Classification And Regression Trees

Introduction

- Classification and regression trees (CART) : Breiman et al. (1984)
- X^j explanatory variables (quantitative or qualitative)
- Y qualitative with m modalities {T_ℓ; ℓ = 1..., m} : classification tree
- Y quantitative : regression tree
- Objective : construction of a binary decision tree easy to interpret
- No assumption on the model : non parametric procedure.

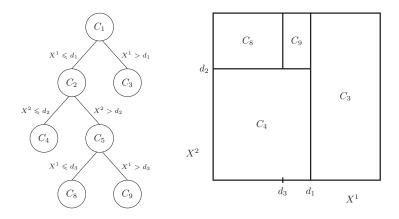
Example of binary classification tree



Definitions

- Determine an iterative sequence of nodes
- Root : initial note : the whole sample
- Leaf : Terminal node
- *Node* : choice of one variable and one *division* to proceed to a dichotomie
- Division : threshold value or group of modalities

Example of dyadic partition of the space



Rules

- We have to choose :
 - Criterion for the "best" division among all *admissibles* ones (partition based on the values of one variable)
 - Q Rules for a terminal node : leaf
 - ${ig 0}$ Rules to assign to a class \mathcal{T}_ℓ or one value for ${f Y}$
- Admissible divisions : descendants ≠ ∅
- X^{j} real or ordinal with c_{j} possible values : $(c_{j} 1)$ possible divisions
- X^{j} nominal : $2^{(c_{j}-1)} 1$ possible divisions
- Heterogeneity function D_{κ} of one node
 - Null : a single modality for Y or Y is constant
 - Maximal : all the modalities for Y or large variance

Division criterion

Optimal division

- Notations
 - κ : a node
 - κ_L and κ_R the two son nodes
- The algorithm retains the division which minimizes

 $D_{\kappa_L} + D_{\kappa_R}$

• For each node κ in the construction of the tree :

 $\max_{\{\text{Divisions of } X^{j}; j=1, p\}} D_{\kappa} - (D_{\kappa_{L}} + D_{\kappa_{R}})$

Supervised Learning II

Stopping rule and affectation

Leaf and affectation

- A Node is a terminal node or a leaf, if it is :
 - Homogeneous
 - Number of observations below some threshold
- Affectation
 - Y quantitative, the value is the mean of the observations in the leaf
 - Y qualitative, each leaf is affected to one class T_l of Y by considering the conditional mode :
 - the mostly represented class in the node
 - The less cosltly class if cost for wrong classification are given

Heterogeneity criterion in regression

Y quantitative : heterogeneity in regression

Heterogeneity of the node κ :

$$\mathcal{D}_\kappa = \sum_{i \in \kappa} (y_i - \overline{y}_\kappa)^2 = |\kappa| rac{1}{|\kappa|} \sum_{i \in \kappa} (y_i - \overline{y}_\kappa)^2$$

where $|\kappa|$ is the cardinality of the node κ

Minimize the intra-class variance

The son nodes κ_L and κ_R minimize :

$$\frac{1}{n}\sum_{i\in\kappa_L}(y_i-\overline{y}_{\kappa_L})^2+\frac{1}{n}\sum_{i\in\kappa_R}(y_i-\overline{y}_{\kappa_R})^2.$$

Y qualitative : $Y \in \{\mathcal{T}_{\ell}, l = 1, ..., m\}$. Node κ .

• $n_{\kappa}^{\ell} = \text{Card } \{ (X_i, Y_i), X_i \in \kappa, Y_i \in \mathcal{T}_{\ell} \}.$

•
$$n_{\kappa} = \text{Card } \{(X_i, Y_i), X_i \in \kappa\}.$$

- p_{κ}^{ℓ} : probability that an observation is in class \mathcal{T}_{ℓ} given that it is in node κ .
- Estimated by $\frac{n_{\kappa}^{\ell}}{n_{\kappa}}$.

Heterogeneity criterion in classification

Y qualitative : heterogeneity in classification

Heterogeneity of node κ :

• Shannon Entropy with the notation $0 \log(0) = 0$ p_{κ}^{ℓ} : proportion of the class \mathcal{T}_{ℓ} of Y in the node κ .

$$E_\kappa = -\sum_{\ell=1}^m p_\kappa^\ell \log(p_\kappa^\ell)$$

Maximal in $(\frac{1}{m}, ..., \frac{1}{m})$, minimal in (1, 0, ..., 0), ..., (0, ..., 0, 1).

$$D_\kappa = -|\kappa|\sum_{\ell=1}^m p_\kappa^\ell \log(p_\kappa^\ell)$$

• Gini concentration : $D_{\kappa} = |\kappa| \sum_{\ell=1}^{m} p_{\kappa}^{\ell} (1 - p_{\kappa}^{\ell})$

Pruning and optimal tree

Pruning : notations

- We look for a parcimonious tree
- Complexity of a tree : K_A = numbers of leaves in A
- Adjustment error of A :

$$D(A) = \sum_{\kappa=1}^{K_A} D_\kappa$$

 D_{κ} : heterogeneity of leaf κ

Sequence of embedded trees

Adjustment error penalized by the complexity :

 $Crit_{\gamma}(A) = D(A) + \gamma \times K_A$

- When $\gamma = 0$: A_{\max} (maximal tree) minimizes $Crit_{\gamma}(A)$
- When γ increases, the division of A_H , for which the improvement of D is smaller than γ , is cancelled; hence
 - two leaves are gathered (prunned)
 - there father node becomes a terminal node
 - A_K becomes A_{K-1} .

After iteration of this process, we get a sequence of trees :

 $A_{\max} \supset A_K \supset A_{K-1} \supset \cdots A_1$

Breiman sub-sequence

- A_{κ} is the sub tree of A_{\max} (maximal tree) obtained by pruning the nodes κ such that $D(\kappa) = D(\kappa_L) + D(\kappa_R)$.
- For each node in A_{κ} , $D(\kappa) > D(\kappa_L) + D(\kappa_R)$ and $D(\kappa) > D(A_{\kappa}^{\kappa})$ where A_{κ}^{κ} is the subtree of A_{κ} from node κ .
- For γ small, $D(\kappa) + \gamma > D(A_{K}^{\kappa}) + \gamma |A_{K}^{\kappa}|$. This holds while $\gamma < (D(A_{K}^{\kappa}) D(\kappa))/(|A_{K}^{\kappa}| 1) = s(\kappa, A_{K}^{\kappa})$ for all node κ of A_{K} .

$$\gamma_{\mathcal{K}} = \inf_{\kappa \text{ node of } A_{\mathcal{K}}} s(\kappa, A_{\mathcal{K}}^{\kappa})$$

- Crit_{γ_K}(κ) = Crit_{γ_K}(A^κ_K) and the node κ becomes preferable to the subtree A^κ_K.
- $A_{K-1} = A_{\gamma_K}$ is the subtree obtained by pruning the branches from the nodes minimizing $s(\kappa, A_K^{\kappa})$: this gives the second tree in the sub-sequence
- We iterate this process.

Optimal tree

Algorithm to select the optimal tree

- Maximal tree A_{max}
- Imbedded sequence $A_{\max}, A_K \dots A_1$ associated with an increasing sequence of values $\gamma_K \leq \dots \leq \gamma_1$
- V-fold cross validation error : for v = 1,..., V do
 - Estimation of the sequence of trees associated to (γ_{κ}) with all the folds except v
 - Estimation of the error with the fold v.

EndFor

- Sequence of the mean of these errors for each value of $\gamma_{\mathcal{K}},\ldots,\gamma_1$
- $\gamma_{\rm Opt}$ optimal value for the tuning parameter minimizing the mean of the errors
- Tree associated to γ_{Opt} in $A_{\mathcal{K}} \dots A_1$

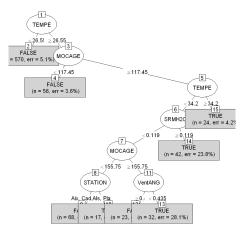
Advantages

- Trees are easy to interpret
- Efficient algorithms to find the pruned trees
- Tolerant to missing data
- \implies Success of CART for practical applications

Warnings

- Variable selection : the selected tree only depends on few explanatory variables, trees are often (wrongly) interpreted as a variable selection procedure
- High instability of the trees : not robust to the learning sample, curse of dimensionality ..
- Prediction accuracy of a tree is often poor compared to other procedures
- \Rightarrow Aggregation of trees : bagging, random forests

Example for Ozone data



Ozone : Classification tree pruned by cross-validation

Supervised Learning II