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Before we start



Outline

• 1. 01.17 Introduction to ML, Statistics 101

• 2. 01.24 Clustering

• 3. 01.31 Dimensionality Reduction: PCA, random projections

• 4. 02.07 Supervised Learning, Nearest Neighbors

• 5. 02.14 Bias-Variance Tradeoff, CART

• 6. 02.21 Ensemble methods: Boosting, Bagging, Random Forests

• 7. 02.28 Empirical risk minimization, Linear Separators

• 03.06 holidays

• 8. 03.13 Structural Risk Minimization, Kernels, Regularization

• 9. 03.20 Neural networks and stochastic gradient descent

• 10. 03.27 Online Learning

• 11. 04.03 Revisions

• 12. 04.10 free

• 13. 04.17 Final Exam
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Reference textbook

General introduction to

Machine Learning theory,

by two leading researchers

of the field.

Covers a good part of

the content of this course

(other references will be

provided for specific top-

ics).
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Additional References
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Evaluation

• 50% final exam

• 50% exercises and project; bonus for scribes

Project: a ”challenge-like” data science problem (to be presented later).

By groups of 4-5.
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What is Machine Learning?



Why Machine Learning?

6



What is Machine Learning?

• Algorithms operate by building a model from example inputs in

order to make data-driven predictions or decisions...

• ...rather than following strictly static program instructions: useful

when designing and programming explicit algorithms is unfeasible or

poorly efficient.

Within Artificial Intelligence

• evolved from the study of pattern recognition and computational

learning theory in artificial intelligence.

• AI: emulate cognitive capabilities of humans

(big data: humans learn from abundant and diverse sources of data).

• a machine mimics ”cognitive” functions that humans associate with

other human minds, such as ”learning” and ”problem solving”.
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Example: MNIST dataset
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Machine Learning (ML): Definition

Arthur Samuel (1959)

Field of study that gives computers the ability to learn without being

explicitly programmed

Tom M. Mitchell (1997)

A computer program is said to learn from experience E with respect to

some class of tasks T and performance measure P if its performance at

tasks in T, as measured by P, improves with experience E.
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Machine Learning: Typical Problems

• spam filtering, text classification

• optical character recognition (OCR)

• search engines

• recommendation platforms

• speach recognition software

• computer vision

• bio-informatics, DNA analysis, medicine

• etc.

For each of this task, it is possible but very inefficient to write an explicit

program reaching the prescribed goal.

It proves much more succesful to have a machine infer what the good

decision rules are.
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What is Statistical Learning?

= Machine Learning using statistics-inspired tools and guarantees

• Importance of probability- and statistics-based methods

→ Data Science (Michael Jordan)

• Computational Statistics: focuses in prediction-making through

the use of computers together with statistical models (ex: Bayesian

methods).

• Data Mining (unsupervised learning) focuses more on exploratory

data analysis: discovery of (previously) unknown properties in the

data. This is the analysis step of Knowledge Discovery in Databases.

• Machine Learning has more operational goals

Ex: consistency → oracle inequalities

Models (if any) are instrumental.

ML more focused on correlation, less on causality (now changing).

• Strong ties to Mathematical Optimization, which furnishes

methods, theory and application domains to the field
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The Learning Models



What ML is composed of

Machine Learning Unsupervised
Learning

Representation
learning

Clustering

Anomaly
detection

Bayesian
networks

Latent
variables

Density
estimation

Dimension
reduction

Supervised
Learning:

classification,
regression

Decition
Trees

SVM

Ensemble
Methods

Boosting

BaggingRandom
Forest

Neural
Networks

Sparse
dictionary
learning

Model
based

Similarity
/ metric
learning

Recommender
systems

Rule Learning

Inductive
logic pro-
gramming

Association
rule

learning

Reinforcement
Learning

Bandits MDP

• semi-supervised learning
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Unsupervised Learning

• (many) observations on (many) individuals

• need to have a simplified, structured overview of the data

• taxonomy: untargeted search for homogeneous clusters emerging

from the data

• Examples:

• customer segmentation

• image analysis (recognizing different zones)

• exploration of data
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Example: representing the climate of cities
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Supervised Learning

• Observations = pairs (Xi ,Yi )

• Goal = learn to predict Yi given Xi

• Regression (when Y is continuous)

• Classification (when Y is discrete)

Examples:

• Spam filtering / text categorization

• Image recoginition

• Credit risk ranking
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Reinforcement Learning

Agent

Environment

Learning

reward perception

Critic

actuation
action / state /

[Src: https://en.wikipedia.org/wiki/Reinforcement_learning]

• area of machine learning inspired by behaviourist psychology

• how software agents ought to take actions in an environment so as

to maximize some notion of cumulative reward.

• Model: random system (typically : Markov Decision Process)

• agent

• state

• actions

• rewards

• sometimes called approximate dynamic programming, or

neuro-dynamic programming
16
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Example: A/B testing
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Machine Learning Methodology



ML Data

n-by-p matrix X

• n examples = points of observations

• p features = characteristics measured for each example

Questions to consider:

• Are the features centered?

• Are the features normalized? bounded?

In scikitlearn, all methods expect a 2D array of shape (m, p) often

called

X (n_samples, n_features)
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Data repositories

• Inside R: package datasets

• Inside scikitlearn: package sklearn.datasets

• UCI Machine Learning Repository

• Challenges: Kaggle, etc.
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The big steps of data analysis

1. Extracting the data to expected format

2. Exploring the data

• detection of outliers, of inconsistencies

• descriptive exploration of the distributions, of correlations

• data transformations

• learning sample

• validation sample

• test sample

3. For each algorithm: parameter estimation using training and

validation samples

4. Choice of final algorithm using testing sample, risk estimation
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Machine Learning tools: R
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Machine Learning tools: python
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scikitlearn: http://scikit-learn.org/stable/index.html
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Knime, Weka and co: integrated environments
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Statistics 101



Statistical model

• Sample size: n

• Observation space: X
• Statistical model = pair (X n,P), where P is a family of probability

distributions on X n

• Observation: (X1, . . . ,Xn) ∼ P where P ∈ P
• Parametric model : P =

{
Pθ : θ ∈ Θ ⊂ Rd

}
• Product model: P =

{
Q⊗n : Q ∈ Q

} param
=

{
Q⊗nθ : θ ∈ Θ

}
• Bernoulli model: parametric product model with

Q = B(θ),Θ = [0, 1]
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Estimator

• Statistic = any function of (X1, . . . ,Xn) (and not θ!)

• Estimator of g(θ) = any statistic; a good estimator tries to be

”close” to g(θ) ”whatever the value of θ.

• Ex: Bernoulli model: θ̂n = X̄n, θ̃n = X1, θ̌n = 2
(
X1 + · · ·+ Xn/2

)
/n

• Bias of Tn: θ 7→ Eθ
[
Tn − g(θ)

]
• Consistant: Tn

P→ g(θ) when n→∞
• Quadratic risk: θ 7→ Eθ

[(
Tn − g(θ)

)2
]

• Minimax risk:

inf
Tn

sup
θ∈Θ

Eθ
[(
Tn − g(θ)

)2
]

Minimax estimator: reaches the minimax risk
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Moment Estimators

Definition: if θ = φ
(
Eθ[X1], . . . ,Eθ[X d

1 ]
)

, then

ĝn = φ
(1

n

n∑
i=1

Xi , . . . ,
1

n

n∑
i=1

X d
i

)

Prop: if Eθ[X d
1 ] <∞ and if φ is continuous, then ĝn is consistent

Ex: Bernoulli model θ = E [X1] −→ θ̂n = X̄n

More generally: if g(θ) = Eθ[X1], then ĝn = X̄n

Remark: best constant guess = expectation

Ex: Gaussian model
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Maximum Likelihood Estimator

Definition the likelihood function in a parametric model is

`(θ,X1, . . . ,Xn) =

{
Pθ(X1, . . . ,Xn) in a discret model

fθ(X1, . . . ,Xn) in a continuous model

Definition The maximum likelihood estimator of θ is defined by

θ̂n ∈ arg max
θ∈Θ

`(θ,X1, . . . ,Xn)

Ex: Bernoulli model:

`(θ,X1, . . . ,Xn) =
n∏

i=1

pX1 (1− p)1−Xi

and θ̂n = X̄n
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Linear Regression

Yi = β0 + β1Xi1 + · · ·+ βpXip + εi

with E[εi ] = 0,Var [εi ] = σ2 and (εi ) independent.

Matrix form: Y = Xβ + ε, with Xi,0 = 1,X =
(
Xij

)
∈Mn,p+1(R) and

Y ∈ Rn and ε random vector with range in Rn.

Least Mean Square estimator:

β̂n = arg min
β∈Rp+1

∥∥Y − Xβ
∥∥ =

(
XTX

)−1
XTY

if rank(X ) = p + 1.

• if εi
iid∼ N (0, σ2), the ML estimator is the LMS estimator and

β̂n ∼ N
(
β, σ2(XTX )−1

)
• simple regression: p = 1, β̂n,1 =

Covn(X ,Y )

Varn(X )
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