
Mathematics of Learning ?

Journée Thématique Machine Learning – Lyon Probability Seminar

Aurélien Garivier

Jan. 23rd , 2020

Table of contents

1. Framework: Machine Learning

2. Neural Networks

3. Learning with Neural Networks

1

Framework: Machine Learning

What we want to do: prediction

Phenomenon: observations (x , y) ∈ X × Y in a product of measurables

spaces X ⊂ Rp and Y ⊂ Rq.

Goal: predict y from x . Prediction error measure by loss

`(ŷ , y) = ‖ŷ − y‖2/2 typically.

Statistical hypothesis: there exists F : X × Ω→ Y such that the

observations are distributed as (X ,Y) where X has distribution PX and

Y = F (X , ω). Typically, Y = f (X) + ε where ε ∼ N (0, σ2).

Examples:

• classification (OCR, image recognition, text classification, etc.)

• regression (response to a drug, weather or stock price forecast, etc.)

Target: best possible guess of Y given X : f (X) = E[Y |X].

2

Machine Learning

Mechanism of f is complex or hidden. Access to f only thru examples

i.e. a sample Sn =
(
(X1,Y1), . . . , (Xn,Yn)

)
of random pairs

Learning algorithm An : Sn 7→ f̂n where f̂n ∈ F ⊂ YX ⊂ (Rq)R
p

F = hypothesis class = model. Example: linear regression

F =

fθ : x 7→

θi,0 +

p∑
j=1

θi,jxj


1≤i≤q

: θ ∈Mq,1+p(R)


Quality of prediction ŷ : loss function ` : Rq ×Rq → R+ e.g. `(ŷ , y) = (ŷ−y)2

2

Quality of hypothesis f ∈ F : generalization error = average loss

L(f) = E
[
`(f (X),Y)

]
expectation is on new observation (X,Y)

Quality of the learning algorithm A: risk = average average loss

Rn(An) = E
[
L(f̂n)

]
expectation is on sample Sn

3

Empirical Risk Minimization

Learning = how to find the best possible f ∈ F?

Ý Minimize the empirical loss = training error

Ln(f) =
1

n

n∑
k=1

`
(
f (Xk),Yk

)
average loss on the sample

= unbiased estimator of the generalization error L(f)

Empirical Risk Minimizer: f̂n ∈ arg min
f∈F

Ln(f)

Example: linear regression with quadratic loss (dates back at least to

Gauss) f̂n = fθ̂n where θ̂Tn = (XTX)−1XTY, with

X =

 1 X 1
1 . . . X p

1

. . .

1 X 1
n . . . X p

n

 and Y =

 Y1

...

Yn


Regression by polynomials of degrees 1, 2, . . . , n − 1 Ý more parameters

is not necessarily better, bias / variance tradeoff, Structural Risk

Minimization (penalize empirical risk by model complexity) 4

Neural Networks

Feedforward Neural Networks: Mimicking Brains?

Neuron: x 7→ σ
(
〈w , x〉+ b

)
with

• parameter w ∈ Rp, b ∈ R

• (non-linear) activation function σ : R→ R
typically σ(x) = 1

1+exp(−x) or σ(x) = max(x, 0) called ReLU

Layer: x 7→ σ
(
Mx + b) with

• parameter M ∈ Mq,p(R),b ∈ Rq

• component-wise activation function σ = σ⊗q

Network: composition of layers fθ = σD ◦ TD ◦ · · · ◦ σ1 ◦ T1 with
• architecture A =

(
D, (p1, . . . , pD−1)

)
• x0 = x , xd = σd

(
Tdxd−1) ∈ Rpd

• Tdx = Mdx + bd

• parameter θ = (M1,b1, . . . , . . . ,MD ,bD)

θ ∈ ΘA =
∏D

d=1Mpd−1,pd (R)× Rpd

• depth D (Bst. nb layers), width max1≤d≤D pd
5

Deep Neural Networks in the last Decade

Src: https://adeshpande3.github.io/

Several other important ideas:

• not fully connected layers

• convolution layers

• max-pooling

• dropout

• etc...

6

https://adeshpande3.github.io/

Learning with Neural Networks

How to learn with feedforward neural networks?

1. Choose architecture A =
[
D, (p1, . . . , pD−1)

]
• depth D?

• what architectures are good if f has some with given properties?

• activation function? sigmoid σ(x) = 1
1+exp(−x) or ReLU σ(x) = max(x, 0)

Ý approximation theory?

2. Learn = find the good coefficients using Sn
• Empirical Risk Minimization: f̂n solution of

min
Tk∈Mpd ,1+pd−1

(R)

1≤d≤D

1

n

n∑
k=1

`
(
σD ◦ TD ◦ · · · ◦ σ1 ◦ T1(Xk),Yk

)
• non convex, high-dimensional optimization problem

• but gradient can be computed by back-propagation

Ý does gradient descent work?

3. Apply f̂n to new data (X ,Y)

• how to bound the generalization error L(f̂n)?

• should we regularize = penalize large coefficients?

Ý no overfitting?

Ý How to explain the huge empirical success of deep learning? 7

Outline

Framework: Machine Learning

Neural Networks

Learning with Neural Networks

Approximation

Optimization

Generalization

8

Depth-2 Networks Are Universal

Cybenko [’89] Approximation by superposition of sigmoidal functions

Theorem

Let σ be any bounded, measurable (or continuous) function such that

σ(t)→ 0 as t → −∞ and σ(t)→ 1 as t →∞. Then for every

continuous function f on [0, 1]p there exists a width p1 and a depth-2

neural network fθ with activation functions σ1 = σ and σ2 = id

fθ(x) =

p1∑
j=1

αjσ
(
〈wj , x〉+ bj

)
such that ‖fθ − f ‖∞.

Proof:
• these functions σ are such that if for a measure µ on [0, 1]p∫

[0,1]p
σ
(
〈w , x〉+ b

)
dµ(x) = 0

for all w ∈ Rp and b ∈ R, then µ = 0.

• Hahn-Banach + Riesz representation: the closure of{
fθ : θ ∈Mp1,p+1(R)× Rp1

}
has empty complement 9

An Quantitative bounds for ReLU depth-2 networks

Lemma [e.g. Eldan&Shamir’16]

Let g : R→ R be constant outside of an interval [−R,R] and

L-Lipschitz. There exists a depth-2 ReLU network f with linear output

of width at most 8RL/ε and weights at most max
(
2L, ‖g‖∞

)
such that

‖f − g‖∞ ≤ ε.

Proof. If 2RL ≤ ε, take f to be constantly equal to g(−R).

Otherwise, take m = dRL/εe ≤ 2RL/ε, and let f be the piecewise linear function coinciding with

g at points xi = iε/L, i ∈ {−m, . . . ,m}, linear between xi and xi+1, and constant outsite of

[−x−m, xm]. Since g is L-Lipschitz, ‖f − g‖∞ ≤ ε. But f can be written as a depth-2 ReLU

network with 2m + 2 ≤ 8RL/ε neurons:

f (x) = f (x−m) +
m∑

i=−m

[
f ′(xi+)− f ′(xi−)

]
r(x − xi)

where f ′(xi+) = g(xi+1)− g(xi) and f ′(xi−) = g(xi)− g(xi−1) for all −m < i < m. Except

maybe for the constant f (x−m) = g(−R), the coefficients are bounded by

|g(xi+1)− g(xi)− g(xi)− g(xi−1)
∣∣ ≤ 2L.

10

Why deep learning, then? The dream

11

Depth is useful: sawteeth function

Let s(x) =


2x if 0 ≤ x ≤ 1

2

2− 2x if 1
2 ≤ x ≤ 1

0 otherwise

= 2r(x)− 4r

(
x − 1

2

)
+2r(x − 1)

and for all m ≥ 1 let sm = s ◦ · · · ◦ s︸ ︷︷ ︸
m times

Lemma

For all m ≥ 1, all k ∈
{

0, . . . , 2m−1 − 1
}

and all t ∈ [0, 1],

sm

(
k + t

2m−1

)
=

{
2t if t ≤ 1

2

2− 2t if t ≥ 1
2

12

Depth is useful: toy example

Let g(x) = x2, and for m ≥ 1 let gm(x) be such that ∀k ∈
{

0, . . . , 2m
}

:

• gm
(

k
2m

)
= g

(
k

2m

)
• gm is linear on

[
k

2m ,
k+1
2m

]
Lemma

For all k ∈
{

0, . . . , 2m−1 − 1
}

and all t ∈ [0, 1],

gm

(
k + t

2m−1

)
− g

(
k + t

2m−1

)
=

t(1− t)

4m

In particular, ‖g − gm‖∞ = 1
4m+1 and for all m ≥ 2,

gm = gm−1 −
1

4m
sm = id −

m∑
j=1

1

4j
sj

Corollary

For every ε > 0, there exists a neural network f of depth dlog4(1/ε)e,
width 3 and coefficients in [−4, 2] such that ‖f − g‖∞ ≤ ε on [0, 1]

13

Depth is useful: toy example

Lemma

‖g − gm‖∞ = 1
4m+1 and for all m ≥ 2,

gm = gm−1 −
1

4m
sm = id −

m∑
j=1

1

4j
sj

Corollary

For every ε > 0, there exists a neural network f of depth dlog4(1/ε)e,
width 3 and coefficients in [−4, 2] such that ‖f − g‖∞ ≤ ε on [0, 1]

x0= x x1= x x2= x − s(x)
4 xD = x − s(x)

4 − · · · −
sD−1(x)
4D−1

1

1

1

-1/2

-1/2 -1/2 -1/2

1

2

2

-4

2

-4

2

−2/4D−1

11

in

out
4/4D−1

-4-4

13

Examples

Square on [−1, 1]: |x | = r(x) + r(−x) Ý one additionnal width-2 layer is sufficient

Product: ∀x , y ∈ R, xy = [(x + y)2 − (x − y)2]/4 Ý same depth, width 5

Polynomials: approximated by products

Continuous functions on [0, 1]: use uniform approximation of Lagrange

interpolation at Chebishev’s points [Liang & Srikant ’19]

See [M. Telgarsky ’16-’19. Benefits of depth in neural networks]

See work and presentation by Rémi Gribonval

Exponential separation result: [Daniely ’17. Depth Separation for Neural

Networks]

14

Outline

Framework: Machine Learning

Neural Networks

Learning with Neural Networks

Approximation

Optimization

Generalization

15

Computing the Gradient by Backpropagation

For every layer d ∈ {1, . . . ,D}, we define the vector δd ∈ Rpd by

δd(i) = ∂r
∂xd (i) σ

′
d

(
x̃d(i)

)
Recursive Equations of Backpropagation

For the squared loss `(ŷ , y) = ‖ŷ−y‖2

2 ,

δD =
1

n

n∑
k=1

(f̂n(Xk)− Yk) . ∗ σ′d(x̃D(k))

δd−1 = MT
d δ

d . ∗ σ′d−1(x̃d−1)

∇Md
r = δd x

T
d−1

Cf. Automatic Differentiation.

16

Gradient Descent on the empirical loss

Let r(θ) = Ln(fθ) = 1
n

∑n
k=1 `

(
fθ(Xk),Yk

)
• The weights are initialized at random, e.g. θd0 (i , j) ∼ N (0, 1)

• Then, they are updated by gradient descent: θt = θt−1 − ηt∇r
• Possibility to penalize the empirical loss with ‖θ‖2 Ý adds a

tampering term in gradient descent

• Possibly Stochastic Gradient Descent: pick a point (or a batch) at

random (or turn on the data in epochs)

• convergence to a local minimum (and how to choose ηt)?

• to a global minimum? especially when over-parameterized?

See [Mei, Montanari, Nguyen ’18-’19. A Mean Field View of the

Landscape of Two-Layers Neural Networks]

17

Outline

Framework: Machine Learning

Neural Networks

Learning with Neural Networks

Approximation

Optimization

Generalization

18

Overfitting: the Double Descent Phenomenon

Src: https://openai.com

Classical statistics suggest that there are too many parameters wrt. the

number of observations, BUT this is not what is empirically observed!

Deep neural nets overfit, but (contrary to polynomials) they seem to

generalize well (especially in high dimension)

Ý how to explain that?

Beginning of answer: Benign Overfitting in Linear Regression Bartlett, by Long et al., 2019

19

https://openai.com

	Framework: Machine Learning
	Neural Networks
	Learning with Neural Networks
	Approximation
	Optimization
	Generalization

