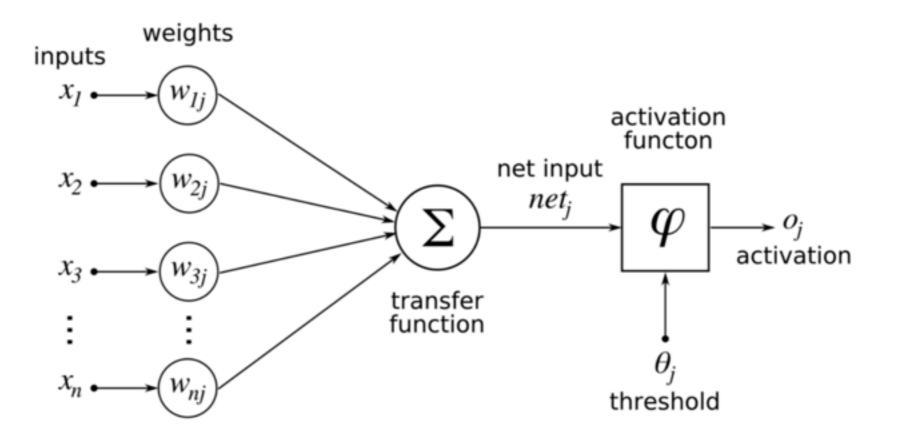
Machine Learning: Deep Learning

Yohann DE CASTRO and Aurélien GARIVIER



$$f(\mathbf{x}) = \phi(\langle \mathbf{w}, \mathbf{x} \rangle - \theta)$$

Activation functions

Linear

$$\phi(x) = x$$

Rectified linear

$$\phi(x) = \max(0, x)$$

• Sigmoid

$$\phi(x) = \frac{1}{1 + e^{-\gamma x}}$$

Hyperbolic tangent

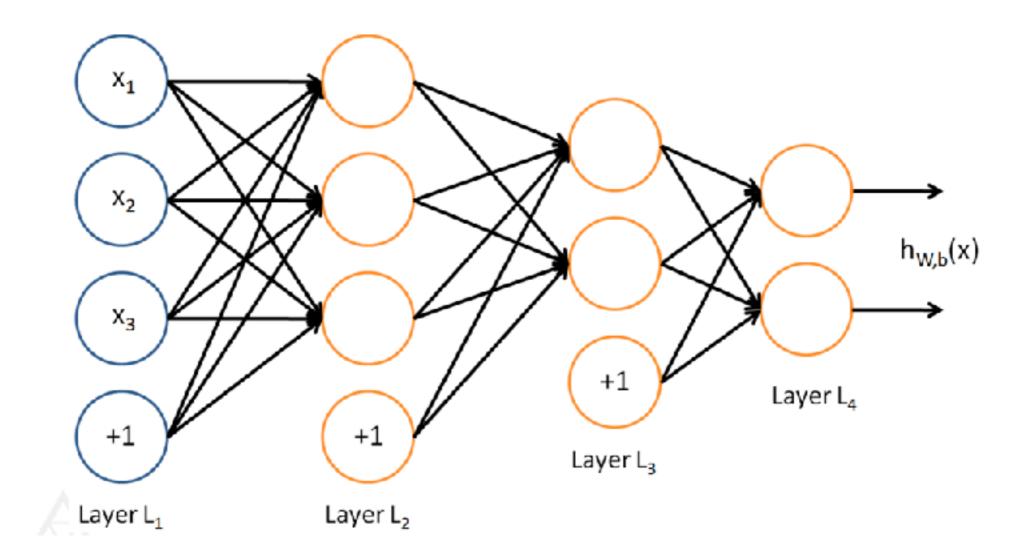
$$\phi(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Stochastic Gradient Descent

Given a loss function $l(y, f(\mathbf{x}))$, a training set $\mathcal{A} = \{(\mathbf{x}, y)\}$

- **1.** Draw a random sample (\mathbf{x}_i, y_i)
- **2.** Compute gradient $\delta_i = \frac{\partial l(y_i, f(\mathbf{x}_i))}{\partial \mathbf{w}}$
- **3.** Apply gradient $\mathbf{w} \leftarrow \mathbf{w} \eta \delta_i$

Multiple layer networks



ENSL

Multiple layer networks

Set layer *i* as the function:

$$f_i(\mathbf{x}) = [\sigma(\mathbf{w}_{ij}^\top \mathbf{x} + \theta_{ij})]_j$$

with

w_{ij}, θ_{ij} the weights and bias of neuron j
 σ the activation function
 Create a network by composing L layers:

$$F(\mathbf{x}) = f_L \circ \cdots \circ f_1(\mathbf{x})$$

6

Training procedure ERM principle

 $\min_{\{\mathbf{w}_i\}_i} \mathbb{E}_{(\mathbf{x},y)} \left[l(y, F(\mathbf{x})) \right]$

Stochastic gradient descent

$$\forall i, \mathbf{w}_i \leftarrow \mathbf{w}_i - \eta \mathbb{E}_{(\mathbf{x}, y)} \left[\frac{\partial l(y, F(\mathbf{x}))}{\partial \mathbf{w}_i} \right]$$

Monte-Carlo estimation with mini-batch strategy

$$\mathbb{E}_{(\mathbf{x},y)}\left[\frac{\partial l(y,F(\mathbf{x}))}{\partial \mathbf{w}_i}\right] \approx \frac{1}{N} \sum_n \frac{\partial l(y_n,F(\mathbf{x}_n))}{\partial \mathbf{w}_i}$$

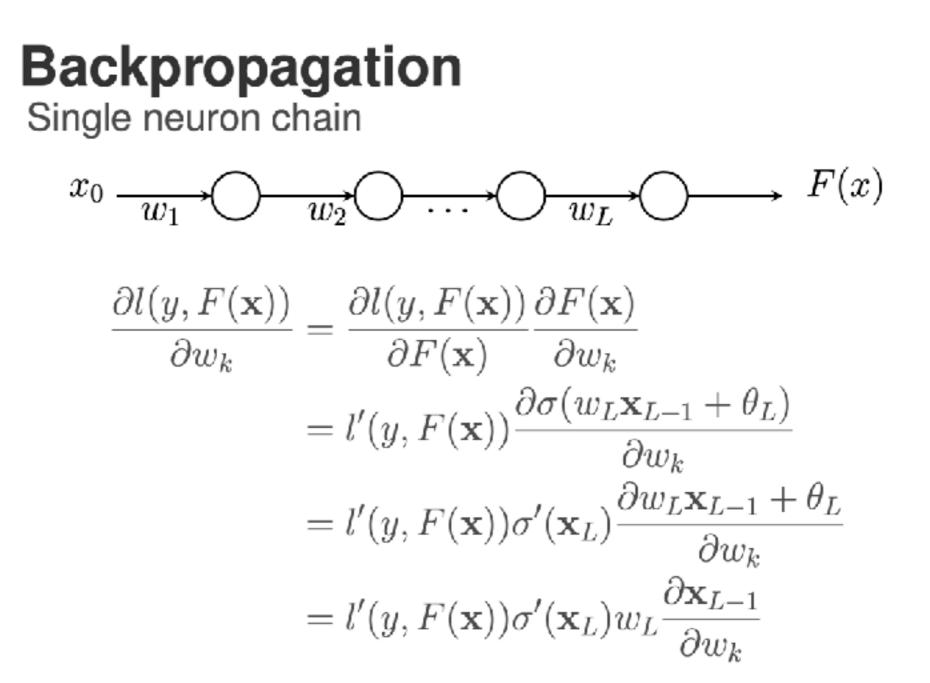
ENSL

Backpropagation

- Denote $\mathbf{x}_k = f_k \circ \cdots \circ f_1(\mathbf{x})$ the *k*-th intermediate output
- Denote $g_k(\mathbf{x}_k) = f_L \circ \cdots \circ f_{k+1}(\mathbf{x}_k)$ the output computed from \mathbf{x}_k
- Remark $\forall k, F(\mathbf{x}) = g_k(\sigma(\mathbf{w}_k^\top \mathbf{x}_{k-1} + \theta_k))$

Chain rule (Leibnitz notation)

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial z} \frac{\partial z}{\partial x}$$



Backpropagation

 $\frac{\partial \mathbf{x}_{L-1}}{\partial w_k} = \frac{\partial \sigma(w_{L-1}\mathbf{x}_{L-2} + \theta_{L-1})}{\partial w_k}$ $= \sigma'(\mathbf{x}_{L-1})w_{L-1}\frac{\partial \mathbf{x}_{L-2}}{\partial w_k}$ $\frac{\partial \mathbf{x}_{k+t+1}}{\partial w_k} = \sigma'(\mathbf{x}_{k+t+1})w_{k+t+1}\frac{\partial \mathbf{x}_{k+t}}{\partial w_k}$ $\frac{\partial \mathbf{x}_{k+1}}{\partial w_k} = \mathbf{x}_k$ $\frac{\partial l(y, F(\mathbf{x}))}{\partial w_k} = l'(y, F(\mathbf{x})) \prod^L \sigma'(\mathbf{x}_t) w_t \mathbf{x_k}$ t=k+1

Backpropagation

$$\begin{aligned} \frac{\partial \mathbf{x}_{k+t,j}}{\partial \mathbf{w}_k} &= \sum_i \sigma(\mathbf{x}_{k+t+1,i}) \mathbf{w}_{k+t+1,i} \frac{\partial \mathbf{x}_{k+t+1,i}}{\partial \mathbf{w}_k} \\ \frac{\partial \mathbf{x}_k}{\partial \mathbf{w}_k} &= \sigma'(\mathbf{x}_k) \mathbf{x}_{k-1} \end{aligned}$$

Recursion

$$\delta_{L,i} = l'(y, F(\mathbf{x}))\sigma'(\mathbf{x}_L)$$

$$\delta_k = \mathbf{w}_{k+1}(\sigma'(\mathbf{x}_{k+1}) \circ \delta_{k+1})$$

$$\frac{\partial l(y, F(\mathbf{x}))}{\partial \mathbf{w}_k} = \delta_k \circ \mathbf{x}_k$$

Algorithm

Forward pass

• Compute and store $\forall k, \mathbf{x}_k$

Backward pass

- Compute $l'(y, g_{k+1}(\mathbf{x}_{k+1}))$
- $\forall k$, compute δ_k
- Update \mathbf{w}_k using $l'(y, g_{k+1}(\mathbf{x}_{k+1})), \delta_k$ and \mathbf{x}_k

In practice, machine learning libraries (tensorflow, pytorch, ...) have auto-grad features ($F(\mathbf{x})$ is built from operators with known derivative)

Convolutional neural networks

Discrete convolution

$$h(\mathbf{x})(t) = \sum_{u} \mathbf{x}(t+u)\mathbf{w}(u)$$

Extension to vector valued signals

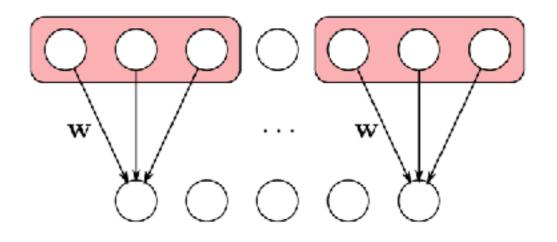
$$h(\mathbf{x})(t) = \sum_{u} \langle \mathbf{x}(t+u), \mathbf{w}(u) \rangle$$

Convolutional neuron

$$f(\mathbf{x}) = \left[\sigma\left(\sum_{u} \langle \mathbf{x}(t+u), \mathbf{w}(u) \rangle + \theta\right)\right]_{t}$$

ENSL

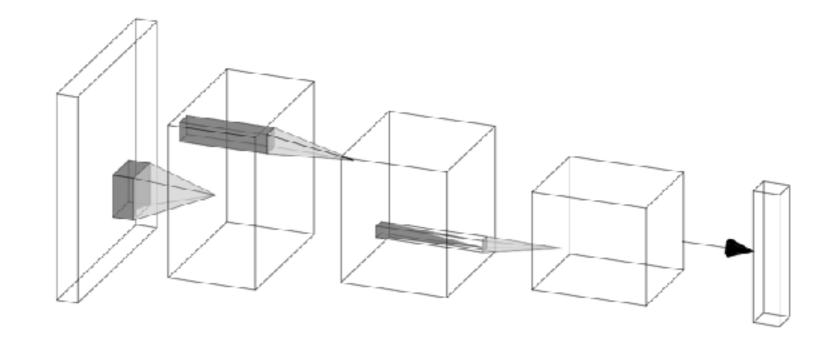
Convolutional neural networks



- Local connectivity
- Shared weight mechanism (much less weights)
- Location invariance

Inner product on a sliding window

Convolutional neural networks 2D case (images)



- Each neuron is a pattern detector
- The pattern is a combination of previous layer patterns

Pooling

• Small translation invariance (k steps) $m(\mathbf{x})(t) = \max_{u}(\mathbf{x}(t+u)), |u| \le k$

Global pooling

$$h(\mathbf{x}) = \frac{1}{|\mathbf{x}|} \sum_{t} \mathbf{x}(t)$$

Max (detection score) or Sum (counting score) pooling depending on signal properties

Batch Normalization

Covariate shift:

 $\circ \mathbf{w}_k$ update depends on the distribution \mathbf{x}_k

• Backpropagation changes x_k distribution Fix each neuron's distribution by standardization

$$h(\mathbf{x}) = \gamma \frac{\mathbf{x} - \mu}{\sigma} + \theta$$

 μ and σ are moving average, γ, θ are trainable

$$\mu \leftarrow (1 - \eta)\mu + \frac{\eta}{N} \sum_{i} \mathbf{x}_{i}$$
$$\sigma \leftarrow (1 - \eta)\sigma + \frac{\eta}{N} \sqrt{\sum_{i} (\mathbf{x}_{i} - \mu)^{2}}$$

Classification

Output a probability for each class

Independent classes: binary crossentropy

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$
 sigmoid output layer activation
$$l(y, F(\mathbf{x})) = (y - 1)\log(1 - F(\mathbf{x})) - y\log F(\mathbf{x})$$

Exclusive classes: categorical crossentropy

$$\sigma(x_i) = rac{e^{x_i}}{\sum_j e^{x_j}}$$
 softmax activation
 $d(y, F(\mathbf{x})) = -\sum_i y_i \log F(\mathbf{x})[i]$

ENSL

Stochastic gradient descent

Objective function

$$F(w) = \sum_{0 \le i \le n} f_i(w)$$

Gradient descent

$$w^{k+1} = w^k - \eta \nabla F(w^k)$$

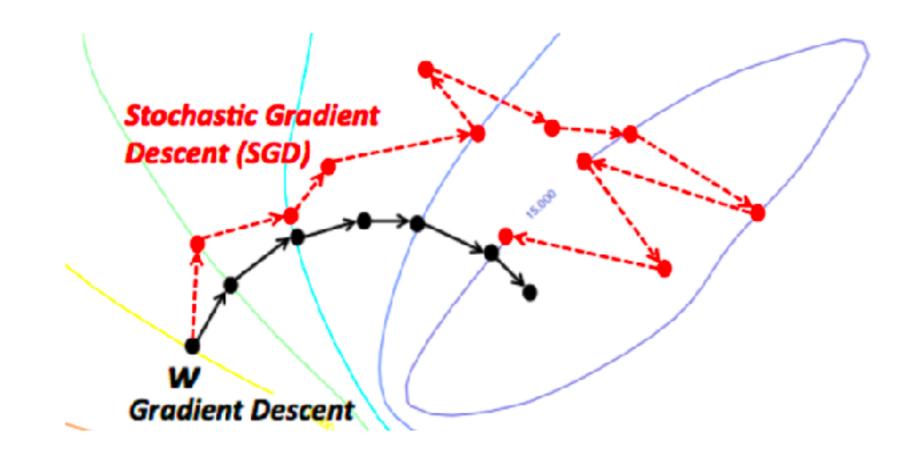
Stochastic gradient descent

$$w^{k+1} = w^k - \eta \nabla f_i(w^k), \quad i \sim \mathcal{U}(0, n)$$

Mini-batch stochastic gradient descent

$$w^{k+1} = w^k - \eta \sum_j \nabla f_{i_j}(w^k), \quad \forall j, i_j \sim \mathcal{U}(0, n)$$

Stochastic gradient descent



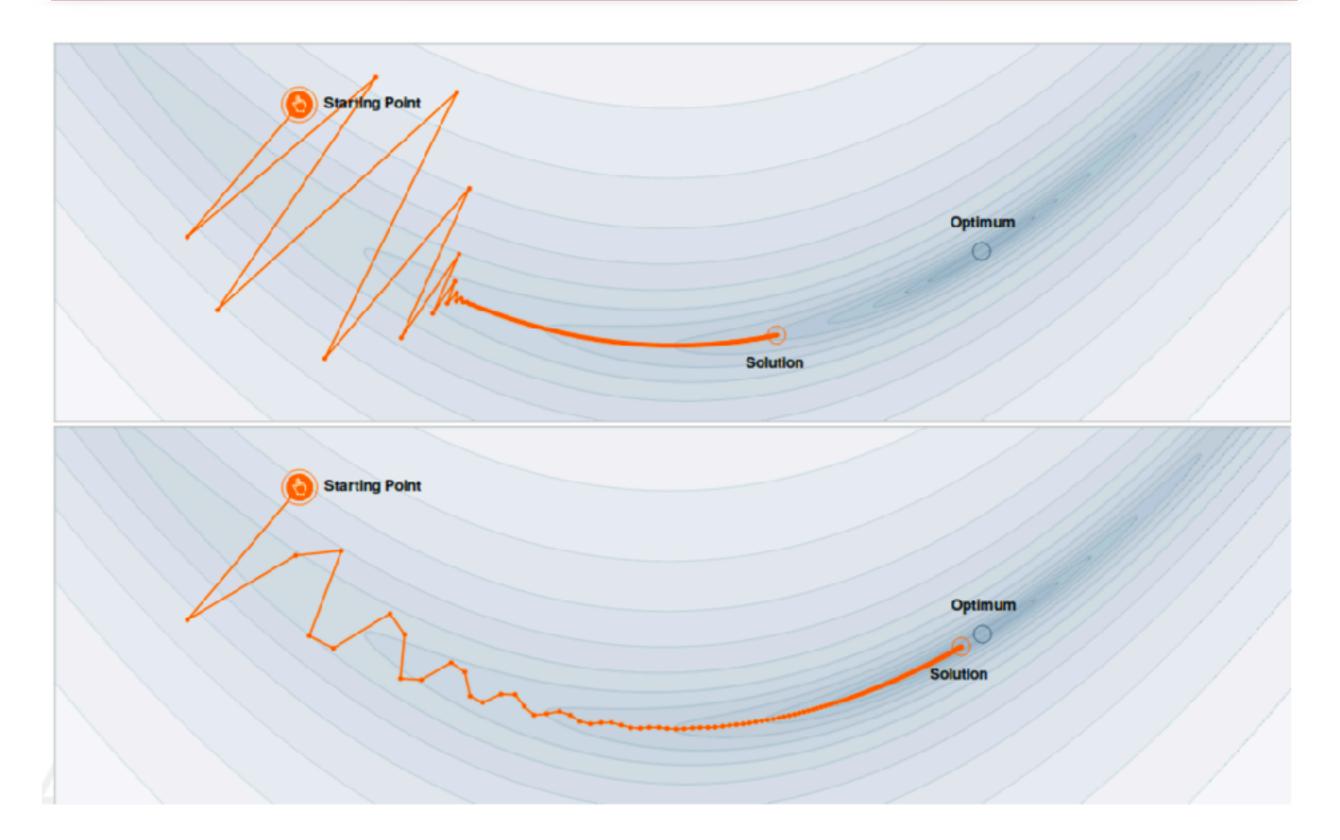
Decrease learning rate to ensure convergence

Momentum

$$z^{k+1} = \gamma z^k + (1-\gamma) \nabla f_i(w), \quad i \sim \mathcal{U}(0,n)$$
$$w^{k+1} = w^k - \eta z^{k+1}$$

- Cancel noise by averaging gradients
- Keeps the speed (avoid decreasing learning rates)
- $\gamma = 0.9$ typical values ($\gamma = 0.99$ for very small batch size)

SGD, back to rehab!



Nesterov Momentum

Look ahead gradient

$$z^{k+1} = \gamma z^k + (1 - \gamma) \nabla f_i (w^k - \eta z^k)$$
$$w^{k+1} = w^k - \eta z^k$$

