Machine Learning - Exam

December 16th, 2019

Exercise 1 is on 4 points. Exercise 2 is on 3 points. Exercise 3 is on 16 points. All exercises are independent. In exercise 3, if you do not find the answer to a question, you may admit the corresponding result in order to answer to the following questions. The maximal mark is 20 points. Take great care of the redaction: it must be clear and precise.

1. PAC Learnable classes

Let d be a positive integer, and let $D(0,r) = \{x \in \mathbb{R}^d : ||x|| \le r\}$ denote the disk of center 0 and radius r. We consider the hypothesis class $\mathcal{H} = \{\mathbb{1}_{D(0,r)} : r > 0\}$. Give two proofs that \mathcal{H} is PAC-learnable (assuming realizability):

- a direct proof, showing that the sample complexity is bounded by $1 + \log(1/\delta)/\epsilon$;
- and a proof involving the fundamental theorem of PAC learning theory.

2. 0-1 loss and local minima.

We consider a binary classification task with $\mathcal{X} = \mathbb{R}^2$. For the value m and the hypothesis class $\mathcal{H} = \{h_w : w \in \mathbb{R}^2\}$ of your choice, construct a training sample $S = ((X_1, Y_1), \dots, (X_m, Y_m)) \in (\mathcal{X} \times \{-1, +1\})^m$ such that there exists $w \in \mathbb{R}^2$ and $\epsilon > 0$ such that

- for every $w' \in \mathbb{R}^2$ such that $||w' w|| \le \epsilon, L_S(w) \le L_S(w')$,
- there exists $w^* \in \mathbb{R}^2$ such that $L_S(w^*) < L_S(w)$,

where $L_S(w) = \sum_{k=1}^m \mathbb{1}\{h_w(X_k) \neq Y_k\}$ is the training error of hypothesis h_w .

3. Problem

Preliminaries.

Let X be a random variable such that $\mathbb{P}(0 \le X \le 1) = 1$, let $\mu = \mathbb{E}[X]$ and let $\phi : \lambda \mapsto \log \mathbb{E}[\exp(\lambda X)]$.

- 1. Show that ϕ is defined and infinitely differentiable on \mathbb{R} .
- 2. Show that $\phi(0) = 0$.
- 3. Show that $\phi'(0) = \mu$.
- 4. Show that for all $\lambda \in \mathbb{R}$, $\phi''(\lambda) \leq 1/4$.
- 5. Show Hoeffding's lemma: $\phi(\lambda) \leq \mu \lambda + \lambda^2/8$.
- 6. Show that Hoeffding's lemma entails Hoeffding's inequality: if X_1, \ldots, X_n are independent variables with the same distribution as X, then for all $\epsilon > 0$

$$\mathbb{P}\left(\frac{X_1 + \dots + X_n}{n} > \mu + \epsilon\right) \le \exp\left(-2n\epsilon^2\right).$$

Prediction with expert advice.

We consider a setting where, at each round $t \in \mathbb{N}_+$, a value $y_t \in \mathcal{Y}$ is observed, where \mathcal{Y} is an arbitrary set. The goal of the learner is to provide a prediction $\hat{p}_t \in \mathcal{X}$, where \mathcal{X} is a convex set. The accuracy of a prediction is measured by a loss function $\ell : \mathcal{X} \times \mathcal{Y} \to [0, 1]$ such that $\ell(\cdot, y)$ is convex for every $y \in \mathcal{Y}$.

The prediction \hat{p}_t is allowed to depend on the advice of N "experts", which provide at time t the predictions $f_{1,t}, \ldots, f_{N,t} \in \mathcal{X}$. More precisely, the prediction \hat{p}_t must be a function of the predictions given so far $\{f_{j,s}: 1 \leq j \leq N, 1 \leq s \leq t\}$ and of the past observations $\{y_s: 1 \leq s < t\}$.

The *cumulated loss* of the learner at horizon $n \in \mathbb{N}_+$ is defined as

$$\hat{L}_n = \sum_{t=1}^n \ell(\hat{p}_t, y_t) ,$$

while the cumulated loss of expert $j \in \{1, ..., n\}$ is defined as $L_{j,n} = \sum_{t=1}^{n} \ell(f_{j,t}, y_t)$.

The goal of the learner is to do almost as well as the best expert in hindsight: defining the learner's regret as

$$R_n = \hat{L}_n - \min \left\{ L_{1,n}, \dots, L_{N,n} \right\} ,$$

one wishes to find a strategy such that R_n grows sub-linearly with n.

- 7. In this question only, we assume that $\mathcal{Y} = \{0, 1\}$, that the $(y_t)_t$ are independent random variables with Bernoulli distribution of parameter $\mu \in [0, 1]$, that $\mathcal{X} = [0, 1]$, N = 3 and that for each $j \in \{1, 2, 3\}$ and for all $t \geq 1$, $f_{j,t} = (j-1)/2$. Propose a strategy such that R_n/n goes to 0 almost surely. Justify your answer.
- 8. In this question only, we assume that, for each expert $j \in \{1, ..., N\}$, the sequence of losses $(\ell(f_{j,t}, y_t))_t$ are independent and identically distributed. In that case, propose a strategy such that R_n/n goes almost-surely to 0 as $n \to \infty$. Justify your answer.
- 9. In this question, and in all the following, we no longer assume that the expert's losses obey any assumption; we want to find a strategy such that $R_n = o(n)$ for every sequence $(y_1, y_2, ...)$. Is it the case of the strategy that you proposed in the previous question?

The Exponential Weights algorithm.

The Exponential Weights strategy of parameter $\eta > 0$ is defined as follows:

$$\hat{p}_t = \sum_{j=1}^n \frac{w_{j,t}}{W_t} f_{j,t} ,$$

where for all $j \in \{1, ..., N\}, w_{j,1} = 1, W_1 = N$ and for $t \ge 2$:

$$w_{j,t} = \exp\left(-\eta \sum_{s=1}^{t-1} \ell(f_{j,s}, y_s)\right)$$
 and $W_t = \sum_{j=1}^{N} w_{j,t}$.

For simplicity, for all $t \in \{1, ..., n\}$ and all $j \in \{1, ..., N\}$ we denote $\alpha_{j,t} = \frac{w_{j,t}}{W_t}$ and $\ell_t(j) = \ell(f_{j,t}, y_t)$.

10. Show that

$$R_n \le \sum_{t=1}^n \sum_{j=1}^N \alpha_{j,t} \ell_t(j) - \min_{1 \le j \le N} \sum_{t=1}^n \ell_t(j)$$
.

11. Show that for all $j \in \{1, ..., N\}$, $W_{n+1} \ge \exp(-\eta L_{j,n})$ and hence that

$$\log \frac{W_{n+1}}{W_1} \ge -\eta L_{j,n} - \log(N) .$$

12. For all $t \in \{1, \ldots, n\}$, show that

$$\log \frac{W_{t+1}}{W_t} = \log \left(\sum_{j=1}^N \alpha_{j,t} \exp\left(-\eta \ell_t(j)\right) \right) \le -\eta \sum_{j=1}^N \alpha_{j,t} \ell_t(j) + \frac{\eta^2}{8}.$$

- 13. Conclude that $R_n \leq \frac{\log(N)}{\eta} + \frac{n\eta}{8}$.
- 14. What is the value of the parameter η that minimizes the previous bound?
- 15. In this last question only, we assume that the loss function has range [a, b] (and not [0, 1] as before). What regret bound can be obtained in that case?
- 16. Discuss the optimality of the previous bound.