Machine Learning - Exam

December 16th, 2019

Exercise 1 is on 4 points. Exercise 2 is on 3 points. Exercice 3 is on 16 points. All exercises are independent. In exercise 3, if you do not find the answer to a question, you may admit the corresponding result in order to answer to the following questions. The maximal mark is 20 points. Take great care of the redaction: it must be clear and precise.

1. PAC Learnable classes

Let d be a positive integer, and let $D(0, r)=\left\{x \in \mathbb{R}^{d}:\|x\| \leq r\right\}$ denote the disk of center 0 and radius r. We consider the hypothesis class $\mathcal{H}=\left\{\mathbb{1}_{D(0, r)}: r>0\right\}$. Give two proofs that \mathcal{H} is PAC-learnable (assuming realizability):

- a direct proof, showing that the sample complexity is bounded by $1+\log (1 / \delta) / \epsilon$;
- and a proof involving the fundamental theorem of PAC learning theory.

2. 0-1 loss and local minima.

We consider a binary classification task with $\mathcal{X}=\mathbb{R}^{2}$. For the value m and the hypothesis class $\mathcal{H}=\left\{h_{w}\right.$: $\left.w \in \mathbb{R}^{2}\right\}$ of your choice, construct a training sample $S=\left(\left(X_{1}, Y_{1}\right), \ldots,\left(X_{m}, Y_{m}\right)\right) \in(\mathcal{X} \times\{-1,+1\})^{m}$ such that there exists $w \in \mathbb{R}^{2}$ and $\epsilon>0$ such that

- for every $w^{\prime} \in \mathbb{R}^{2}$ such that $\left\|w^{\prime}-w\right\| \leq \epsilon, L_{S}(w) \leq L_{S}\left(w^{\prime}\right)$,
- there exists $w^{*} \in \mathbb{R}^{2}$ such that $L_{S}\left(w^{*}\right)<L_{S}(w)$,
where $L_{S}(w)=\sum_{k=1}^{m} \mathbb{1}\left\{h_{w}\left(X_{k}\right) \neq Y_{k}\right\}$ is the training error of hypothesis h_{w}.

3. Problem

Preliminaries.
Let X be a random variable such that $\mathbb{P}(0 \leq X \leq 1)=1$, let $\mu=\mathbb{E}[X]$ and let $\phi: \lambda \mapsto \log \mathbb{E}[\exp (\lambda X)]$.

1. Show that ϕ is defined and infinitely differentiable on \mathbb{R}.
2. Show that $\phi(0)=0$.
3. Show that $\phi^{\prime}(0)=\mu$.
4. Show that for all $\lambda \in \mathbb{R}, \phi^{\prime \prime}(\lambda) \leq 1 / 4$.
5. Show Hoeffding's lemma: $\phi(\lambda) \leq \mu \lambda+\lambda^{2} / 8$.
6. Show that Hoeffding's lemma entails Hoeffding's inequality: if X_{1}, \ldots, X_{n} are independent variables with the same distribution as X, then for all $\epsilon>0$

$$
\mathbb{P}\left(\frac{X_{1}+\cdots+X_{n}}{n}>\mu+\epsilon\right) \leq \exp \left(-2 n \epsilon^{2}\right)
$$

Prediction with expert advice.

We consider a setting where, at each round $t \in \mathbb{N}_{+}$, a value $y_{t} \in \mathcal{Y}$ is observed, where \mathcal{Y} is an arbitrary set. The goal of the learner is to provide a prediction $\hat{p}_{t} \in \mathcal{X}$, where \mathcal{X} is a convex set. The accuracy of a prediction is measured by a loss function $\ell: \mathcal{X} \times \mathcal{Y} \rightarrow[0,1]$ such that $\ell(\cdot, y)$ is convex for every $y \in \mathcal{Y}$.
The prediction \hat{p}_{t} is allowed to depend on the advice of N "experts", which provide at time t the predictions $f_{1, t}, \ldots, f_{N, t} \in \mathcal{X}$. More precisely, the prediction \hat{p}_{t} must be a function of the predictions given so far $\left\{f_{j, s}: 1 \leq j \leq N, 1 \leq s \leq t\right\}$ and of the past observations $\left\{y_{s}: 1 \leq s<t\right\}$.
The cumulated loss of the learner at horizon $n \in \mathbb{N}_{+}$is defined as

$$
\hat{L}_{n}=\sum_{t=1}^{n} \ell\left(\hat{p}_{t}, y_{t}\right)
$$

while the cumulated loss of expert $j \in\{1, \ldots, n\}$ is defined as $L_{j, n}=\sum_{t=1}^{n} \ell\left(f_{j, t}, y_{t}\right)$.
The goal of the learner is to do almost as well as the best expert in hindsight: defining the learner's regret as

$$
R_{n}=\hat{L}_{n}-\min \left\{L_{1, n}, \ldots, L_{N, n}\right\}
$$

one wishes to find a strategy such that R_{n} grows sub-linearly with n.
7. In this question only, we assume that $\mathcal{Y}=\{0,1\}$, that the $\left(y_{t}\right)_{t}$ are independent random variables with Bernoulli distribution of parameter $\mu \in[0,1]$, that $\mathcal{X}=[0,1], N=3$ and that for each $j \in\{1,2,3\}$ and for all $t \geq 1, f_{j, t}=(j-1) / 2$. Propose a strategy such that R_{n} / n goes to 0 almost surely. Justify your answer.
8. In this question only, we assume that, for each expert $j \in\{1, \ldots, N\}$, the sequence of losses $\left(\ell\left(f_{j, t}, y_{t}\right)\right)_{t}$ are independent and identically distributed. In that case, propose a strategy such that R_{n} / n goes almost-surely to 0 as $n \rightarrow \infty$. Justify your answer.
9. In this question, and in all the following, we no longer assume that the expert's losses obey any assumption; we want to find a strategy such that $R_{n}=o(n)$ for every sequence (y_{1}, y_{2}, \ldots). Is it the case of the strategy that you proposed in the previous question?

The Exponential Weights algorithm.

The Exponential Weights strategy of parameter $\eta>0$ is defined as follows:

$$
\hat{p}_{t}=\sum_{j=1}^{n} \frac{w_{j, t}}{W_{t}} f_{j, t}
$$

where for all $j \in\{1, \ldots, N\}, w_{j, 1}=1, W_{1}=N$ and for $t \geq 2$:

$$
w_{j, t}=\exp \left(-\eta \sum_{s=1}^{t-1} \ell\left(f_{j, s}, y_{s}\right)\right) \quad \text { and } W_{t}=\sum_{j=1}^{N} w_{j, t} .
$$

For simplicity, for all $t \in\{1, \ldots, n\}$ and all $j \in\{1, \ldots, N\}$ we denote $\alpha_{j, t}=\frac{w_{j, t}}{W_{t}}$ and $\ell_{t}(j)=\ell\left(f_{j, t}, y_{t}\right)$.
10. Show that

$$
R_{n} \leq \sum_{t=1}^{n} \sum_{j=1}^{N} \alpha_{j, t} \ell_{t}(j)-\min _{1 \leq j \leq N} \sum_{t=1}^{n} \ell_{t}(j)
$$

11. Show that for all $j \in\{1, \ldots, N\}, W_{n+1} \geq \exp \left(-\eta L_{j, n}\right)$ and hence that

$$
\log \frac{W_{n+1}}{W_{1}} \geq-\eta L_{j, n}-\log (N)
$$

12. For all $t \in\{1, \ldots, n\}$, show that

$$
\log \frac{W_{t+1}}{W_{t}}=\log \left(\sum_{j=1}^{N} \alpha_{j, t} \exp \left(-\eta \ell_{t}(j)\right)\right) \leq-\eta \sum_{j=1}^{N} \alpha_{j, t} \ell_{t}(j)+\frac{\eta^{2}}{8}
$$

13. Conclude that $R_{n} \leq \frac{\log (N)}{\eta}+\frac{n \eta}{8}$.
14. What is the value of the parameter η that minimizes the previous bound?
15. In this last question only, we assume that the loss function has range $[a, b]$ (and not $[0,1]$ as before). What regret bound can be obtained in that case?
16. Discuss the optimality of the previous bound.
