
Perfect Simulation of Processes
With Long Memory:

A “Coupling Into and From The Past” Algorithm
[RSA, arXiv:1106.5971]

Aurélien Garivier

Institut de Mathématiques de Toulouse, Université Paul Sabatier

SPA’14 @ Buenos Aires

Coupling From the Past: Propp and Wilson’s algorithm

Outline

1 Coupling From the Past: Propp and Wilson’s algorithm

2 Chains of infinite order

3 Perfect Simulation for Chains of Infinite Order

4 Implementing the Algorithm

Coupling From the Past: Propp and Wilson’s algorithm

Stationary Markov Chains

Markov Chain (Xt)t∈Z on the finite set G = {1, . . . ,K}
Dynamical System Xt+1 = φ(Ut, Xt)

Kernel P (i, ·) ∈M1(G), such that

∀i, j ∈ G, P(Xt+1 = j|Xt = i) = P (i, j)

Stationary distribution π such that πP = π

Coupling From the Past: Propp and Wilson’s algorithm

Simulating the stationary chain

Problem given a kernel P , simulate a sample path
X0, X1, . . . , Xn from the stationary Markov Chain
with kernel P

Update rule φ : [0, 1[×{1, . . . ,K} → {1, . . . ,K} such that

∀i, j ∈ G : λ
(
{u : φ(u, i) = j}

)
= P (i, j)

Recursion Given Xt, taking Xt+1 = φ(Ut, Xt) works

=⇒ it is sufficient to sample X0 from π.

Coupling From the Past: Propp and Wilson’s algorithm

Coupling from the Past: the idea

Given some (Ut)t≤0, I may know X0

even if I do not know X−6!

U -1

Coupling From the Past: Propp and Wilson’s algorithm

Coupling from the Past: the idea

Given some (Ut)t≤0, I may know X0

even if I do not know X−6!

U -1U-2

Coupling From the Past: Propp and Wilson’s algorithm

Coupling from the Past: the idea

Given some (Ut)t≤0, I may know X0

even if I do not know X−6!

U -1U-2-2-3U

Coupling From the Past: Propp and Wilson’s algorithm

Coupling from the Past: the idea

Given some (Ut)t≤0, I may know X0

even if I do not know X−6!

U -1U-2-2-3UU-4

Coupling From the Past: Propp and Wilson’s algorithm

Coupling from the Past: the idea

Given some (Ut)t≤0, I may know X0

even if I do not know X−6!

U -1U-2-2-3UU-4-5U

Coupling From the Past: Propp and Wilson’s algorithm

Coupling from the Past: the idea

Given some (Ut)t≤0, I may know X0

even if I do not know X−6!

U -1U-2-2-3UU-4-5UU U-6

Coupling From the Past: Propp and Wilson’s algorithm

Coupling from the Past: the idea

Given some (Ut)t≤0, I may know X0 even if I do not know X−6!

U -1U-2-2-3UU-4-5UU U-6

?

U?

?

?

Coupling From the Past: Propp and Wilson’s algorithm

Coupling from the Past: more formally

Local transition for each t < 0 let ft : G→ G be defined by

ft(s) = φ(Ut, s)

Iterated transition Ft = f−1 ◦ · · · ◦ ft
Propp-Wilson: if you know Ut for all t ≥ τ(n), where

τ(n) = sup{t < 0 : Ft is constant} ,

then you know X0.

Prop: one can choose φ so that τ(n) is of the same order
of magnitude as the mixing time of the chain!

Coupling From the Past: Propp and Wilson’s algorithm

The Nummelin update rule

Nummelin coefficient:

A1 =

K∑
j=1

min
1≤i≤K

P (i, j)

Update rule φ : [0, 1[×G→ G such that

u ≤ A1 =⇒ ∀i, i′ ∈ G, φ(u, i) = φ(u, i′)

Regeneration if Ut ≤ A1, then Xt+1, Xt+2 . . . , is independent
from Xt, Xt−1,

=⇒ alternative coupling from the past: wait for a
regeneration!

Coupling From the Past: Propp and Wilson’s algorithm

Coupling from the Past: regeneration

Wait for the first renegeration time.

U -1

Coupling From the Past: Propp and Wilson’s algorithm

Coupling from the Past: regeneration

Wait for the first renegeration time.

U -1U-2

Coupling From the Past: Propp and Wilson’s algorithm

Coupling from the Past: regeneration

Wait for the first renegeration time.

U -1U-2-2-3U

Coupling From the Past: Propp and Wilson’s algorithm

Coupling from the Past: regeneration

Wait for the first renegeration time.

U -1U-2-2-3UU-4

Coupling From the Past: Propp and Wilson’s algorithm

Coupling from the Past: regeneration

Wait for the first renegeration time.

U -1U-2-2-3UU-4-5U

Coupling From the Past: Propp and Wilson’s algorithm

Coupling from the Past: regeneration

Wait for the first renegeration time.

U -1U-2-2-3UU-4-5UU U-6

Coupling From the Past: Propp and Wilson’s algorithm

Coupling from the Past: regeneration

Wait for the first renegeration time.

U -1U-2-2-3UU-4-5UU U-6U-7

Chains of infinite order

Outline

1 Coupling From the Past: Propp and Wilson’s algorithm

2 Chains of infinite order

3 Perfect Simulation for Chains of Infinite Order

4 Implementing the Algorithm

Chains of infinite order

Context Tree Sources

Variable Length Markov Chains: the order of the chain is allowed
to depend on the past according to some tree structure

t r y i n g v a n i l l a q u i e t_ _

Example : T = {1, 10, 100, 000}

P(X4
1 = 00110|X0

−1 = 10)

= P(X1 = 0|X0
−1 = 10)

3/4

× P(X2 = 0|X1
−1 = 100)

1/3

× P(X3 = 1|X2
−1 = 1000)

4/5

× P(X4 = 1|X3
−1 = 10001)

1/3

× P(X5 = 0|X4
−1 = 100011)

2/3

(2/3, 1/3)

0 1

0 1

0 1

(1/5, 4/5) (1/3, 2/3)

(3/4, 1/4)

Chains of infinite order

Context Tree Sources

Variable Length Markov Chains: the order of the chain is allowed
to depend on the past according to some tree structure

t r y i n g v a n i l l a q u i e t_ _

Example : T = {1, 10, 100, 000}

P(X4
1 = 00110|X0

−1 = 10)

= P(X1 = 0|X0
−1 = 10) 3/4

× P(X2 = 0|X1
−1 = 100)

1/3

× P(X3 = 1|X2
−1 = 1000)

4/5

× P(X4 = 1|X3
−1 = 10001)

1/3

× P(X5 = 0|X4
−1 = 100011)

2/3

, 1/4)0 1

0 1

0 1

(1/5, 4/5) (1/3, 2/3)

(2/3, 1/3)

(3/4

Chains of infinite order

Context Tree Sources

Variable Length Markov Chains: the order of the chain is allowed
to depend on the past according to some tree structure

t r y i n g v a n i l l a q u i e t_ _

Example : T = {1, 10, 100, 000}

P(X4
1 = 00110|X0

−1 = 10)

= P(X1 = 0|X0
−1 = 10) 3/4

× P(X2 = 0|X1
−1 = 100) 1/3

× P(X3 = 1|X2
−1 = 1000)

4/5

× P(X4 = 1|X3
−1 = 10001)

1/3

× P(X5 = 0|X4
−1 = 100011)

2/3

1/3

0 1

0 1

0 1

(1/5, 4/5)

(3/4, 1/4)

(2/3, 1/3)

(, 2/3)

Chains of infinite order

Context Tree Sources

Variable Length Markov Chains: the order of the chain is allowed
to depend on the past according to some tree structure

t r y i n g v a n i l l a q u i e t_ _

Example : T = {1, 10, 100, 000}

P(X4
1 = 00110|X0

−1 = 10)

= P(X1 = 0|X0
−1 = 10) 3/4

× P(X2 = 0|X1
−1 = 100) 1/3

× P(X3 = 1|X2
−1 = 1000) 4/5

× P(X4 = 1|X3
−1 = 10001)

1/3

× P(X5 = 0|X4
−1 = 100011)

2/3

4/5

0 1

0 1

0 1

(1/3, 2/3)

(3/4, 1/4)

(2/3, 1/3)

(1/5,)

Chains of infinite order

Context Tree Sources

Variable Length Markov Chains: the order of the chain is allowed
to depend on the past according to some tree structure

t r y i n g v a n i l l a q u i e t_ _

Example : T = {1, 10, 100, 000}

P(X4
1 = 00110|X0

−1 = 10)

= P(X1 = 0|X0
−1 = 10) 3/4

× P(X2 = 0|X1
−1 = 100) 1/3

× P(X3 = 1|X2
−1 = 1000) 4/5

× P(X4 = 1|X3
−1 = 10001) 1/3

× P(X5 = 0|X4
−1 = 100011)

2/3

)

0 1

0 1

0 1

(1/5, 4/5) (1/3, 2/3)

(3/4, 1/4)

(2/3, 1/3

Chains of infinite order

Context Tree Sources

Variable Length Markov Chains: the order of the chain is allowed
to depend on the past according to some tree structure

t r y i n g v a n i l l a q u i e t_ _

Example : T = {1, 10, 100, 000}

P(X4
1 = 00110|X0

−1 = 10)

= P(X1 = 0|X0
−1 = 10) 3/4

× P(X2 = 0|X1
−1 = 100) 1/3

× P(X3 = 1|X2
−1 = 1000) 4/5

× P(X4 = 1|X3
−1 = 10001) 1/3

× P(X5 = 0|X4
−1 = 100011) 2/3

(, 1/3)

0 1

0 1

0 1

(1/5, 4/5) (1/3, 2/3)

(3/4, 1/4)

2/3

Chains of infinite order

Histories

History w = w−∞:−1 ∈ G−N
∗

Ultrametric distance δ(w, z) = 2sup{k<0:wk 6=zk}

=⇒ (G−N
∗
, δ) is a complete and compact set.

Ball B ⊂ G−N∗
is a (closed or open) ball if

B =
{
zs : z ∈ G−N∗

}
for some s ∈ G∗

Trees and roots B = T (s), s = R(B)

Ex: T (ε) = G−N
∗
, the radius of T (s) is 2−|s|−1

Piecewise constant A mapping f defined on G−N
∗

is piecewise
constant if the exists a family {sj}j∈N of elements of
G−N

∗
such that f is constant on each ball T (sj).

Projection Πn : G−N
∗ → Gn be defined by Πn(w) = wn:−1.

Chains of infinite order

Kernels

Probability Transition Kernel P : G−N
∗ →M1(G)

value at w ∈ G−N∗
is denoted P (·|w)

Total Variation distance: for p, q ∈M1(G),

|p− q|TV =
1

2

∑
a∈G
|p(a)− q(a)| = 1−

∑
a∈G

p(a)∧ q(a)

Process (Xt)t∈Z with distribution ν on GZ is compatible with
kernel P if the latter is a version of the one-sided
conditional probabilities of the former:

ν (Xi = g|Xi+j = wj , j ∈ −N∗) = P (g|w)

for all i ∈ Z, g ∈ G and ν-almost every w.

Chains of infinite order

Kernel continuity

continuity P :
(
G−N

∗
, δ
)
→ (M1(G), | · |TV)

oscillation of P on the ball T (s)

η(s) = sup
{∣∣P (·|w)− P (·|z)

∣∣
TV

: w, z ∈ T (s)
}
.

P1: P is continuous if and only if
∀w ∈ G−N∗

, η(w−k:−1)→ 0 as k goes to infinity.

P2: P is continuous if and only if
sup{η(s) : s ∈ G−k} → 0 as k goes to infinity.

P3: P is uniformly continuous if and only it is continuous.

Perfect Simulation for Chains of Infinite Order

Outline

1 Coupling From the Past: Propp and Wilson’s algorithm

2 Chains of infinite order

3 Perfect Simulation for Chains of Infinite Order

4 Implementing the Algorithm

Perfect Simulation for Chains of Infinite Order

CFP algorithms for context tree sources

Comets, Fernández, Ferrari 2002 simulation algorithm using
regeneration: Kalikow-type decomposition of the
kernel as a mixture of Markov Chains of all orders.
Requires strong continuity conditions.

De Santis, Piccioni mix the ideas of CFF and the algorithm of PW:
they propose an hybrid simulation scheme working
with a Markov regime and a long-memory regime.

Gallo, Foss&al. Relax the continuity condition, replaced e.g. by
conditions on the shape of the memory tree.

Our goal: describe a single procedure that generalizes the
sampling schemes of CFF and PW in an unified
framework.

Perfect Simulation for Chains of Infinite Order

Perfect Simulation Scheme

Goal: draw (Xn, . . . , X−1)
from a stationary
distribution compatible
with P

Tool: semi-infinite sequence
of i.i.d. random
variables Ut ∼ U([0, 1[)

St = (. . . , Xt−1, Xt), t ∈ Z, is a Markov Chain on G−N
∗

with
kernel Q:

∀w, z ∈ G−N∗
, Q(w|z) = P (w−1|z)1wi−1=zi:i<0 .

Perfect Simulation for Chains of Infinite Order

Update rules

Def: φ : [0, 1[×G−N∗ → G is called an update rule of P if

U ∼ U([0, 1[) =⇒ φ(U,w) ∼ P (·|w)

for all w ∈ G−N∗
.

Prop: There exists an update rule φ of P such that:

∀s ∈ G∗, 0 ≤ u < 1−|G|η(s) =⇒ φ(u, ·) cst on T (s) .

Prop: If P is continuous, then for all u ∈ [0, 1[the mapping
w → φ(u,w) is continuous, i.e, piecewise constant.

Perfect Simulation for Chains of Infinite Order

A Propp-Wilson Scheme

Local transition ft : G−N
∗ → G−N

∗
be defined by

ft(w) = wφ(Ut, w);

Iterated transition Ft = f−1 ◦ · · · ◦ ft
Projection Hn

t = Πn ◦ Ft
Continuity: Hn

t is a piecewise constant mapping

Propp-Wilson: if you wait for

τ(n) = sup{t < n : Hn
t is constant} ,

you will know (Xn, . . . , X−1)

Perfect Simulation for Chains of Infinite Order

Local Continuity Coefficients

For every w ∈ G−N∗
the continuity of kernel P is locally

characterized by the coefficients

ak(g|w−k:−1) = inf{P (g|z) : z ∈ T (w−k:−1)}

Ak(w−k:−1) =
∑
g∈G

ak(g|w−k:−1)

A−k = inf
s∈G−k

Ak(s)

αk(g|w−k:−1) = Ak−1(w−k+1:−1) +
∑
h<g

{ak(h|w−k:−1)− ak−1(h|w−k+1:−1)}

βk(g|w−k:−1) = Ak−1(w−k+1:−1) +
∑
h≤g

{ak(h|w−k:−1)− ak−1(h|w−k+1:−1)}

Perfect Simulation for Chains of Infinite Order

Local characterization of the kernel continuity

Let P be a fixed kernel on G.
Prop: For all s ∈ G∗,

1− |G|η(s) ≤ A|s|(s) ≤ 1− η(s) .

Prop: The three assertions are equivalent:

(i) the kernel P is continuous;

(ii) ∀w ∈ G−N∗
, Ak(w−k:−1)→ 1 as k →∞;

(iii) A−k → 1 as k goes to infinity.

Perfect Simulation for Chains of Infinite Order

Construction of the update rule

Prop: For every w ∈ G−N∗
,

[0, 1[=
⊔

g∈G,k∈N
[αk(g|w−k:−1), βk(g|w−k:−1)[.

Def: The mapping φ : [0, 1[×G−N∗ → G is defined as follows:

φ(u,w) =
∑

g∈G,k∈N
g1[αk(g),βk(g)[(u) .

Prop: φ is an update rule such that ∀s ∈ G∗,∀u ∈ [0, 1]:

∀w, z ∈ T (s), u < A|s|(s) =⇒ φ(u,w) = φ(u, z) .

Perfect Simulation for Chains of Infinite Order

Illustration

Figure: Graphical representation of an update rule φ on alphabet
{0, 1, 2}: for each w−k:−1, the intervals [αk(g|w−k:−1), βk(g|w−k:−1)[
are represented in blue (g = 0), red (g = 1) and green (g = 2). For
example, P (1|1) = α0(1|ε) + α1(1|1) = 1/8 + 1/4, and
P (0|00) = α0(0|ε) + α1(0|0) + α2(0|00) = 1/4 + 1/8 + 0.

Implementing the Algorithm

Outline

1 Coupling From the Past: Propp and Wilson’s algorithm

2 Chains of infinite order

3 Perfect Simulation for Chains of Infinite Order

4 Implementing the Algorithm

Implementing the Algorithm

Complete suffix Dictionaries

Def: a (finite or infinite) set of words D ⊂ P(G∗) is a CSD if one
of the following equivalent properties is satisfied:

every w ∈ G−N∗
has a unique suffix in D:

∀w ∈ G−N∗
, ∃!s ∈ D : w � s ;

{T (s) : s ∈ D} is a partition of G−N
∗

:

G−N
∗

= ts∈D T (s) .

The depth of D is

d(D) = sup{|s| : s ∈ D}

The smallest possible CSD is {ε}: it has depth 0 and size 1.
The second smallest is G, it has depth 1.

Implementing the Algorithm

Representation as a trie
A CSD D can be represented by a trie, that is, a tree with edges
labelled by elements of G such that the path from the root to any
leaf is labelled by an element of D.

Figure: Left: the trie representing the Complete Suffix Dictionary
D = {0, 01, 11}. Right: {00, 10, 001, 101, 11} � {0, 01, 11}. Both
examples concern the binary alphabet.

If D and D′ are such that ∀s ∈ D′, s � D, then we note D′ � D.

Implementing the Algorithm

Piecewise constant functions

Def: For a CSD D, we say that a function f defined on
G−N

∗
is D-constant if

∀s ∈ D,∀w ∈ T (s), f(w) = f(0s) .

Def: For every h ∈ G−N∗ ∪G∗ we define

f(h) = f(T (h)) = f
(
~D(h)

)
and note that if

h � D, f(h) is a singleton.

Minimal CSD Df = CSD with minimal cardinality such that f is
constant on each of its elements.

Pruning if f is D-constant, then Df can be obtained by
recursive pruning of D.

Implementing the Algorithm

Recursive construction of Hn
t

The mapping Hn
t being piecewise constant, we define Dn

t = DHn
t .

Initialization: D−1−1 = G, ∀g ∈ G, ∀w ∈ T (s), H−1−1 (w) = g.

For t < −1, s ∈ D(Ut) denote {gt(s)} = φ(Ut, s) and define
Ent (s) as follows:

if sgt(s) � Dn
t+1, let En

t (s) = {s};
otherwise, let

En
t (s) =

⋃
hgt(s)∈Dn

t+1(sgt(s))

{h} .

Let
Ent =

⋃
s∈D(Ut)

Ent (s) .

Ent is a CSD, and Hn
t is Ent -constant.

Dn
t is obtained by pruning Ent

for t = n, Dt
t is equal to Dt+1

t unless Dt+1
t = {ε}, in which

case Dt
t = G.

Implementing the Algorithm

How it works

Obtaining Dn
t from Dt and Dn

t+1. For each function φ(Ut, ·), Dn
t+1

and Dn
t , we represent a CSD on which it is constant, and the

values taken in each leaf; here, G = {0, 1}, and n = −1.

Implementing the Algorithm

Example

Renewal process For all k ≥ 1, let

P (0|01k) = 1− 1√
k

Not Harris Observe that P (1|0) = limk→∞ P (0|01k) = 1, so
that a0 = 0.

Slow continuity for k ≥ 0, Ak+1 = Ak(01k) = 1− 1/
√
k, so that

∑
n

n∏
k=2

A−k <∞

=⇒ the continuity conditions of [Comets,
Fernández, Ferrari] and [De Santis, Piccioni] do not
apply.

yet the algorithm works well

Implementing the Algorithm

Example: the coupling illustrated

Graphical representation of the of P .
Dark grey corresponds to 0. Light grey corresponds to 1.

Implementing the Algorithm

Summary

new algorithm for the perfect simulation of variable length
Markov chains;

generalizes Propp and Wilson’s simulation scheme;

based on the idea of coupling into and from the past:

Versatile: works as well for Markov Chains and for
(mixing) infinite memory processes,

Powerful: needs weak continuity assumptions to converge,
Fast: for (large order) Markov chains, much faster

than Propp-Wilson’s algorithm on the extended
chain,

but a little painful to implement...

results in a dynamical system on trees, to be studied further!

Implementing the Algorithm

A Few References
Francis Comets, Roberto Fernández, and Pablo A. Ferrari. Processes with long
memory: regenerative construction and perfect simulation. Ann. Appl. Probab.,
12(3):921–943, 2002.
Emilio De Santis and Mauro Piccioni. Backward coalescence times for perfect
simulation of chains with infinite memory. J. Appl. Probab., 49(2):319– 337,
2012.
S. G. Foss, R. L. Tweedie, and J. N. Corcoran. Simulating the invariant
measures of Markov chains using backward coupling at regeneration times.
Probab. Engrg. Inform. Sci., 12(3):303–320, 1998.
Sandro Gallo. Chains with unbounded variable length memory: perfect
simulation and visible regeneration scheme. J. Appl. Probab., 43(3):735– 759,
2011.
A. Galves, C. Galves, J. Garcia, N.L. Garcia, and F. Leonardi. Context tree
selection and linguistic rhythm retrieval from written texts. ArXiv: 0902.3619,
pages 1–25, 2010.
Wilfrid S. Kendall. Perfect simulation for the area-interaction point process. In
Probability towards 2000 (New York, 1995), volume 128 of Lecture Notes in
Statist., pages 218–234. Springer, New York, 1998.
S. P. Lalley. Regeneration in one-dimensional Gibbs states and chains with
complete connections. Resenhas, 4(3):249–281, 2000.
James Gary Propp and David Bruce Wilson. Exact sampling with coupled
Markov chains and applications to statistical mechanics. In Proceedings of the
Seventh International Conference on Random Structures and Algorithms
(Atlanta, GA, 1995), volume 9, pages 223–252, 1996.

	Coupling From the Past: Propp and Wilson's algorithm
	Chains of infinite order
	Perfect Simulation for Chains of Infinite Order
	Implementing the Algorithm

