Exercises - Machine Learning Master 1 Informatique Fondamentale ENS Lyon

Yohann De Castro \& Aurélien Garivier

draft version of January 2020

Hands-on Session 1: Statistics 101

Friday $1^{\text {rth }}$ January, 2020

*** Exercise 1 Maximum Likelihood Estimators

For a given sample size $n \geq 1$, compute the Maximum Likelihood Estimators in the models $\left(\mathcal{X}^{n},\left\{Q_{\theta}^{\otimes n}\right\}\right)$ in each of the following cases.

1. $\mathcal{X}=\mathbb{R}, Q_{\theta}=\mathcal{N}\left(\theta, \sigma^{2}\right)$, where σ is a known parameter.
2. $\mathcal{X}=\mathbb{R}, Q_{\theta}=\mathcal{N}\left(\mu, \sigma^{2}\right)$, where $\theta=\left(\mu, \sigma^{2}\right) \in \mathbb{R} \times[0,+\infty)$.
3. $\mathcal{X}=\{0,1\}, Q_{\theta}=\mathcal{B}(\theta)$.
4. $\mathcal{X}=\mathbb{R}^{+}, Q_{\theta}=\mathcal{U}([0, \theta])$.
5. $\mathcal{X}=\mathbb{R}, Q_{\theta}=\mathcal{E}(\theta)$.
6. $\mathcal{X}=\mathbb{R}, Q_{\theta}=\mathcal{L}(\theta)$ the Laplace distribution centered at θ, which has density $f_{\theta}(x)=$ $\exp (-|x-\theta|) / 2$.

Whenever possible, compute the quadratic risks of the obtained estimators.

*** Exercise $2 \quad$ Confidence Intervals

In all the following models, with sample size $n \geq 1$, propose a confidence interval for θ. Precise whether it is asymptotic or not.

1. $\mathcal{X}=\mathbb{R}, Q_{\theta}=\mathcal{N}\left(\theta, \sigma^{2}\right)$, where σ is a known parameter.
2. $\mathcal{X}=\{0,1\}, Q_{\theta}=\mathcal{B}(\theta)$.

* 3. $\mathcal{X}=\mathbb{R}^{+}, Q_{\theta}=\mathcal{U}([0, \theta])$.
${ }^{* *}$ 4. $\mathcal{X}=\mathbb{R}, Q_{\theta}=\mathcal{L}(\theta)$.

** Hands on 1 Mean or Median?

We consider an odd sample size $n=2 k-1$, and the two following models:

$$
\begin{aligned}
\mathcal{M}_{1} & =\left(\mathbb{R}^{n},\left\{\mathcal{N}(\mu, 1)^{\otimes n}: \mu \in \mathbb{R}\right\}\right) \\
\mathcal{M}_{2} & =\left(\mathbb{R}^{n},\left\{\mathcal{L}(\mu)^{\otimes n}: \mu \in \mathbb{R}\right\}\right)
\end{aligned}
$$

For each model, give the properties of the two following estimators:

$$
\begin{aligned}
& \hat{\mu}_{n}=\frac{X_{1}+\cdots+X_{n}}{n} \text { the sample mean, and } \\
& \tilde{\mu}_{n}=X_{(k)} \text { the sample median. }
\end{aligned}
$$

Numerically estimate the quadratic risk of each estimator in each model.
Comment the results.

Experiment linear regression with scikitlearn on the reference example https://scikit-learn. org/stable/auto_examples/linear_model/plot_ols.html.

You will need to load a dataset made of $n=442$ diabetes patients, with for each patient the disease progression one year after baseline, and 10 variables: age, sex, body mass index, average blood pressure, and six blood serum measurements.

Try to answer the following question: what is the best linear model for predicting the response given the features, and how reliable are the predictions?

Hands-on Session 2: Clustering

Friday 24th January, 2020

**** Exercise 3 On the Consistency of K-Means

Let us consider n points X_{1}, \ldots, X_{n} in \mathbb{R}^{p}. The K-means algorithm seeks to minimize over all partitions $G=\left(G_{1}, \ldots, G_{K}\right)$ of $\{1, \ldots, p\}$ the criterion

$$
\operatorname{crit}(G)=\sum_{k=1}^{K} \sum_{a \in G_{k}}\left\|X_{a}-\bar{X}_{G_{k}}\right\|^{2} \quad \text { with } \quad \bar{X}_{G_{k}}=\frac{1}{\left|G_{k}\right|} \sum_{b \in G_{k}} X_{b}
$$

1. (Symmetrization) To analyse the K-means, it is useful to symmetrize the criterion. Prove the two equalities

$$
\begin{aligned}
\operatorname{crit}(G) & =\sum_{k=1}^{K} \frac{1}{\left|G_{k}\right|} \sum_{a, b \in G_{k}}\left\langle X_{a}, X_{a}-X_{b}\right\rangle \\
& =\frac{1}{2} \sum_{k=1}^{K} \frac{1}{\left|G_{k}\right|} \sum_{a, b \in G_{k}}\left\|X_{a}-X_{b}\right\|^{2} .
\end{aligned}
$$

2. (Independent observations) We assume now that the observations are random and independent. We write $\mu_{a} \in \mathbb{R}^{p}$ for the expectation of X_{a} so that $X_{a}=\mu_{a}+\varepsilon_{a}$ with $\varepsilon_{1}, \ldots, \varepsilon_{n}$ centered and independent. We define $v_{a}=\operatorname{trace}\left(\operatorname{cov}\left(X_{a}\right)\right)$.
Check that the expected value of the criterion is

$$
\mathbb{E}[\operatorname{crit}(G)]=\frac{1}{2} \sum_{k=1}^{K} \frac{1}{\left|G_{k}\right|} \sum_{a, b \in G_{k}}\left(\left\|\mu_{a}-\mu_{b}\right\|^{2}+v_{a}+v_{b}\right) \mathbf{1}_{a \neq b}
$$

What is the value of $\mathbb{E}[\operatorname{crit}(G)]$ when all the within-group variables have the same mean?
3. (Mixture model) We assume now that there exists a partition $G^{*}=\left(G_{1}^{*}, \ldots, G_{K}^{*}\right)$ such that within-group variables have the same mean and the same volume. More precisely, we assume that there exists $m_{1}, \ldots, m_{K} \in \mathbb{R}^{p}$ and $\gamma_{1}, \ldots, \gamma_{K}>0$ such that $\mu_{a}=m_{k}$ and $v_{a}=\gamma_{k}$ for all $a \in G_{k}^{*}$ and $k=1, \ldots, K$.
Below, we investigate under which condition the expected value of the Kmeans criterion is minimum in G^{*}.
a) What is the value of $\mathbb{E}\left[\operatorname{crit}\left(G^{*}\right)\right]$?
b) In the special case where $\gamma_{1}=\ldots=\gamma_{K}=\gamma$, which partition $G=\left(G_{1}, \ldots, G_{K}\right)$ minimizes $\mathbb{E}[\operatorname{crit}(G)]$?
c) We assume now that we have $K=3$ groups of size s (with s even),

$$
m_{1}=(1,0,0)^{T}, \quad m_{2}=(0,1,0)^{T}, \quad m_{3}=\left(0,1-\tau, \sqrt{1-(1-\tau)^{2}}\right)^{T}
$$

with $\tau>0$, and

$$
\gamma_{1}=\gamma_{+}, \quad \gamma_{2}=\gamma_{3}=\gamma_{-}
$$

What is the value of $\left\|m_{2}-m_{3}\right\|^{2}$?
d) Compute $\mathbb{E}\left[\operatorname{crit}\left(G^{*}\right)\right]$.
e) Let us define G^{\prime} obtained by splitting G_{1}^{*} into two groups $G_{1}^{\prime}, G_{2}^{\prime}$ of equal size $s / 2$ and by merging G_{2}^{*} and G_{3}^{*} into a single group G_{3}^{\prime} of size $2 s$. Check that

$$
\mathbb{E}\left[\operatorname{crit}\left(G^{\prime}\right)\right]=s\left(\gamma_{+}+2 \gamma_{-}+\tau\right)-\left(2 \gamma_{+}+\gamma_{-}\right)
$$

f) When do we have $\mathbb{E}\left[\operatorname{crit}\left(G^{*}\right)\right]<\mathbb{E}\left[\operatorname{crit}\left(G^{\prime}\right)\right]$?
g) What is the take home message?

Conversely, in the general mixture model, we can check that if

$$
\min _{j \neq k}\left\|m_{j}-m_{k}\right\|^{2}>2 \frac{\max _{k} \gamma_{k}-\min _{k} \gamma_{k}}{\min _{k}\left|G_{k}^{*}\right|}
$$

then $\mathbb{E}\left[\operatorname{crit}\left(G^{*}\right)\right]<\mathbb{E}[\operatorname{crit}(G)]$ for all partitions $G=\left(G_{1}, \ldots, G_{K}\right)$ not equal to G^{*}.

*** Hands on 3 Clustering of text

See attached notebook.

Hands-on Session 3: Dimensionality Reduction

Friday 31th January, 2020

**** Exercise 4 Computing the largest eigenvalue

Let $A \in \mathcal{M}_{\backslash(\mathbb{R})}$ be a symmetric, positive matrix, and let $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0$ be its eigenvalues. For each $i \in\{2, \ldots, n\}$ let $v^{i} \in \mathbb{R}^{n}$ be such that $\left\|v^{i}\right\|=1$ be such that $A v^{i}=\lambda_{i} v^{i}$:

We assume that $\lambda_{1}>\lambda_{2}$. The goal of this exercise is to analyze a probabilistic algorithm approximating $v:=v^{1}$. The algorithm, called power iteration, relies on the following induction: $u_{0}=\left[\frac{\epsilon_{1}}{\sqrt{n}}, \ldots, \frac{\epsilon_{n}}{\sqrt{n}}\right]$ where $\epsilon_{i} \stackrel{i i d}{\sim} \mathcal{U}(\{-1,1\})$ and for all $t \geq 1, u_{t+1}=\frac{A u_{t}}{\left\|A u_{t}\right\|}$.

1. Show that for all $t \geq 0,\left\|u_{t}\right\|=1$ and

$$
u_{t}=\frac{A^{t} u_{0}}{\left\|A^{t} u_{0}\right\|}=\frac{\sum_{i=1}^{n} \lambda_{i}^{t}\left\langle u_{0}, v_{i}\right\rangle v_{i}}{\sqrt{\sum_{i=1}^{n}\left(\lambda_{i}^{t}\left\langle u_{0}, v_{i}\right\rangle\right)^{2}}} .
$$

2. What are the expectation and variance of $\left\langle u_{0}, v\right\rangle$?
3. Denoting $Z=\left\langle u_{0}, v\right\rangle^{2}$, show that $\mathbb{E}[Z]=1 / n$ and that $\mathbb{E}\left[Z^{2}\right] \leq 3 / n^{2}$.
4. Let $\delta \in(0,1)$. Using the Cauchy-Schwartz inequality with the variables X and $\mathbb{1}\{X>$ $\delta \mathbb{E}[X]\}$, show that for every non-negative random variable X with finite variance

$$
\mathbb{P}(X \geq \delta \mathbb{E}[X]) \geq(1-\delta)^{2} \frac{\mathbb{E}[X]^{2}}{\mathbb{E}\left[X^{2}\right]}
$$

5. Prove that

$$
\mathbb{P}\left(Z \geq \frac{1}{4 n}\right) \geq \frac{3}{16}
$$

6. Show that whenever $\left\langle u_{0}, v\right\rangle^{2}>1 /(4 n)$,

$$
\left|\left\langle u_{t}, v\right\rangle\right|=\frac{1}{\sqrt{1+\frac{1}{\left\langle u_{0}, v\right\rangle^{2}} \sum_{i=2}^{n}\left\langle u_{0}, v^{i}\right\rangle^{2}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{2 t}}} \geq 1-2 n\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{2 t}
$$

7. Summarize the conclusion of the two previous questions.
8. For a fixed $\epsilon>0$, how many iterations does it take to obtain with probability at least 95% a vector u such that $\left|\left\langle u_{t}, v\right\rangle\right| \geq 1-\epsilon$?
Remark: one can similarly show that with non-vanishing probability

$$
\left\langle u_{t}, A u_{t}\right\rangle \geq \lambda_{1} \times \frac{1-\epsilon}{1+4 n(1-\epsilon)^{2 t}}
$$

See http://theory.stanford.edu/~trevisan/expander-online/lecture03.pdf.

Hands-on Session 4: Introduction to Supervised Learning

Friday 7th February, 2020

* Exercise $5 \quad$ Classification 1

Consider the binary classification problem with the following (not usual) risk

$$
\ell(\widehat{y}, y):= \begin{cases}c & \text { if } \widehat{y}=1, y=0 \\ 1 & \text { if } \widehat{y}=0, y=1 \\ 0 & \text { otherwise }\end{cases}
$$

1. Compute the classification risk of a rule g, namely

$$
L(g):=\mathbb{E}[\ell(g(X), Y)]
$$

2. Show that the optimal Bayes rule f^{\star} is given by

$$
f^{\star}(x)=\mathbb{1}_{\eta(x) \geq \frac{c}{1+c}},
$$

where $\eta(x):=\mathbb{E}[Y \mid X=x]=\mathbb{P}(Y=1 \mid X=x)$.

** Exercise $6 \quad$ Classification 2

Consider the binary classification problem. Let g and g^{\prime} be two classification rules. Let L be the standard $0 / 1 \operatorname{loss}$ ($c=1$ in the aforementioned exercise).

1. Show that

$$
\left|L(g)-L\left(g^{\prime}\right)\right| \leq \mathbb{P}\left(g(X) \neq g^{\prime}(X)\right)
$$

2. Show that

$$
L(g)=\mathbb{E}\left[\mathbb{1}_{\{g(X) \neq 1\}}(2 \eta(X)-1)+(1-\eta(X))\right],
$$

where $\eta(x):=\mathbb{E}[Y \mid X=x]=\mathbb{P}(Y=1 \mid X=x)$.
3. Show that

$$
\left|L(g)-L\left(g^{\prime}\right)\right| \leq \mathbb{E}\left[|2 \eta(X)-1| \mathbb{1}_{\left\{g(X) \neq g^{\prime}(X)\right\}}\right]
$$

Now, for two sets A and B, we denote $A \Delta B:=\left(A \cap B^{c}\right) \cup\left(A^{c} \cap B\right)$ their symmetric difference.
4. Show that

$$
L(g)-L^{\star}=\mathbb{E}\left[|2 \eta(X)-1| \mathbb{1}_{G \Delta G^{\star}}(X)\right]
$$

where L^{\star} is the optimal risk (the infimum), $G=g^{-1}(\{1\})$ and $G^{\star}=\left(g^{\star}\right)^{-1}(\{1\})$ with g^{\star} the optimal Bayes classifier. In particular, note that $G^{\star}=\{x \in \mathcal{X}: \eta(x) \geq 1 / 2\}$.

In practice, we may have access to an estimation $\widehat{\pi}_{0}, \widehat{\pi}_{1}, \widehat{p}_{0}, \widehat{p}_{1}$ of

$$
\begin{aligned}
\pi_{0} & =\mathbb{P}(Y=0), \\
\pi_{1} & =\mathbb{P}(Y=1), \\
p_{0}(x) & =\mathbb{P}(X=x \mid Y=0), \\
p_{1}(x) & =\mathbb{P}(X=x \mid Y=1),
\end{aligned}
$$

and we may denote

$$
\widehat{\eta}(x)=\frac{\widehat{\pi}_{1} \widehat{p}_{1}(x)}{\widehat{\pi}_{0} \widehat{p}_{0}(x)+\widehat{\pi}_{1} \widehat{p}_{1}(x)},
$$

the deduced estimation of $\eta(x)$. Consider the following rule of classification

$$
\widehat{g}(x)=\mathbb{1}_{\{\widehat{\eta}(x) \geq 1 / 2\}}
$$

5. Show that

$$
L(\widehat{g})-L^{\star} \leq \int_{\mathcal{X}} \sum_{k=0}^{1}\left|\pi_{k} p_{k}(x)-\widehat{\pi}_{k} \widehat{p}_{k}(x)\right| \mathrm{d} \mu(x),
$$

where μ is the law of X.

*** Exercise 7 An analysis of the Nearest-Neighbour Algorithm

We consider the problem of binary classification $(\mathcal{Y}=\{0,1\})$ on the feature set $\mathcal{X}=\left[0,1\left[{ }^{d}\right.\right.$ with the nearest-neighbour method: if the training set is $S_{n}=\left\{\left(X_{1}, Y_{1}\right), \ldots,\left(X_{n}, Y_{n}\right)\right\}$, then for all $x \in \mathcal{X}$ we define

$$
I(x)=\underset{1 \leq i \leq n}{\arg \min }\left\|x-X_{i}\right\| \quad \text { and } \quad \hat{h}_{n}(x)=Y_{I(x)}
$$

The objective of this exercise is to prove a bound on the risk $R\left(\hat{h}_{n}\right)=\mathbb{E}_{S_{n}}\left[\mathbb{P}_{X, Y}\left(\hat{h}_{n}(X) \neq Y\right)\right]$ of \hat{h}_{n}, under the assumption that $\eta: x \mapsto \mathbb{P}(Y=1 \mid X=x)$ is c-Lipschitz continuous for a positive constant c :

$$
\forall x, x^{\prime} \in \mathcal{X},\left|\eta(x)-\eta\left(x^{\prime}\right)\right| \leq c\left\|x-x^{\prime}\right\|
$$

1. Show that $h^{*}: x \mapsto \mathbb{1}\{\eta(x) \geq 1 / 2\}$ is a Bayes classifier and has loss $L^{*}=\mathbb{P}\left(h^{*}(X) \neq Y\right)=$ $\mathbb{E}[\min (\eta(X), 1-\eta(X))]$.
2. Show that if $Z_{1} \sim \mathcal{B}(p)$ and $Z_{2} \sim \mathcal{B}(q)$ are two independent variables, then $\mathbb{P}\left(Z_{1} \neq Z_{2}\right) \leq$ $2 \min (p, 1-p)+|p-q|$.
3. Show that

$$
R_{n}\left(\hat{h}_{n}\right)=\mathbb{E}\left[\mathbb{E}\left[\mathbb{1}\left\{Y \neq Y_{I(X)}\right\} \mid X, X_{1}, \ldots, X_{n}\right]\right]
$$

4. Prove that

$$
\mathbb{E}\left[\mathbb{1}\left\{Y \neq Y_{I(X)}\right\} \mid X, X_{1}, \ldots, X_{n}\right] \leq 2 \min (\eta(X), 1-\eta(X))+c\left\|X-X_{I(X)}\right\|
$$

5. We consider the partition \mathcal{C} of \mathcal{X} into $|\mathcal{C}|=T^{d}$ cells of diameter \sqrt{d} / T :

$$
\mathcal{C}=\left\{\left[\frac{j_{1}-1}{T}, \frac{j_{1}}{T}\left[\times \cdots \times\left[\frac{j_{d}-1}{T}, \frac{j_{d}}{T}\left[, \quad 1 \leq j_{1}, \ldots, j_{d} \leq T\right\}\right.\right.\right.\right.
$$

Show that

$$
\left\|X-X_{I(X)}\right\| \leq \sum_{c \in \mathcal{C}} \mathbb{1}\{X \in c\}\left(\frac{\sqrt{d}}{T} \mathbb{1} \bigcup_{i=1}^{n}\left\{X_{i} \in c\right\}+\sqrt{d} \mathbb{1} \bigcap_{i=1}^{n}\left\{X_{i} \notin c\right\}\right)
$$

6. For every cell $c \in \mathcal{C}$ of probability $p_{c}=\mathbb{P}(X \in c)$, prove that

$$
\mathbb{P}\left(\{X \in c\} \cap \bigcap_{i=1}^{n}\left\{X_{i} \notin c\right\}\right) \leq p_{c} e^{-n p_{c}} \leq \frac{1}{e n}
$$

7. Prove that

$$
\mathbb{E}\left[\left\|X-X_{I(X)}\right\|\right] \leq \frac{\sqrt{d}}{T}+\frac{\sqrt{d} T^{d}}{e n}
$$

8. Conclude:

$$
R_{n}\left(\hat{h}_{n}\right) \leq 2 L^{*}+\frac{3 c \sqrt{d}}{n^{1 /(d+1)}}
$$

Hands-on Session 5: Cross-Validation and Model Selection

Friday 14th February, 2020

**** Exercise 8 Model Selection

This exercice is important as it presents, in a simple framework, the notion of regularization.
Experience: Consider $\mathbf{X} \sim \mathcal{N}_{p}\left(\mu^{0}, \Sigma\right)$ a Gaussian vector of size p, mean $\mu^{0} \in \mathbb{R}^{p}$, and variance Σ a positive semidefinite (psd) matrix. For sake of simplicity we assume that $\Sigma=\sigma^{2} \operatorname{Id}_{p}$ where $\sigma>0$ is known. We observe $X_{1}, \ldots, X_{n} \sim \mathbf{X}$ i.i.d. vectors.

Task: Let V be a known orthonormal matrix (i.e. $V V^{\top}=V^{\top} V=\operatorname{Id}_{p}$) and denote

$$
\underbrace{\operatorname{Span}\left(\mathrm{V}_{1}\right)}_{E_{1}} \subset \cdots \subset \underbrace{\operatorname{Span}\left(\mathrm{~V}_{\mathrm{k}}\right)}_{E_{k}} \subset \cdots \subset \underbrace{\operatorname{Span}(\mathrm{~V})}_{\mathbb{R}^{p}}
$$

where V_{k} is the $p \times k$ matrix obtained from V keeping the k first columns. In particular

$$
\Pi_{k}:=V_{k} V_{k}^{\top} \text { is the orthogonal projection on } E_{k}
$$

Assume that $\mu^{0}=V \theta^{0}$ for some unknowns $k^{0} \in[p]$ and $\theta^{0}=\left(\theta_{1}^{0}, \ldots, \theta_{k^{0}}^{0}, 0, \ldots, 0\right) \in \mathbb{R}^{k^{0}} \times\{0\}^{p-k^{0}}$ with $\theta_{k^{0}}^{0} \neq 0$. Note that $\theta_{k}^{0}=0$ for $k>k^{0}$. The goal is to recover a good approximation $\widehat{\mu}$ of μ^{0}, where $\widehat{\mu}$ can be any measurable function of $\left(X_{1}, \ldots, X_{n}\right)$. This basic framework depicts important cases where one seeks to recover the decomposition of the "classifier" in some known orthonormal basis V.

Performance: Performance is measured by the following risk

$$
\mathcal{R}(\widehat{\mu}):=\mathbb{E}\|\mathbf{X}-\widehat{\mu}\|_{2}^{2}-\sigma^{2} p,
$$

where the expectation is taken with respect to $\mathbf{X}, X_{1}, \ldots, X_{n}$ which are i.i.d. vectors and such that $\widehat{\mu}=\widehat{\mu}\left(X_{1}, \ldots, X_{n}\right)$.

1. Show that for all measurable function $\widehat{\mu}\left(X_{1}, \ldots, X_{n}\right)$ it holds

$$
\mathcal{R}(\widehat{\mu})=\mathbb{E}\left\|\mu^{0}-\widehat{\mu}\right\|_{2}^{2}
$$

where the expectation is taken with respect to X_{1}, \ldots, X_{n}.
Strategies: We start with some very elementary questions.
2. Compute the law of $V^{\top} \mathbf{X} / \sigma$.
3. Prove that the problem can be equivalently reduced to the case $V=\operatorname{Id}_{p}$ and $\sigma=1$. We will assume it from now.

A first strategy, that matches what you may have seen in Statistics before, goes by using the "Empirical Risk Minimizer" (ERM). Indeed, the risk function $\mathcal{R}(\widehat{\mu})$ is not observed since it depends on the target μ^{0} but an empirical version of the risk may be computed as

$$
\mu \mapsto \mathcal{R}_{n}(\mu):=\frac{1}{n} \sum_{k=1}^{n}\left\|X_{k}-\mu\right\|_{2}^{2}-\sigma^{2} p .
$$

4. Compute the minimum $\widehat{\mu}^{\mathrm{ERM}}$ of the empirical risk \mathcal{R}_{n}.
5. Compute its risk $\mathcal{R}\left(\widehat{\mu}^{\mathrm{ERM}}\right)$.

Now, assume that someone (referred to as the "oracle") reveals you the true value of k^{0}.
6. Can you build $\widehat{\mu}^{\text {oracle }}$ which is the Best Linear Unbiased Estimator (BLUE) of the mean μ^{0} ?
7. When $k^{0}<p$, show that

$$
\mathcal{R}\left(\widehat{\mu}^{\text {oracle }}\right)=\frac{k^{0}}{n}<\frac{p}{n}=\mathcal{R}\left(\left(_{\mu}^{\mathrm{ERM}}\right) .\right.
$$

Of course, we don't know k^{0}. The strategy is then to "penalize" the Empirical Risk so as to reduce its "bias".
8. Compute the variance of $\widehat{\mu}^{k}:=\Pi_{k} \bar{X}$, where \bar{X} is the empirical mean

$$
\bar{X}:=\frac{1}{n} \sum_{k=1}^{n} X_{k} .
$$

9. Show that

$$
\mathcal{R}_{n}\left(\widehat{\mu}^{k}\right)=\left\|\mu^{0}-\widehat{\mu}^{k}\right\|_{2}^{2}+2\left\langle\bar{X}-\mu^{0}, \mu^{0}-\Pi_{k} \bar{X}\right\rangle+\frac{1}{n} \sum_{j=1}^{n}\left\|X_{j}-\mu^{0}\right\|_{2}^{2}-\sigma^{2} p
$$

10. Consider the following penalized estimator

$$
\widehat{k}:=\arg \min _{k \in[p]}\left\{\mathcal{R}_{n}\left(\widehat{\mu}^{k}\right)+\lambda \frac{k}{n}\right\},
$$

where $\lambda>0$ is a tuning parameter. Our penalized estimator is then $\widehat{\mu}^{\text {pen }}:=\widehat{\mu}^{\widehat{k}}$. We won't study into details this estimator, this is the core of the course "Model Selection". We rather investigate some heuristics here and elementary manipulations. Prove that for all $0<\alpha<1$, it holds

$$
\left\|\mu^{0}-\widehat{\mu}^{\widehat{k}}\right\|_{2}^{2} \leq \frac{1}{1-\alpha} \inf _{k}\left\{\left\|\mu^{0}-\widehat{\mu}^{k}\right\|_{2}^{2}+\lambda \frac{k}{n}\right\}+\alpha^{-1} \mathcal{O}_{\mathbb{P}}\left(\frac{k^{0}}{n}\right)+Z
$$

where $Z=\sup _{l}\left(\alpha^{-1}\left\|\Pi_{l} \bar{X}-\mu^{0}\right\|_{2}^{2}-\lambda \frac{l}{n}\right)$. This last random variable can be shown to be $\mathcal{O}_{\mathbb{P}}(1 / n)$. It gives the idea that

$$
\left\|\mu^{0}-\widehat{\mu}^{\widehat{k}}\right\|_{2}^{2} \leq(1+o(1)) \inf _{k}\left\{\left\|\mu^{0}-\widehat{\mu}^{k}\right\|_{2}^{2}+\lambda \frac{k}{n}\right\}+\mathcal{O}_{\mathbb{P}}(1 / n) .
$$

which is called a "sharp oracle inequality".
Hint: $\langle u, v\rangle \leq \alpha\|u\|_{2}^{2}+\alpha^{-1}\|v\|_{2}^{2}$ for all $\alpha>0$.

Hands-on Session 6: Empirical Risk Minimization, Linear Separators

Friday 21th February, 2020

**** Exercise $9 \quad$ Perceptron with margin

In this exercise, we consider binary classification in $\mathcal{X}=\mathbb{R}^{d}$ with label set $\mathcal{Y}=\{ \pm 1\}$: the sample is $\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right) \in\left(\mathbb{R}^{d} \times\{ \pm 1\}\right)^{n}$. We assume that the data is linearly separable, and even that a positive margin

$$
\gamma=\sup _{w \in \mathbb{R}^{d}:\|w\|=1} \min _{1 \leq i \leq n} \frac{y_{i}\left\langle w, x_{i}\right\rangle}{\left\|x_{i}\right\|}
$$

is known and can be used in the algorithm. The aim of the Perceptron with margin algorithm is to find a linear separator with almost optimal margin. The aim of the questions 1-6 is to prove that the Perceptron-with-margin algorithm below achieves margin at least $\gamma / 2$ in at most $12 / \gamma^{2}$ iterations.

```
Algorithm: Perceptron-with-margin \(\gamma\)
    Input: margin \(\gamma\)
    Data: training set \(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\)
    \(w_{0} \leftarrow(0, \ldots, 0)\)
    \(t \geq 0\)
    while \(\exists i_{t}: y_{i_{t}}\left\langle w_{t}, x_{i_{t}}\right\rangle \leq \frac{\gamma}{2}\left\|x_{i_{t}}\right\|\left\|w_{t}\right\|\) do
        \(w_{t+1}=w_{t}+y_{i_{t}} \frac{x_{i_{t}}}{\left\|x_{i_{t}}\right\|}\)
        \(t \leftarrow t+1\)
    return \(w_{t}\)
```

1. Justify the existence of $w^{*} \in \mathbb{R}^{d}$ such that $\left\|w^{*}\right\|=1$ and

$$
\forall 1 \leq i \leq n, \quad \frac{y_{i}\left\langle w^{*}, x_{i}\right\rangle}{\left\|x_{i}\right\|} \geq \gamma
$$

2. In this question and the following, t is a positive integer for which the condition to continue the while loop of the algorithm (line 3) is satisfied. Prove that $\left\langle w^{*}, w_{t}\right\rangle \geq \gamma t$.
3. Prove that

$$
\left\|w_{t+1}\right\|^{2} \leq\left\|w_{t}\right\|^{2}+\gamma\left\|w_{t}\right\|+1
$$

4. Show that if $\left\|w_{t}\right\| \geq 2 / \gamma$, then

$$
\left\|w_{t+1}\right\|^{2} \leq\left(\left\|w_{t}\right\|+\frac{3 \gamma}{4}\right)^{2}
$$

5. Deduce that

$$
\left\|w_{t}\right\| \leq 1+\frac{2}{\gamma}+\frac{3 \gamma t}{4}
$$

6. Conclude.
7. For any $\eta \in(0,1)$, give an algorithm that yields a linear separator with margin at least $(1-\eta) \gamma$ in at most $K(\eta) / \gamma^{2}$ iterations, where $K(\eta)$ is a function to be specified.

*** Hands on 5 Experimenting the Perceptron Algorithm

Code a perceptron for binary classification as in the previous exercise, and show the evolution of the linear separator during the iterations.

Hands-on Session 7: AdaBoost, Ensemble Methods

Friday 28th February, 2020

*** Exercise 10 AdaBoost on binary classification

Let $\left(x_{i}, y_{i}\right)_{1 \leq i \leq n} \in(\mathcal{X} \times\{-1,1\})^{n}$ be n observations and $\mathcal{H}=\left\{h_{1}, \ldots, h_{M}\right\}$ be a set of M classifiers, i.e. for all $1 \leq i \leq M,: h_{i}: \mathcal{X} \rightarrow\{-1,1\}$. It is assumed that for each $h \in \mathcal{H},-h \in \mathcal{H}$ and there exist $1 \leq i \neq j \leq n$ such that $y_{i}=h\left(x_{i}\right)$ and $y_{j} \neq h\left(x_{j}\right)$. Let \mathcal{F} be the set of all linear combinations of elements of \mathcal{H} :

$$
\mathcal{F}=\left\{\sum_{j=1}^{M} \theta_{j} h_{j} ; \theta \in \mathbb{R}^{M}\right\}
$$

Consider the following algorithm. Set $\hat{f}_{0}=0$ and for all $1 \leq m \leq M$,

$$
\hat{f}_{m}=\hat{f}_{m-1}+\beta_{m} h_{j_{m}} \quad \text { where } \quad\left(\beta_{m}, h_{j_{m}}\right)=\underset{h \in \mathcal{H}, \beta \in \mathbb{R}}{\operatorname{argmin}} n^{-1} \sum_{i=1}^{n} \exp \left\{-y_{i}\left(\hat{f}_{m-1}\left(x_{i}\right)+\beta h\left(x_{i}\right)\right)\right\}
$$

1. Choosing $\omega_{i}^{m}=n^{-1} \exp \left\{-y_{i} \hat{f}_{m-1}\left(x_{i}\right)\right\}$, show that

$$
n^{-1} \sum_{i=1}^{n} \exp \left\{-y_{i}\left(\hat{f}_{m-1}\left(x_{i}\right)+\beta h\left(x_{i}\right)\right)\right\}=\left(\mathrm{e}^{\beta}-\mathrm{e}^{-\beta}\right) \sum_{i=1}^{n} \omega_{i}^{m} \mathbb{1}_{h\left(x_{i}\right) \neq y_{i}}+\mathrm{e}^{-\beta} \sum_{i=1}^{n} \omega_{i}^{m}
$$

2. For all $1 \leq m \leq M$ and $h \in \mathcal{H}$, define

$$
\operatorname{err}_{m}(h)=\frac{\sum_{i=1}^{n} \omega_{i}^{m} \mathbb{1}_{h\left(x_{i}\right) \neq y_{i}}}{\sum_{i=1}^{n} \omega_{i}^{m}}
$$

Prove that

$$
h_{j_{m}}=\underset{h \in \mathcal{H}}{\operatorname{argmin}} \operatorname{err}_{m}(h) \quad \text { and } \quad \beta_{m}=\frac{1}{2} \log \left(\frac{1-\operatorname{err}_{m}\left(h_{j_{m}}\right)}{\operatorname{err}_{m}\left(h_{j_{m}}\right)}\right)
$$

3. Propose an algorithm to compute \hat{f}_{M}.
*** Hands on 6 Classification and fairness on the adult data set
See attached notebook.

Hands-on Session 8: SVM, RKHS

Friday 12th March, 2020

*** Exercise 11 SVM

Reminder on KKT conditions

Let f, g_{1}, \ldots, g_{n} be \mathcal{C}^{1} convex functions and define

$$
\hat{x}=\underset{g_{i}(x) \leq 0}{\arg \min } f(x) .
$$

Karush-Kuhn-Tucker necessary (\& sufficient) conditions:
Define $L(x, \lambda)=f(x)+\sum_{i=1}^{n} \lambda_{i} g_{i}(x)$. Then, there exists $\hat{\lambda}$ such that

1. $\nabla_{x} L(\hat{x}, \hat{\lambda})=0$;
2. $\hat{\lambda}_{i} g_{i}(\hat{x})=0$ for $i=1, \ldots, n$;
3. $g_{i}(\hat{x}) \leq 0$ for $i=1, \ldots, n$;
4. $\hat{\lambda}_{i} \geq 0$ for $i=1, \ldots, n$.

Strong duality: in addition $\hat{\lambda}=\underset{\lambda \geq 0}{\operatorname{argsup}} \inf _{x} L(x, \lambda)$.

For any $w \in \mathbb{R}^{p}$, define the linear function $f_{w}(x)=\langle w, x\rangle$ from \mathbb{R}^{p} to \mathbb{R}. For a given $R>0$, we consider the set of linear functions $\mathcal{F}=\left\{f_{w}:\|w\| \leq R\right\}$. The aim of this exercise is to investigate the classifier $\widehat{h}_{\varphi, \mathcal{F}}(x)=\operatorname{sign}\left(\widehat{f}_{\varphi, \mathcal{F}}(x)\right)$ where $\widehat{f}_{\varphi, \mathcal{F}}$ is solution to the convex optimisation problem

$$
\widehat{f}_{\varphi, \mathcal{F}}=\underset{f \in \mathcal{F}}{\arg \min } \frac{1}{n} \sum_{i=1}^{n} \varphi\left(-y_{i} f\left(x_{i}\right)\right),
$$

with $\varphi(x)=(1+x)_{+}$the hinge loss. The Lagrangian version of this minimization problem is

$$
\widehat{f}_{\varphi, \mathcal{F}}=\underset{f_{w}: w \in \mathbb{R}^{p}}{\arg \min }\left\{\frac{1}{n} \sum_{i=1}^{n}\left(1-y_{i} f_{w}\left(x_{i}\right)\right)_{+}+\lambda\|w\|^{2}\right\},
$$

for some $\lambda>0$.

1. Prove that $\widehat{f}_{\varphi, \mathcal{F}}=f_{\widehat{w}}$ where \widehat{w} belongs to $V=\operatorname{Span}\left\{x_{i}: i=1, \ldots, n\right\}$.
2. Prove that $\widehat{w}=\sum_{j=1}^{n} \widehat{\beta}_{j} x_{j}$ where $\widehat{\beta}=\left[\widehat{\beta}_{1}, \ldots, \widehat{\beta}_{n}\right]^{T}$ is solution to

$$
\widehat{\beta}=\underset{\beta \in \mathbb{R}^{n}}{\arg \min }\left\{\frac{1}{n} \sum_{i=1}^{n}\left(1-y_{i}(K \beta)_{i}\right)_{+}+\lambda \beta^{T} K \beta\right\}
$$

with K the Gram matrix $K=\left[\left\langle x_{i}, x_{j}\right\rangle\right]_{1 \leq i, j \leq n}$.
3. Check that this minimization problem is equivalent to

$$
\widehat{\beta}=\underset{\substack{\beta, \xi \in \mathbb{R}^{n} \text { such that } \\ y_{i}(K \beta)_{i} \geq 1-\xi_{i} \\ \xi_{i} \geq 0}}{\arg \min }\left\{\frac{1}{n} \sum_{i=1}^{n} \xi_{i}+\lambda \beta^{T} K \beta\right\}
$$

4. From the KKT conditions, check that $\widehat{\beta}_{i}=y_{i} \widehat{\alpha}_{i} /(2 \lambda)$, for $i=1, \ldots, n$ with $\widehat{\alpha}_{i}$ fulfilling $\min \left(\widehat{\alpha}_{i}, y_{i}(K \widehat{\beta})_{i}-\left(1-\widehat{\xi}_{i}\right)\right)=0$ et $\min \left(1 / n-\widehat{\alpha}_{i}, \widehat{\xi}_{i}\right)=0$.
5. Prove the following properties

- if $y_{i} \widehat{f}_{\varphi, \mathcal{F}}\left(x_{i}\right)>1$ then $\widehat{\beta}_{i}=0$;
- if $y_{i} \widehat{f}_{\varphi, \mathcal{F}}\left(x_{i}\right)<1$ then $\widehat{\beta}_{i}=y_{i} /(2 \lambda n)$;
- if $y_{i} \widehat{f}_{\varphi, \mathcal{F}}\left(x_{i}\right)=1$ then $0 \leq \widehat{\beta}_{i} y_{i} \leq 1 /(2 \lambda n)$.

6. Give a geometric interpretation of this result.
7. From the strong duality, prove that $\widehat{\alpha}_{i}$ is solution to the dual problem

$$
\widehat{\alpha}=\underset{0 \leq \alpha_{i} \leq 1 / n}{\operatorname{argmax}}\left\{\sum_{i=1}^{n} \alpha_{i}-\frac{1}{4 \lambda} \sum_{i, j=1}^{n} K_{i, j} y_{i} y_{j} \alpha_{i} \alpha_{j}\right\}
$$

** Exercise 12 RKHS

True or False? Either provide a proof (when true) or an explicit counterexample (when false)

1. If k_{1} and k_{2} are both positive semidefinite (PSD) kernel functions on $\mathcal{X} \times \mathcal{X}$, then $\lambda k_{1}+\mu k_{2}$ is a PSD kernel function for all $\lambda, \mu>0$.
2. Any Symmetric function k that is element-wise non-negative is a PSD kernel function.
3. If k_{1} and k_{2} are both positive semidefinite (PSD) kernel functions on $\mathcal{X} \times \mathcal{X}$, then $k(x, y)=$ $k_{1}(x, y) k_{2}(x, y)$ is also a PSD kernel function.
4. Given a probability space with events \mathcal{E} and probability law \mathbb{P}, the function $k: \mathcal{E} \times \mathcal{E} \rightarrow \mathbb{R}$ defined by $k(A, B)=\mathbb{P}(A \cap B)-\mathbb{P}(A) \mathbb{P}(B)$ is a PSD kernel function.
5. Given a finite set \mathcal{E}, let $\mathcal{P}(\mathcal{E})$ denote the set of all subsets of \mathcal{E}. If $k: \mathcal{E} \times \mathcal{E} \rightarrow \mathrm{R}$ is a PSD kernel function, then

$$
\bar{k}(A, B)=\sum_{x \in A, y \in B} k(x, y)
$$

is a PSD kernel function on $\mathcal{P}(\mathcal{E}) \times \mathcal{P}(\mathcal{E})$.
** Hands on $7 \quad$ SVR on Time Series
See attached notebook.

Hands-on Session 9: Neural Networks

Friday 19th March, 2020

*** Exercise 13 The Expressive Power of Depth in Neural Networks

In this exercise, we consider ReLU networks, that is neural networks (with biases) whose transfer function is the the ReLU $r: \mathbb{R} \rightarrow \mathbb{R}$ defined by $r(x)=\max (x, 0)$.

1. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be constant outside of an interval $[0, R]$ and L-Lipschitz. Let $\epsilon>0$ and $m=\lceil R L / \epsilon\rceil$. Show that the the piecewise linear function f coinciding with g at points $x_{i}=i \epsilon / L, i \in\{0, \ldots, m\}$, linear between x_{i} and x_{i+1}, and constant outside of $\left[0, x_{m}\right]$, is such that $\|f-g\|_{\infty} \leq \epsilon$.
2. If $\epsilon>R L$, find a very simple ReLU network f such that $\|f-g\|_{\infty} \leq \epsilon$.
3. If $\epsilon \leq R L$, show that the approximation f of Question 1 is implementable as a depth-2 ReLU network with linear output of width at most $m+1 \leq 3 R L / \epsilon$ and weights at most equal to $\max \left(2 L,\|g\|_{\infty}\right)$.
4. Using the approximation of the previous question, how many neurons are required to approximate function function $x \mapsto x^{2}$ on $[0,1]$ uniformly with an error at most equal to $\epsilon>0$?
5. Let

$$
\begin{aligned}
s(x) & = \begin{cases}2 x & \text { if } 0 \leq x \leq \frac{1}{2} \\
2-2 x & \text { if } \frac{1}{2} \leq x \leq 1 \\
0 & \text { otherwise }\end{cases} \\
& =2 r(x)-4 r\left(x-\frac{1}{2}\right)+2 r(x-1),
\end{aligned}
$$

and for all $m \geq 1$ let $s_{m}=\underbrace{s \circ \cdots \circ s}_{m \text { times }}$.

Plot (simple) ReLU networks implementing respectively s, s_{2} and s_{3}.
6. Show that for all $m \geq 1$, all $k \in\left\{0, \ldots, 2^{m-1}-1\right\}$ and all $t \in[0,1]$,

$$
s_{m}\left(\frac{k+t}{2^{m-1}}\right)=s(t)
$$

7. Let $g(x)=x^{2}$, and for $m \geq 0$ let $g_{m}(x)$ be such that for all $k \in\left\{0, \ldots, 2^{m}\right\}$:

- $g_{m}\left(\frac{k}{2^{m}}\right)=g\left(\frac{k}{2^{m}}\right)$,
- g_{m} is linear on $\left[\frac{k}{2^{m}}, \frac{k+1}{2^{m}}\right]$.

Show that for all $k \in\left\{0, \ldots, 2^{m}-1\right\}$ and all $t \in[0,1]$,

$$
g_{m}\left(\frac{k+t}{2^{m}}\right)-g\left(\frac{k+t}{2^{m}}\right)=\frac{t(1-t)}{4^{m}}
$$

8. Show that $\left\|g-g_{m}\right\|_{\infty}=\frac{1}{4^{m+1}}$ and for all $m \geq 2$,

$$
\begin{aligned}
& \frac{1}{4^{m+1}} \text { and for all } m \geq 2, \\
& g_{m}=g_{m-1}-\frac{1}{4^{m}} s_{m}=i d-\sum_{j=1}^{m} \frac{1}{4^{j}} s_{j}
\end{aligned}
$$

9. Deduce from the previous question (and plot) a neural network uniformly approximating g on $[0,1]$ with a maximal error of $\epsilon>0$.
10. Compare the networks of questions 4 and 9 .

** Hands on 8 Experimenting Deep Learning

See attached notebook.

Hands-on Session 10: Reinforcement Learning

Friday 19th March, 2020

** Exercise 14 Bellman's Transition Operator

1. Show that Bellman's Transition Operator $T_{\pi}: \mathbb{R}^{\mathcal{S}} \rightarrow \mathbb{R}^{\mathcal{S}}$ defined by

$$
T_{\pi}(V)=\bar{R}_{\pi}+\gamma K_{\pi} V
$$

is affine, isotonic $\left(U \leq V \Longrightarrow T_{\pi} U \leq T_{\pi} V\right)$ and γ-contractant: $\forall U, V \in \mathbb{R}^{\mathcal{S}}, \| T_{\pi} U-$ $T_{\pi} V\left\|_{\infty} \leq \gamma\right\| U-V \|_{\infty}$
2. Show that T_{π} has a unique fixed point equal to V_{π} and that

$$
\forall V_{0} \in \mathbb{R}^{\mathcal{S}}, \quad T_{\pi}^{n} V_{0} \underset{n \rightarrow \infty}{\rightarrow} V_{\pi} .
$$

**** Exercise $15 \quad$ Bellman's Optimality Operator
Show that Bellman's Optimality Operator $T_{*}: \mathbb{R}^{\mathcal{S}} \rightarrow \mathbb{R}^{\mathcal{S}}$ defined by

$$
\left(T_{*}(V)\right)_{s}=\max _{a \in \mathcal{A}}\left\{\bar{r}(s, a)+\gamma \sum_{s^{\prime} \in \mathcal{S}} k\left(s^{\prime} \mid s, a\right) V_{s^{\prime}}\right\} .
$$

is isotonic and γ-contractant. Besides, for every policy $\pi, T_{\pi} \leq T_{*}$ in the sense that $\forall U \in$ $\mathbb{R}^{S}, T_{\pi} U \leq T_{*} U$.
*** Exercise 16 Policy Improvement Lemma
Prove that for any policy π, any greedy policy π^{\prime} wrt V_{π} improves on π : $V_{\pi^{\prime}} \geq V_{\pi}$.

*** Exercise $17 \quad$ Bellman's Optimality Theorem

Prove that V_{*}, the unique fixed point of Bellman's optimality operator T_{*}, is the optimal value function:

$$
\forall s \in \mathcal{S}, V_{*}(s)=\max _{\pi} V_{\pi}(s)
$$

and any policy π such that $T_{\pi} V_{*}=V_{*}$ is optimal.

** Exercise 18 Correctness of the Value Iteration algorithm

Prove that the Value Iteration algorithm returns a value vector V such that $\left\|V-V_{*}\right\|_{\infty} \leq \epsilon$ using at most $\frac{\log \frac{M}{(1-\gamma) \epsilon}}{1-\gamma}$ iterations, where $M=\left\|T_{*} V_{0}-V_{0}\right\|_{\infty}$.

*** Exercise 19 Policy Improvement Lemma: Q-table form

Prove that for any two policies π and π^{\prime},

$$
\left[\forall s \in \mathcal{S}, Q_{\pi}\left(s, \pi^{\prime}(s)\right) \geq Q_{\pi}(s, \pi(s))\right] \Longrightarrow\left[\forall s \in \mathcal{S}, V_{\pi^{\prime}}(s) \geq V_{\pi}(s)\right]
$$

Furthermore, if one of the inequalities in the LHS is strict, then at least one of the inequalities in the RHS is strict

** Exercise 20 Bellman's Optimality Condition: Q-table formulation

Prove that a policy π is optimal if and only if

$$
\forall s \in \mathcal{S}, \pi(s) \in \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q_{\pi}(s, a)
$$

** Hands on 9 Retail Shop Management

See attached notebook.

