confidence margin.

40 Definition. A linear separator w is compatible with the dataset if :

∀i ∈ {1, . . . , n}, yi〈w, xi〉 > 0

41 Definition. The margin is :

m(w) = min
1≤i≤n

d(xi , Hw)

where Hw = {x ∈ Rp : 〈w, x〉 = 0}.

Among all the linear separators compatible with the dataset, we look for
the one with highest margin.

13 Proposition. For every x ∈ Rp and w ∈ Rp\{0},

d(x, Hw) =
|〈w, x〉|
‖w‖

Proof. Let y = x− 〈 w
‖w‖ , x〉

w
‖w‖ (y is the projection of x onto the hyperplane Hw),

and let z ∈ Hw.

First, denote that y ∈ Hw, since 〈w, y〉 = 〈w, x〉 − 〈w,x〉‖w‖2 〈w, x〉 = 0.
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ix. support vector machines

‖x − z‖2 = ‖x − y + y − z‖2

= ‖x − y‖2 + ‖y − z‖2 + 2〈x − y, y − z〉

=
〈w, x〉2

‖w‖4
‖w‖2 + ‖y − z‖2︸   ︷︷   ︸

>0

+2〈w, x〉 〈w, y − z〉︸     ︷︷     ︸
=0

So d(x, Hw) = ‖x − y‖ = |〈w,x〉|
‖w‖ .

The optimal linear separator is then the solution of

max
w∈Rp ,∀i,yi〈w,xi〉=1

min
1≤i≤n

|〈w, xi〉|
‖w‖

(OPT1)

(OPT1) = max
w∈Rp ,min

1≤i≤n
yi〈w,xi〉=1

min
1≤i≤n

|〈w, xi〉|
‖w‖

= max
w∈Rp ,min

1≤i≤n
yi〈w,xi〉=1

1
‖w‖

min
1≤i≤n

|〈w, xi〉|︸          ︷︷          ︸
=1

⇔ min
w∈Rp ,min

1≤i≤n
yi〈w,xi〉=1

‖w‖2

2
(OPT2)

(OPT2) can be solved numerically (this is quadratic program, under linear
constraints).

Remark.

One can see that the solution only de-
pends on the points that are close to the
hyperplane. The others can be moved
a lot without changing the solution.

38



ix.2. extension to the non-linearly separable case

IX.2 Extension to the non-linearly separable case

In the first model (Hard-SVM) we
didn’t allow for exceptions. But now
we would like to. This is the Soft-SVM
model.

Then we define a new problem :

max
w∈Rp ,∀i,yi〈w,xi〉≥1−αi ,αi∈[0,+∞[

λ
‖w‖2

2
+

1
n

n∑
i=1

αi (OPT3)

The idea with the αi ’s is that we pay by how much a point is far from the
margin. Then λ is a factor depending on how much we’re ready to pay for a
mistake.

Illustration.

λ ' 0λ� 1

Here the two lines represent two legiti-
mate solutions. We choose one of them
by adjusting the λ parameter.
If λ ' 0, we stick as much as possible to
the data. On the contrary, a parameter
λ� 1 allows to generalize well.

Remark. One can rewrite yi〈w, xi〉 ≥ 1 − αi , αi ∈ [0,+∞[ as αi = max(1 −
yi〈w, xi〉, 0) = (1 − yi〈w, xi〉)+. Then,

(OPT3) = min
w∈Rp

λ
‖w‖2

2
+

1
n

n∑
i=1

(1 − yi〈w, xi〉)+

Writing l(u) := (1 − u)+, and denoting that ∀u, l(u) ≥ 1{u<0}, we get :

min
w∈Rp

1
n

n∑
i=1

l(1 − yi〈w, xi〉) + λ
‖w‖2

2
≥ min

w∈Rp

1
n

n∑
i=1

1{1−yi〈w,xi〉<0} + λ
‖w‖2

2

So Soft-SVM appears a posteriori as a convexification of the ERM (empiri-
cal risk minimization) problem with quadratic penalization λ ‖w‖

2

2 .
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ix. support vector machines

IX.3 Optimization of OPT3

(OPT3) = min
w∈Rp

1
n

n∑
i=1

l(1 − yi〈w, xi〉) + λ
‖w‖2

2︸                                 ︷︷                                 ︸
=:f (w)

f is convex (since (1− .)+ is convex and yi〈., xi〉 is linear), and even λ-strictly
convex.

(f is λ-strictly convex if ∀x ∈ Rp,∃gx ∈ Rp,∀y ∈ Rp, f (y) ≥ f (x) + 〈gx, y −
x〉 + λ

2 ‖y − x‖
2.)

One can check the following proposition :

14 Proposition. a function f is λ-strictly convex⇔ x 7→ f (x)− λ2 ‖x‖
2 is convex.

If ∀x, ‖xi‖ ≤ M, then on the set B := {w ∈ Rp : ‖w‖ ≤ R}, f is L := M + λR-

Lipschitz : ∀w, w′ ∈ B, |f (y) − f (x)| ≤ (M + λR)‖y − x‖

Now let’s focus on an algorithm for optimizing a L-Lipschitz λ-strictly
convex function, whose main id

We set : w0 = 0 ∈ Rp

∀t ≥ 0, wt+1 = wt − γtgt

where gt is the subgradient of f at wt, and γt is a learning rate to be chosen
correctly.

2 Theorem. if γt = 1
λ(t+1) , then

f

 1
T

T−1∑
t=0

wt

 ≤ min f +
L2(1 + ln M)

λT

Remark. Be careful, the sequence itself does not necessarily converge, but the
average does !

Proof. Let w∗ = arg min
w∈Rp

f .

We know that f (w∗) ≥ f (wt) + 〈gt , w∗ − wt〉 + λ
2 ‖wt − w∗‖2. Then,
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ix.4. dual formulation

f (wt) − f (w∗) ≤ 〈gt , wt − w∗〉 −
λ

2
‖wt − w∗‖2

= 〈 1
γt

(wt − wt+1), wt − w∗〉 −
λ

2
‖wt − w∗‖2

=
1

2γt

(
‖wt − wt+1‖2 + ‖wt − w∗‖2 − ‖wt+1 − w∗‖2

)
− λ

2
‖wt − w∗‖2

= − (t + 1)λ
2
‖wt+1 − w∗‖2 +

tλ
2
‖wt − w∗‖2 +

(t + 1)λ
2
‖γtgt‖2

≤ − (t + 1)λ
2
‖wt+1 − w∗‖2 +

tλ
2
‖wt − w∗‖2 +

L2

2(t + 1)λ

This computation uses the fact that ∀a, b,2〈a, b〉 = ‖a‖2 + ‖b‖2 − ‖a − b‖2
and ‖gt‖2 ≤ L2. One can show that ‖gt‖2 ≤ L2 :

• the hypothesis f λ-strictly convex, using x = wt and y such that y−x = gt,
gives : f (y) ≥ f (x) + (1 + λ

2 )‖gt‖2

• Then, ‖gt‖2 ≤ 1
1+ λ

2
(f (y) − f (x))

• finally, f L-Lipschitz gives : ‖gt‖2 ≤ L
1+ λ

2
‖gt‖ and we immediately get the

result.

Then, summing this inequality f (wt)− f (w∗) ≤ 〈gt , wt −w∗〉− λ2 ‖wt −w∗‖2 ≤
− (t+1)λ

2 ‖wt+1 − w∗‖2 − tλ
2 ‖wt − w∗‖2 + L2

2(t+1)λ from 0 to T − 1 gives :

T−1∑
t=0

f (wt) − f (w∗) ≤ −Tλ
2
‖wT − w∗‖2 +

0λ
2
‖w0 − w∗‖2 +

L2

2λ

T−1∑
t=0

1
t + 1

≤ L2

2λ
(1 + ln(T))

Finally, by convexity,

f

 1
T

T−1∑
t=0

wt

 ≤ 1
T

T−1∑
t=0

f (wt) ≤ f (w∗) +
L2(1 + ln(T))

2λT

IX.4 Dual formulation

IX.5 Kernel tricks
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