
Machine Learning - Exam

December 16th, 2019

Exercise 1 is on 4 points. Exercise 2 is on 3 points. Exercice 3 is on 16 points. All exercises are
independent. In exercise 3, if you do not find the answer to a question, you may admit the corresponding
result in order to answer to the following questions. The maximal mark is 20 points. Take great care of the
redaction: it must be clear and precise.

1. PAC Learnable classes
Let d be a positive integer, and let D(0, r) =

{
x ∈ Rd : ‖x‖ ≤ r

}
denote the disk of center 0 and radius

r. We consider the hypothesis class H =
{
1D(0,r) : r > 0

}
. Give two proofs that H is PAC-learnable

(assuming realizability):

• a direct proof, showing that the sample complexity is bounded by 1 + log(1/δ)/ε;

• and a proof involving the fundamental theorem of PAC learning theory.

2. 0-1 loss and local minima.
We consider a binary classification task with X = R2. For the value m and the hypothesis classH =

{
hw :

w ∈ R2
}

of your choice, construct a training sample S =
(
(X1, Y1), . . . , (Xm, Ym)

)
∈
(
X × {−1,+1}

)m
such that there exists w ∈ R2 and ε > 0 such that

• for every w′ ∈ R2 such that ‖w′ − w‖ ≤ ε, LS(w) ≤ LS(w′),

• there exists w∗ ∈ R2 such that LS(w∗) < LS(w),

where LS(w) =
∑m
k=1 1

{
hw(Xk) 6= Yk

}
is the training error of hypothesis hw.
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3. Problem
Preliminaries.
Let X be a random variable such that P(0 ≤ X ≤ 1) = 1, let µ = E[X] and let φ : λ 7→ logE

[
exp(λX)

]
.

1. Show that φ is defined and infinitely differentiable on R.

2. Show that φ(0) = 0.

3. Show that φ′(0) = µ.

4. Show that for all λ ∈ R, φ′′(λ) ≤ 1/4.

5. Show Hoeffding’s lemma: φ(λ) ≤ µλ+ λ2/8.

6. Show that Hoeffding’s lemma entails Hoeffding’s inequality: if X1, . . . , Xn are independent variables
with the same distribution as X, then for all ε > 0

P
(
X1 + · · ·+Xn

n
> µ+ ε

)
≤ exp

(
− 2nε2

)
.

Prediction with expert advice.
We consider a setting where, at each round t ∈ N+, a value yt ∈ Y is observed, where Y is an arbitrary
set. The goal of the learner is to provide a prediction p̂t ∈ X , where X is a convex set. The accuracy of
a prediction is measured by a loss function ` : X ×Y → [0, 1] such that `(·, y) is convex for every y ∈ Y.

The prediction p̂t is allowed to depend on the advice of N ”experts”, which provide at time t the
predictions f1,t, . . . , fN,t ∈ X . More precisely, the prediction p̂t must be a function of the predictions
given so far

{
fj,s : 1 ≤ j ≤ N, 1 ≤ s ≤ t

}
and of the past observations

{
ys : 1 ≤ s < t

}
.

The cumulated loss of the learner at horizon n ∈ N+ is defined as

L̂n =

n∑
t=1

`(p̂t, yt) ,

while the cumulated loss of expert j ∈ {1, . . . , n} is defined as Lj,n =
∑n
t=1 `(fj,t, yt).

The goal of the learner is to do almost as well as the best expert in hindsight : defining the learner’s regret
as

Rn = L̂n −min
{
L1,n, . . . , LN,n

}
,

one wishes to find a strategy such that Rn grows sub-linearly with n.

7. In this question only, we assume that Y = {0, 1}, that the (yt)t are independent random variables
with Bernoulli distribution of parameter µ ∈ [0, 1], that X = [0, 1], N = 3 and that for each
j ∈ {1, 2, 3} and for all t ≥ 1, fj,t = (j − 1)/2. Propose a strategy such that Rn/n goes to 0 almost
surely. Justify your answer.

8. In this question only, we assume that, for each expert j ∈ {1, . . . , N}, the sequence of losses(
`(fj,t, yt)

)
t

are independent and identically distributed. In that case, propose a strategy such that
Rn/n goes almost-surely to 0 as n→∞. Justify your answer.

9. In this question, and in all the following, we no longer assume that the expert’s losses obey any
assumption; we want to find a strategy such that Rn = o(n) for every sequence (y1, y2, . . . ). Is it
the case of the strategy that you proposed in the previous question?

The Exponential Weights algorithm.
The Exponential Weights strategy of parameter η > 0 is defined as follows:

p̂t =

n∑
j=1

wj,t
Wt

fj,t ,



where for all j ∈ {1, . . . , N}, wj,1 = 1, W1 = N and for t ≥ 2:

wj,t = exp

(
−η

t−1∑
s=1

`(fj,s, ys)

)
and Wt =

N∑
j=1

wj,t .

For simplicity, for all t ∈ {1, . . . , n} and all j ∈ {1, . . . , N} we denote αj,t =
wj,t

Wt
and `t(j) = `(fj,t, yt).

10. Show that

Rn ≤
n∑
t=1

N∑
j=1

αj,t`t(j)− min
1≤j≤N

n∑
t=1

`t(j) .

11. Show that for all j ∈ {1, . . . , N}, Wn+1 ≥ exp(−ηLj,n) and hence that

log
Wn+1

W1
≥ −ηLj,n − log(N) .

12. For all t ∈ {1, . . . , n}, show that

log
Wt+1

Wt
= log

 N∑
j=1

αj,t exp
(
− η`t(j)

) ≤ −η N∑
j=1

αj,t`t(j) +
η2
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13. Conclude that Rn ≤ log(N)
η + nη
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14. What is the value of the parameter η that minimizes the previous bound?

15. In this last question only, we assume that the loss function has range [a, b] (and not [0, 1] as before).
What regret bound can be obtained in that case?

16. Discuss the optimality of the previous bound.


