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Hands-on Session 1: Statistics 101

Friday 17th January, 2020

*** Exercise 1 Maximum Likelihood Estimators

For a given sample size n ≥ 1, compute the Maximum Likelihood Estimators in the models(
Xn, {Q⊗nθ }

)
in each of the following cases.

1. X = R, Qθ = N (θ, σ2), where σ is a known parameter.

2. X = R, Qθ = N (µ, σ2), where θ = (µ, σ2) ∈ R× [0,+∞).

3. X = {0, 1}, Qθ = B(θ).

4. X = R+, Qθ = U
(
[0, θ]).

5. X = R, Qθ = E(θ).

6. X = R, Qθ = L(θ) the Laplace distribution centered at θ, which has density fθ(x) =
exp(−|x− θ|)/2.

Whenever possible, compute the quadratic risks of the obtained estimators.

*** Exercise 2 Confidence Intervals

In all the following models, with sample size n ≥ 1, propose a confidence interval for θ. Precise
whether it is asymptotic or not.

1. X = R, Qθ = N (θ, σ2), where σ is a known parameter.

2. X = {0, 1}, Qθ = B(θ).

* 3. X = R+, Qθ = U
(
[0, θ]).

** 4. X = R, Qθ = L(θ).

** Hands on 1 Mean or Median?

We consider an odd sample size n = 2k − 1, and the two following models:

M1 =
(
Rn,

{
N (µ, 1)⊗n : µ ∈ R

})
,

M2 =
(
Rn,

{
L(µ)⊗n : µ ∈ R

})
.

For each model, give the properties of the two following estimators:

µ̂n =
X1 + · · ·+Xn

n
the sample mean, and

µ̃n = X(k) the sample median.

Numerically estimate the quadratic risk of each estimator in each model.
Comment the results.

*** Hands on 2 Linear Regression with scikitlearn
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Experiment linear regression with scikitlearn on the reference example https://scikit-learn.
org/stable/auto_examples/linear_model/plot_ols.html.

You will need to load a dataset made of n = 442 diabetes patients, with for each patient the
disease progression one year after baseline, and 10 variables: age, sex, body mass index, average
blood pressure, and six blood serum measurements.

Try to answer the following question: what is the best linear model for predicting the response
given the features, and how reliable are the predictions?
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Hands-on Session 2: Clustering

Friday 24th January, 2020

**** Exercise 3 On the Consistency of K-Means

Let us consider n points X1, . . . , Xn in Rp. The K-means algorithm seeks to minimize over all
partitions G = (G1, . . . , GK) of {1, . . . , p} the criterion

crit(G) =

K∑
k=1

∑
a∈Gk

‖Xa − X̄Gk‖2 with X̄Gk =
1

|Gk|
∑
b∈Gk

Xb.

1. (Symmetrization) To analyse the K-means, it is useful to symmetrize the criterion. Prove
the two equalities

crit(G) =

K∑
k=1

1

|Gk|
∑

a,b∈Gk

〈Xa, Xa −Xb〉

=
1

2

K∑
k=1

1

|Gk|
∑

a,b∈Gk

‖Xa −Xb‖2.

2. (Independent observations) We assume now that the observations are random and indepen-
dent. We write µa ∈ Rp for the expectation of Xa so that Xa = µa + εa with ε1, . . . , εn
centered and independent. We define va = trace(cov(Xa)).
Check that the expected value of the criterion is

E[crit(G)] =
1

2

K∑
k=1

1

|Gk|
∑

a,b∈Gk

(
‖µa − µb‖2 + va + vb

)
1a6=b.

What is the value of E[crit(G)] when all the within-group variables have the same mean?

3. (Mixture model) We assume now that there exists a partition G∗ = (G∗1, . . . , G
∗
K) such

that within-group variables have the same mean and the same volume. More precisely, we
assume that there exists m1, . . . ,mK ∈ Rp and γ1, . . . , γK > 0 such that µa = mk and
va = γk for all a ∈ G∗k and k = 1, . . . ,K.
Below, we investigate under which condition the expected value of the Kmeans criterion is
minimum in G∗.

a) What is the value of E[crit(G∗)]?
b) In the special case where γ1 = . . . = γK = γ, which partition G = (G1, . . . , GK)

minimizes E[crit(G)]?
c) We assume now that we have K = 3 groups of size s (with s even),

m1 = (1, 0, 0)T , m2 = (0, 1, 0)T , m3 = (0, 1− τ,
√

1− (1− τ)2)T ,

with τ > 0, and
γ1 = γ+, γ2 = γ3 = γ−.

What is the value of ‖m2 −m3‖2?
d) Compute E[crit(G∗)].
e) Let us define G′ obtained by splitting G∗1 into two groups G′1, G

′
2 of equal size s/2 and

by merging G∗2 and G∗3 into a single group G′3 of size 2s. Check that

E[crit(G′)] = s(γ+ + 2γ− + τ)− (2γ+ + γ−).
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f) When do we have E[crit(G∗)] < E[crit(G′)]?
g) What is the take home message?

Conversely, in the general mixture model, we can check that if

min
j 6=k
‖mj −mk‖2 > 2

maxk γk −mink γk
mink |G∗k|

then E[crit(G∗)] < E[crit(G)] for all partitions G = (G1, . . . , GK) not equal to G∗.

*** Hands on 3 Clustering of text

See attached notebook.
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Hands-on Session 3: Dimensionality Reduction

Friday 31th January, 2020

**** Exercise 4 Computing the largest eigenvalue

Let A ∈ M\(R) be a symmetric, positive matrix, and let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 be its
eigenvalues. For each i ∈ {2, . . . , n} let vi ∈ Rn be such that ‖vi‖ = 1 be such that Avi = λiv

i:
We assume that λ1 > λ2. The goal of this exercise is to analyze a probabilistic algorithm

approximating v := v1. The algorithm, called power iteration, relies on the following induction:

u0 =
[
ε1√
n
, . . . , εn√

n

]
where εi

iid∼ U
(
{−1, 1}

)
and for all t ≥ 1, ut+1 = Aut∥∥Aut∥∥ .

1. Show that for all t ≥ 0, ‖ut‖ = 1 and

ut =
Atu0

‖Atu0‖
=

∑n
i=1 λ

t
i〈u0, vi〉vi√∑n

i=1

(
λti〈u0, vi〉

)2 .
2. What are the expectation and variance of 〈u0, v〉?
3. Denoting Z = 〈u0, v〉2, show that E[Z] = 1/n and that E[Z2] ≤ 3/n2.

4. Let δ ∈ (0, 1). Using the Cauchy-Schwartz inequality with the variables X and 1
{
X >

δE[X]
}

, show that for every non-negative random variable X with finite variance

P
(
X ≥ δE[X]

)
≥ (1− δ)2E[X]2

E[X2]
.

5. Prove that

P
(
Z ≥ 1

4n

)
≥ 3

16
.

6. Show that whenever 〈u0, v〉2 > 1/(4n),

∣∣〈ut, v〉∣∣ =
1√√√√1 + 1

〈u0,v〉2

n∑
i=2

〈u0, v
i〉2
(
λi
λ1

)2t
≥ 1− 2n

(
λ2

λ1

)2t

.

7. Summarize the conclusion of the two previous questions.

8. For a fixed ε > 0, how many iterations does it take to obtain with probability at least 95%
a vector u such that

∣∣〈ut, v〉∣∣ ≥ 1− ε?
Remark: one can similarly show that with non-vanishing probability

〈ut, Aut〉 ≥ λ1 ×
1− ε

1 + 4n(1− ε)2t
.

See http://theory.stanford.edu/~trevisan/expander-online/lecture03.pdf.

*** Hands on 4 Dimensionality Reduction for the MNIST classification problem

See attached notebook.
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Hands-on Session 4: Introduction to Supervised Learning

Friday 7th February, 2020

* Exercise 5 Classification 1

Consider the binary classification problem with the following (not usual) risk

`(ŷ, y) :=

{
c if ŷ = 1, y = 0
1 if ŷ = 0, y = 1
0 otherwise

1. Compute the classification risk of a rule g, namely

L(g) := E[`(g(X), Y )]

2. Show that the optimal Bayes rule f? is given by

f?(x) = 1η(x)≥ c
1+c

,

where η(x) := E[Y |X = x] = P(Y = 1|X = x).

** Exercise 6 Classification 2

Consider the binary classification problem. Let g and g′ be two classification rules. Let L be
the standard 0/1 loss (c = 1 in the aforementioned exercise).

1. Show that
|L(g)− L(g′)| ≤ P(g(X) 6= g′(X))

2. Show that
L(g) = E[1{g(X)6=1}(2η(X)− 1) + (1− η(X))] ,

where η(x) := E[Y |X = x] = P(Y = 1|X = x).

3. Show that
|L(g)− L(g′)| ≤ E[|2η(X)− 1|1{g(X)6=g′(X)}] .

Now, for two sets A and B, we denote A∆B := (A∩Bc)∪ (Ac∩B) their symmetric difference.

4. Show that
L(g)− L? = E[|2η(X)− 1|1G∆G?(X)]

where L? is the optimal risk (the infimum), G = g−1({1}) and G? = (g?)−1({1}) with g?

the optimal Bayes classifier. In particular, note that G? = {x ∈ X : η(x) ≥ 1/2}.

In practice, we may have access to an estimation π̂0, π̂1, p̂0, p̂1 of

π0 = P(Y = 0),

π1 = P(Y = 1),

p0(x) = P(X = x|Y = 0),

p1(x) = P(X = x|Y = 1),
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and we may denote

η̂(x) =
π̂1p̂1(x)

π̂0p̂0(x) + π̂1p̂1(x)
,

the deduced estimation of η(x). Consider the following rule of classification

ĝ(x) = 1{η̂(x)≥1/2} .

5. Show that

L(ĝ)− L? ≤
∫
X

1∑
k=0

|πkpk(x)− π̂kp̂k(x)|dµ(x) ,

where µ is the law of X.

*** Exercise 7 An analysis of the Nearest-Neighbour Algorithm

We consider the problem of binary classification (Y = {0, 1}) on the feature set X = [0, 1[d

with the nearest-neighbour method: if the training set is Sn =
{

(X1, Y1), . . . , (Xn, Yn)
}

, then for
all x ∈ X we define

I(x) = arg min
1≤i≤n

‖x−Xi‖ and ĥn(x) = YI(x) .

The objective of this exercise is to prove a bound on the risk R
(
ĥn
)

= ESn
[
PX,Y

(
ĥn(X) 6= Y

)]
of ĥn, under the assumption that η : x 7→ P(Y = 1|X = x) is c-Lipschitz continuous for a positive
constant c:

∀x, x′ ∈ X ,
∣∣η(x)− η(x′)

∣∣ ≤ c∥∥x− x′‖ .
.

1. Show that h∗ : x 7→ 1{η(x) ≥ 1/2} is a Bayes classifier and has loss L∗ = P
(
h∗(X) 6= Y

)
=

E
[

min
(
η(X), 1− η(X)

)]
.

2. Show that if Z1 ∼ B(p) and Z2 ∼ B(q) are two independent variables, then P(Z1 6= Z2) ≤
2 min(p, 1− p) + |p− q|.

3. Show that
Rn
(
ĥn
)

= E
[
E
[
1{Y 6= YI(X)}

∣∣X,X1, . . . , Xn

]]
.

4. Prove that

E
[
1{Y 6= YI(X)}|X,X1, . . . , Xn

]
≤ 2 min

(
η(X), 1− η(X)

)
+ c

∥∥X −XI(X)

∥∥ .
5. We consider the partition C of X into |C| = T d cells of diameter

√
d/T :

C =

{[
j1 − 1

T
,
j1
T

[
× · · · ×

[
jd − 1

T
,
jd
T

[
, 1 ≤ j1, . . . , jd ≤ T

}
.

Show that∥∥X −XI(X)

∥∥ ≤∑
c∈C

1{X ∈ c}

(√
d

T
1

n⋃
i=1

{Xi ∈ c}+
√
d1

n⋂
i=1

{Xi /∈ c}

)
.

6. For every cell c ∈ C of probability pc = P(X ∈ c), prove that

P

({
X ∈ c

}
∩

n⋂
i=1

{
Xi /∈ c

})
≤ pc e−n pc ≤

1

e n
.
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7. Prove that

E
[
‖X −XI(X)‖

]
≤
√
d

T
+

√
dT d

e n
.

8. Conclude:

Rn
(
ĥn
)
≤ 2L∗ +

3c
√
d

n1/(d+1)
.
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Hands-on Session 5: Cross-Validation and Model Selection

Friday 14th February, 2020

**** Exercise 8 Model Selection

This exercice is important as it presents, in a simple framework, the notion of regularization.

Experience: Consider X ∼ Np(µ0,Σ) a Gaussian vector of size p, mean µ0 ∈ Rp, and vari-
ance Σ a positive semidefinite (psd) matrix. For sake of simplicity we assume that Σ = σ2Idp
where σ > 0 is known. We observe X1, . . . , Xn ∼ X i.i.d. vectors.

Task: Let V be a known orthonormal matrix (i.e. V V > = V >V = Idp) and denote

Span(V1)︸ ︷︷ ︸
E1

⊂ · · · ⊂ Span(Vk)︸ ︷︷ ︸
Ek

⊂ · · · ⊂ Span(V)︸ ︷︷ ︸
Rp

where Vk is the p× k matrix obtained from V keeping the k first columns. In particular

Πk := VkV
>
k is the orthogonal projection on Ek

Assume that µ0 = V θ0 for some unknowns k0 ∈ [p] and θ0 = (θ0
1, . . . , θ

0
k0 , 0, . . . , 0) ∈ Rk0×{0}p−k0

with θ0
k0 6= 0. Note that θ0

k = 0 for k > k0. The goal is to recover a good approximation µ̂ of µ0,
where µ̂ can be any measurable function of (X1, . . . , Xn). This basic framework depicts important
cases where one seeks to recover the decomposition of the “classifier” in some known orthonormal
basis V .

Performance: Performance is measured by the following risk

R(µ̂) := E‖X− µ̂‖22 − σ2p ,

where the expectation is taken with respect to X, X1, . . . , Xn which are i.i.d. vectors and such
that µ̂ = µ̂(X1, . . . , Xn).

1. Show that for all measurable function µ̂(X1, . . . , Xn) it holds

R(µ̂) = E‖µ0 − µ̂‖22 ,

where the expectation is taken with respect to X1, . . . , Xn.

Strategies: We start with some very elementary questions.

2. Compute the law of V >X/σ.

3. Prove that the problem can be equivalently reduced to the case V = Idp and σ = 1. We will
assume it from now.

A first strategy, that matches what you may have seen in Statistics before, goes by using the
“Empirical Risk Minimizer” (ERM). Indeed, the risk functionR(µ̂) is not observed since it depends
on the target µ0 but an empirical version of the risk may be computed as

µ 7→ Rn(µ) :=
1

n

n∑
k=1

‖Xk − µ‖22 − σ2p .

4. Compute the minimum µ̂ERM of the empirical risk Rn.

5. Compute its risk R(µ̂ERM).
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Now, assume that someone (referred to as the “oracle”) reveals you the true value of k0.

6. Can you build µ̂oracle which is the Best Linear Unbiased Estimator (BLUE) of the mean µ0?

7. When k0 < p, show that

R(µ̂oracle) =
k0

n
<
p

n
= R(µ̂ERM) .

Of course, we don’t know k0. The strategy is then to “penalize” the Empirical Risk so as to
reduce its “bias”.

8. Compute the variance of µ̂k := ΠkX̄, where X̄ is the empirical mean

X̄ :=
1

n

n∑
k=1

Xk .

9. Show that

Rn(µ̂k) = ‖µ0 − µ̂k‖22 + 2〈X̄ − µ0, µ0 −ΠkX̄〉+
1

n

n∑
j=1

‖Xj − µ0‖22 − σ2p

10. Consider the following penalized estimator

k̂ := arg min
k∈[p]

{
Rn(µ̂k) + λ

k

n

}
,

where λ > 0 is a tuning parameter. Our penalized estimator is then µ̂pen := µ̂k̂. We won’t
study into details this estimator, this is the core of the course “Model Selection”. We rather
investigate some heuristics here and elementary manipulations. Prove that for all 0 < α < 1,
it holds

‖µ0 − µ̂k̂‖22 ≤
1

1− α
inf
k

{
‖µ0 − µ̂k‖22 + λ

k

n

}
+ α−1OP(

k0

n
) + Z

where Z = supl
(
α−1‖ΠlX̄ − µ0‖22 − λ ln

)
. This last random variable can be shown to be

OP(1/n). It gives the idea that

‖µ0 − µ̂k̂‖22 ≤ (1 + o(1)) inf
k

{
‖µ0 − µ̂k‖22 + λ

k

n

}
+OP(1/n) .

which is called a “sharp oracle inequality”.

Hint: 〈u, v〉 ≤ α‖u‖22 + α−1‖v‖22 for all α > 0.
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Hands-on Session 6: Empirical Risk Minimization, Linear
Separators

Friday 21th February, 2020

**** Exercise 9 Perceptron with margin

In this exercise, we consider binary classification in X = Rd with label set Y = {±1}: the
sample is

(
(x1, y1), . . . , (xn, yn)

)
∈
(
Rd × {±1}

)n
. We assume that the data is linearly separable,

and even that a positive margin

γ = sup
w∈Rd:‖w‖=1

min
1≤i≤n

yi〈w, xi〉
‖xi‖

is known and can be used in the algorithm. The aim of the Perceptron with margin algorithm is
to find a linear separator with almost optimal margin. The aim of the questions 1-6 is to prove
that the Perceptron-with-margin algorithm below achieves margin at least γ/2 in at most 12/γ2

iterations.

Algorithm: Perceptron-with-margin γ

Input: margin γ
Data: training set (x1, y1), . . . , (xn, yn)

1 w0 ← (0, . . . , 0)
2 t ≥ 0

3 while ∃it : yit〈wt, xit〉 ≤
γ

2
‖xit‖‖wt‖ do

4 wt+1 = wt + yit
xit
‖xit‖

5 t← t+ 1

6 return wt

1. Justify the existence of w∗ ∈ Rd such that ‖w∗‖ = 1 and

∀1 ≤ i ≤ n, yi〈w∗, xi〉
‖xi‖

≥ γ .

2. In this question and the following, t is a positive integer for which the condition to continue
the while loop of the algorithm (line 3) is satisfied. Prove that 〈w∗, wt〉 ≥ γt.

3. Prove that
‖wt+1‖2 ≤ ‖wt‖2 + γ‖wt‖+ 1 .

4. Show that if ‖wt‖ ≥ 2/γ, then

‖wt+1‖2 ≤
(
‖wt‖+

3γ

4

)2

.

5. Deduce that

‖wt‖ ≤ 1 +
2

γ
+

3γt

4
.

6. Conclude.

7. For any η ∈ (0, 1), give an algorithm that yields a linear separator with margin at least
(1− η)γ in at most K(η)/γ2 iterations, where K(η) is a function to be specified.
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*** Hands on 5 Experimenting the Perceptron Algorithm

Code a perceptron for binary classification as in the previous exercise, and show the evolution
of the linear separator during the iterations.
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Hands-on Session 7: AdaBoost, Ensemble Methods

Friday 28th February, 2020

*** Exercise 10 AdaBoost on binary classification

Let (xi, yi)1≤i≤n ∈ (X × {−1, 1})n be n observations and H = {h1, . . . , hM} be a set of M
classifiers, i.e. for all 1 ≤ i ≤ M , : hi : X → {−1, 1}. It is assumed that for each h ∈ H, −h ∈ H
and there exist 1 ≤ i 6= j ≤ n such that yi = h(xi) and yj 6= h(xj). Let F be the set of all linear
combinations of elements of H:

F =


M∑
j=1

θjhj ; θ ∈ RM
 .

Consider the following algorithm. Set f̂0 = 0 and for all 1 ≤ m ≤M ,

f̂m = f̂m−1 + βmhjm where (βm, hjm) = argmin
h∈H , β∈R

n−1
n∑
i=1

exp
{
−yi

(
f̂m−1(xi) + βh(xi)

)}
.

1. Choosing ωmi = n−1 exp{−yif̂m−1(xi)}, show that

n−1
n∑
i=1

exp
{
−yi

(
f̂m−1(xi) + βh(xi)

)}
=
(
eβ − e−β

) n∑
i=1

ωmi 1h(xi)6=yi + e−β
n∑
i=1

ωmi .

2. For all 1 ≤ m ≤M and h ∈ H, define

errm(h) =

∑n
i=1 ω

m
i 1h(xi) 6=yi∑n
i=1 ω

m
i

.

Prove that

hjm = argmin
h∈H

errm(h) and βm =
1

2
log

(
1− errm(hjm)

errm(hjm)

)
.

3. Propose an algorithm to compute f̂M .

*** Hands on 6 Classification and fairness on the adult data set

See attached notebook.
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Hands-on Session 8: SVM, RKHS

Friday 12th March, 2020

*** Exercise 11 SVM

Reminder on KKT conditions

Let f, g1, . . . , gn be C1 convex functions and define

x̂ = arg min
gi(x)≤0

f(x) .

Karush-Kuhn-Tucker necessary (& sufficient) conditions:

Define L(x, λ) = f(x) +

n∑
i=1

λigi(x). Then, there exists λ̂ such that

1. ∇xL(x̂, λ̂) = 0;

2. λ̂igi(x̂) = 0 for i = 1, . . . , n;

3. gi(x̂) ≤ 0 for i = 1, . . . , n;

4. λ̂i ≥ 0 for i = 1, . . . , n.

Strong duality: in addition λ̂ = argsup
λ≥0

inf
x
L(x, λ).

For any w ∈ Rp, define the linear function fw(x) = 〈w, x〉 from Rp to R. For a given R > 0, we
consider the set of linear functions F = {fw : ‖w‖ ≤ R}. The aim of this exercise is to investigate

the classifier ĥϕ,F (x) = sign(f̂ϕ,F (x)) where f̂ϕ,F is solution to the convex optimisation problem

f̂ϕ,F = arg min
f∈F

1

n

n∑
i=1

ϕ(−yif(xi)) ,

with ϕ(x) = (1 + x)+ the hinge loss. The Lagrangian version of this minimization problem is

f̂ϕ,F = arg min
fw:w∈Rp

{
1

n

n∑
i=1

(1− yifw(xi))+ + λ‖w‖2
}
,

for some λ > 0.

1. Prove that f̂ϕ,F = fŵ where ŵ belongs to V = Span{xi : i = 1, . . . , n}.

2. Prove that ŵ =
∑n
j=1 β̂jxj where β̂ = [β̂1, . . . , β̂n]T is solution to

β̂ = arg min
β∈Rn

{
1

n

n∑
i=1

(1− yi(Kβ)i)+ + λβTKβ

}
,

with K the Gram matrix K = [〈xi, xj〉]1≤i,j≤n.
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3. Check that this minimization problem is equivalent to

β̂ = arg min
β, ξ ∈ Rn such that
yi(Kβ)i ≥ 1− ξi
ξi ≥ 0

{
1

n

n∑
i=1

ξi + λβTKβ

}
.

4. From the KKT conditions, check that β̂i = yiα̂i/(2λ), for i = 1, . . . , n with α̂i fulfilling

min(α̂i, yi(Kβ̂)i − (1− ξ̂i)) = 0 et min(1/n− α̂i, ξ̂i) = 0.

5. Prove the following properties

• if yif̂ϕ,F (xi) > 1 then β̂i = 0;

• if yif̂ϕ,F (xi) < 1 then β̂i = yi/(2λn);

• if yif̂ϕ,F (xi) = 1 then 0 ≤ β̂iyi ≤ 1/(2λn).

6. Give a geometric interpretation of this result.

7. From the strong duality, prove that α̂i is solution to the dual problem

α̂ = argmax
0≤αi≤1/n

{ n∑
i=1

αi −
1

4λ

n∑
i,j=1

Ki,jyiyjαiαj

}
.

** Exercise 12 RKHS

True or False? Either provide a proof (when true) or an explicit counterexample (when false)

1. If k1 and k2 are both positive semidefinite (PSD) kernel functions on X ×X , then λk1 +µk2

is a PSD kernel function for all λ, µ > 0.

2. Any Symmetric function k that is element-wise non-negative is a PSD kernel function.

3. If k1 and k2 are both positive semidefinite (PSD) kernel functions on X ×X , then k(x, y) =
k1(x, y)k2(x, y) is also a PSD kernel function.

4. Given a probability space with events E and probability law P, the function k : E × E → R

defined by k(A,B) = P(A ∩B)− P(A)P(B) is a PSD kernel function.

5. Given a finite set E , let P(E) denote the set of all subsets of E . If k : E × E → R is a PSD
kernel function, then

k̄(A,B) =
∑

x∈A, y∈B
k(x, y)

is a PSD kernel function on P(E)× P(E).

** Hands on 7 SVR on Time Series

See attached notebook.
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Hands-on Session 9: Neural Networks

Friday 19th March, 2020

*** Exercise 13 The Expressive Power of Depth in Neural Networks

In this exercise, we consider ReLU networks, that is neural networks (with biases) whose
transfer function is the the ReLU r : R→ R defined by r(x) = max(x, 0).

1. Let g : R → R be constant outside of an interval [0, R] and L-Lipschitz. Let ε > 0 and
m = dRL/εe. Show that the the piecewise linear function f coinciding with g at points
xi = iε/L, i ∈ {0, . . . ,m}, linear between xi and xi+1, and constant outside of [0, xm], is
such that ‖f − g‖∞ ≤ ε.

2. If ε > RL, find a very simple ReLU network f such that ‖f − g‖∞ ≤ ε.
3. If ε ≤ RL, show that the approximation f of Question 1 is implementable as a depth-2

ReLU network with linear output of width at most m + 1 ≤ 3RL/ε and weights at most
equal to max

(
2L, ‖g‖∞

)
.

4. Using the approximation of the previous question, how many neurons are required to ap-
proximate function function x 7→ x2 on [0, 1] uniformly with an error at most equal to
ε > 0?

5. Let

s(x) =


2x if 0 ≤ x ≤ 1

2

2− 2x if 1
2 ≤ x ≤ 1

0 otherwise

= 2r(x)− 4r

(
x− 1

2

)
+2r(x− 1) ,

and for all m ≥ 1 let sm = s ◦ · · · ◦ s︸ ︷︷ ︸
m times

.

Plot (simple) ReLU networks implementing respectively s, s2 and s3.

6. Show that for all m ≥ 1, all k ∈
{

0, . . . , 2m−1 − 1
}

and all t ∈ [0, 1],

sm

(
k + t

2m−1

)
= s(t)

7. Let g(x) = x2, and for m ≥ 0 let gm(x) be such that for all k ∈
{

0, . . . , 2m
}

:

• gm
(
k

2m

)
= g

(
k

2m

)
,

• gm is linear on
[
k

2m ,
k+1
2m

]
.

Show that for all k ∈
{

0, . . . , 2m − 1
}

and all t ∈ [0, 1],

gm

(
k + t

2m

)
− g

(
k + t

2m

)
=
t(1− t)

4m
.

8. Show that ‖g − gm‖∞ = 1
4m+1 and for all m ≥ 2,

gm = gm−1 −
1

4m
sm = id−

m∑
j=1

1

4j
sj
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9. Deduce from the previous question (and plot) a neural network uniformly approximating g
on [0, 1] with a maximal error of ε > 0.

10. Compare the networks of questions 4 and 9.

** Hands on 8 Experimenting Deep Learning

See attached notebook.
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Hands-on Session 10: Reinforcement Learning

Friday 19th March, 2020

** Exercise 14 Bellman’s Transition Operator

1. Show that Bellman’s Transition Operator Tπ : RS → RS defined by

Tπ(V ) = R̄π + γKπV

is affine, isotonic (U ≤ V =⇒ TπU ≤ TπV ) and γ-contractant: ∀U, V ∈ RS , ‖TπU −
TπV ‖∞ ≤ γ‖U − V ‖∞

2. Show that Tπ has a unique fixed point equal to Vπ and that

∀V0 ∈ RS , Tnπ V0 →
n→∞

Vπ .

**** Exercise 15 Bellman’s Optimality Operator

Show that Bellman’s Optimality Operator T∗ : RS → RS defined by

(
T∗(V )

)
s

= max
a∈A

{
r̄(s, a) + γ

∑
s′∈S

k(s′|s, a)Vs′

}
.

is isotonic and γ-contractant. Besides, for every policy π, Tπ ≤ T∗ in the sense that ∀U ∈
RS , TπU ≤ T∗U .

*** Exercise 16 Policy Improvement Lemma

Prove that for any policy π, any greedy policy π′ wrt Vπ improves on π: Vπ′ ≥ Vπ.

*** Exercise 17 Bellman’s Optimality Theorem

Prove that V∗, the unique fixed point of Bellman’s optimality operator T∗, is the optimal value
function:

∀s ∈ S, V∗(s) = max
π

Vπ(s)

and any policy π such that TπV∗ = V∗ is optimal.

** Exercise 18 Correctness of the Value Iteration algorithm

Prove that the Value Iteration algorithm returns a value vector V such that ‖V − V∗‖∞ ≤ ε

using at most
log M

(1−γ)ε
1−γ iterations, where M = ‖T∗V0 − V0‖∞.
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*** Exercise 19 Policy Improvement Lemma: Q-table form

Prove that for any two policies π and π′,[
∀s ∈ S, Qπ

(
s, π′(s)

)
≥ Qπ

(
s, π(s)

)]
=⇒

[
∀s ∈ S, Vπ′(s) ≥ Vπ(s)

]
Furthermore, if one of the inequalities in the LHS is strict, then at least one of the inequalities in
the RHS is strict

** Exercise 20 Bellman’s Optimality Condition: Q-table formulation

Prove that a policy π is optimal if and only if

∀s ∈ S, π(s) ∈ argmax
a∈A

Qπ(s, a)

** Hands on 9 Retail Shop Management

See attached notebook.
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