
Perfect Simulation of Processes with Long

Memory [arXiv:1106.5971]

Aurélien Garivier

CNRS & Telecom ParisTech

Groupe de travail “Modélisation” de Paris VII, le 31 Mai 2012

Coupling From the Past: Propp and Wilson’s algorithm

Outline

1 Coupling From the Past: Propp and Wilson’s algorithm

2 Chains of Infinite Order

3 Perfect Simulation for Chains of Infinite Order

4 Implementing the Algorithm

Coupling From the Past: Propp and Wilson’s algorithm

Stationary Markov Chains

Markov Chain (Xt)t∈Z on the finite set G = {1, . . . ,K}
Dynamical System Xt+1 = φ(Ut,Xt)

Kernel P (i, ·) ∈ M1(G), such that

∀i, j ∈ G, P(Xt+1 = j|Xt = i) = P (i, j)

Stationary distribution π such that πP = π

Coupling From the Past: Propp and Wilson’s algorithm

Simulating the chain

Problem given a kernel P , simulate a sample path
X0,X1, . . . ,Xn from the stationary Markov Chain
with kernel P

Update rule φ : [0, 1[×{1, . . . ,K} → {1, . . . ,K} such that

∀i, j ∈ G : λ
(

{u : φ(u, i) = j}
)

= P (i, j)

Recursion Given Xt, taking Xt+1 = φ(Ut,Xt) works

=⇒ it is sufficient to sample X0 from π.

Coupling From the Past: Propp and Wilson’s algorithm

Coupling from the Past: the idea

Idea: given the sequence (Ut)t≤0, I may know X0 even if I do not
know the value of X−8!

Coupling From the Past: Propp and Wilson’s algorithm

Coupling from the Past: more formally

Local transition for each t < 0 let ft : G → G be defined by

ft(g) = φ(Ut, g)

Iterated transition Ft = f−1 ◦ · · · ◦ ft
Propp-Wilson: if you know Ut for all t ≥ τ(n), where

τ(n) = sup{t < 0 : Ft is constant} ,

then you know X0.

Prop: τ(n) is of the same order of magnitude as the mixing

time of the chain!

Coupling From the Past: Propp and Wilson’s algorithm

The Nummelin update rule

Nummelin coefficient:

A1 =
K
∑

j=1

min
1≤i≤K

P (i, j)

Update rule φ : [0, 1[×G → G such that

u ≤ A1 =⇒ ∀i, i′ ∈ G, φ(u, i) = φ(u, i′)

Regeneration if Ut ≤ A1, then Xt+1,Xt+2 . . . , is independent
from Xt,Xt−1,

=⇒ alternative coupling from the past: wait for a
regeneration!

Chains of Infinite Order

Outline

1 Coupling From the Past: Propp and Wilson’s algorithm

2 Chains of Infinite Order

3 Perfect Simulation for Chains of Infinite Order

4 Implementing the Algorithm

Chains of Infinite Order

Context Tree Sources

Variable Length Markov Chains: the order of the chain is allowed
to depend on the past according to some tree structure

Example : T = {1, 10, 100, 000}

P(X4
1 = 00110|X0

−1 = 10)

= P(X1 = 0|X0
−1 = 10)

× P(X2 = 0|X1
−1 = 100)

× P(X3 = 1|X2
−1 = 1000)

× P(X4 = 1|X3
−1 = 10001)

× P(X5 = 0|X4
−1 = 100011)

Chains of Infinite Order

Context Tree Sources

Variable Length Markov Chains: the order of the chain is allowed
to depend on the past according to some tree structure

Example : T = {1, 10, 100, 000}

P(X4
1 = 00110|X0

−1 = 10)

= P(X1 = 0|X0
−1 = 10) 3/4

× P(X2 = 0|X1
−1 = 100)

× P(X3 = 1|X2
−1 = 1000)

× P(X4 = 1|X3
−1 = 10001)

× P(X5 = 0|X4
−1 = 100011)

Chains of Infinite Order

Context Tree Sources

Variable Length Markov Chains: the order of the chain is allowed
to depend on the past according to some tree structure

Example : T = {1, 10, 100, 000}

P(X4
1 = 00110|X0

−1 = 10)

= P(X1 = 0|X0
−1 = 10) 3/4

× P(X2 = 0|X1
−1 = 100) 1/3

× P(X3 = 1|X2
−1 = 1000)

× P(X4 = 1|X3
−1 = 10001)

× P(X5 = 0|X4
−1 = 100011)

Chains of Infinite Order

Context Tree Sources

Variable Length Markov Chains: the order of the chain is allowed
to depend on the past according to some tree structure

Example : T = {1, 10, 100, 000}

P(X4
1 = 00110|X0

−1 = 10)

= P(X1 = 0|X0
−1 = 10) 3/4

× P(X2 = 0|X1
−1 = 100) 1/3

× P(X3 = 1|X2
−1 = 1000) 4/5

× P(X4 = 1|X3
−1 = 10001)

× P(X5 = 0|X4
−1 = 100011)

Chains of Infinite Order

Context Tree Sources

Variable Length Markov Chains: the order of the chain is allowed
to depend on the past according to some tree structure

Example : T = {1, 10, 100, 000}

P(X4
1 = 00110|X0

−1 = 10)

= P(X1 = 0|X0
−1 = 10) 3/4

× P(X2 = 0|X1
−1 = 100) 1/3

× P(X3 = 1|X2
−1 = 1000) 4/5

× P(X4 = 1|X3
−1 = 10001) 1/3

× P(X5 = 0|X4
−1 = 100011)

Chains of Infinite Order

Context Tree Sources

Variable Length Markov Chains: the order of the chain is allowed
to depend on the past according to some tree structure

Example : T = {1, 10, 100, 000}

P(X4
1 = 00110|X0

−1 = 10)

= P(X1 = 0|X0
−1 = 10) 3/4

× P(X2 = 0|X1
−1 = 100) 1/3

× P(X3 = 1|X2
−1 = 1000) 4/5

× P(X4 = 1|X3
−1 = 10001) 1/3

× P(X5 = 0|X4
−1 = 100011) 2/3

Chains of Infinite Order

Histories

History w = w−∞:−1 ∈ G−N
∗

Ultrametric distance δ(w, z) = 2sup{k<0:wk 6=zk}

=⇒ (G−N∗

, δ) is a complete and compact set.

Ball B ⊂ G−N∗

is a (closed or open) ball if

B =
{

zs : z ∈ G−N∗

}

for some s ∈ G∗

Trees and roots B = T (s), s = R(B)

Ex: T (ε) = G−N
∗

, the radius of T (s) is 2−|s|−1

Piecewise constant A mapping f defined on G−N
∗

is piecewise
constant if the exists a family {sj}j∈N of elements of
G−N∗

such that f is constant on each ball T (sj).

Projection Πn : G−N∗ → Gn be defined by Πn(w) = wn:−1.

Chains of Infinite Order

Kernels

Kernel P : G−N∗ → M1(G)

Total Variation distance: for p, q ∈ M1(G),

|p− q|TV =
1

2

∑

a∈G

|p(a)− q(a)| = 1−
∑

a∈G

p(a)∧ q(a)

Process (Xt)t∈Z with distribution ν on GZ is compatible with
kernel P if the latter is a version of the one-sided
conditional probabilities of the former:

ν (Xi = g|Xi+j = wj , j ∈ −N
∗) = P (g|w)

for all i ∈ Z, g ∈ G and ν-almost every w.

Chains of Infinite Order

Kernel continuity

continuity P :
(

G−N∗

, δ
)

→ (M1(G), | · |TV)

oscillation of P on the ball T (s)

η(s) = sup
{
∣

∣P (·|w)− P (·|z)
∣

∣

TV
: w, z ∈ T (s)

}

.

P1: P is continuous if and only if
∀w ∈ G−N

∗

, η(w−k:−1) → 0 as k goes to infinity.

P2: P is continuous if and only if
sup{η(s) : s ∈ G−k} → 0 as k goes to infinity.

P3: P is uniformly continuous if and only it is continuous.

Perfect Simulation for Chains of Infinite Order

Outline

1 Coupling From the Past: Propp and Wilson’s algorithm

2 Chains of Infinite Order

3 Perfect Simulation for Chains of Infinite Order

4 Implementing the Algorithm

Perfect Simulation for Chains of Infinite Order

Existing CFP algorithms

Comets, Fernandez, Ferrari 2002 simulation algortithm using a
Kalikow-type decomposition of the kernel as a
mixture of Markov Chains of all orders. Require
strong continuity conditions.

De Santis, Piccioni mix the ideas of CFF and the algorithm of PW:
they propose an hybrid simulation scheme working
with a Markov regime and a long-memory regime.

Gallo 2010 Relaxes the continuity condition, replaced by
conditions on the shape of the memory tree.

Our goal: describe a single procedure that generalizes the
sampling schemes of CFF and PW in an unified
framework.

Perfect Simulation for Chains of Infinite Order

Update rules

Def: φ : [0, 1[×G−N∗ → G is called an update rule of P if

U ∼ U([0, 1[) =⇒ φ(U,w) ∼ P (·|w)

for all w ∈ G−N∗

.

Prop: There exists an update rule φ of P such that:

∀s ∈ G∗, 0 ≤ u < 1−|G|η(s) =⇒ φ(u, ·) cst on T (s) .

Prop: If P is continuous, then for all u ∈ [0, 1[the mapping
w → φ(u,w) is continuous, i.e, piecewise constant.

Perfect Simulation for Chains of Infinite Order

Perfect Simulation Scheme

Goal: draw (Xn, . . . ,X−1) from a stationary distribution
compatible with P

Tool: semi-infinite sequence of i.i.d. random variables
Ut ∼ U([0, 1[)

Idea: St = (. . . ,Xt−1,Xt), t ∈ Z is a Markov Chain on
G−N

∗

, with kernel Q given by:

∀w, z ∈ G−N
∗

, Q(w|z) = P (w−1|z)1wi−1=zi:i<0 .

Perfect Simulation for Chains of Infinite Order

A Propp-Wilson Scheme

Local transition ft : G
−N∗ → G−N∗

be defined by
ft(w) = wφ(Ut, w);

Iterated transition Ft = f−1 ◦ · · · ◦ ft
Projection Hn

t = Πn ◦ Ft

Continuity: Hn
t is a piecewise constant mapping

Propp-Wilson: if you wait for

τ(n) = sup{t < n : Hn
t is constant} ,

you will know (Xn, . . . ,X−1)

Perfect Simulation for Chains of Infinite Order

Local Continuity Coefficients

For every w ∈ G−N∗

the continuity of kernel P is locally
characterized by the coefficients

ak(g|w−k:−1) = inf{P (g|z) : z ∈ T (w−k:−1)}
Ak(w−k:−1) =

∑

g∈G

ak(g|w−k:−1)

A−
k = inf

s∈G−k

Ak(s)

αk(g|w−k:−1) = Ak−1(w−k+1:−1) +
∑

h<g

{ak(h|w−k:−1)− ak−1(h|w−k+1:−1)}

βk(g|w−k:−1) = Ak−1(w−k+1:−1) +
∑

h≤g

{ak(h|w−k:−1)− ak−1(h|w−k+1:−1)}

Perfect Simulation for Chains of Infinite Order

Local characterization of the kernel continuity

Let P be a fixed kernel on G.
Prop: For all s ∈ G∗,

1− |G|η(s) ≤ A|s|(s) ≤ 1− η(s) .

Prop: The three assertions are equivalent:

(i) the kernel P is continuous;

(ii) ∀w ∈ G−N∗

, Ak(w−k:−1) → 1 as k → ∞;

(iii) A−
k → 1 as k goes to infinity.

Perfect Simulation for Chains of Infinite Order

Construction of the update rule

Prop: For every w ∈ G−N
∗

,

[0, 1[=
⊔

g∈G,k∈N

[αk(g|w−k:−1), βk(g|w−k:−1)[.

Def: The mapping φ : [0, 1[×G−N∗ → G is defined as follows:

φ(u,w) =
∑

g∈G,k∈N

g1[αk(g),βk(g)[(u) .

Prop: φ is an update rule such that ∀s ∈ G∗,∀u ∈ [0, 1]:

∀w, z ∈ T (s), u < A|s|(s) =⇒ φ(u,w) = φ(u, z) .

Perfect Simulation for Chains of Infinite Order

Illustration

Figure: Graphical representation of an update rule φ on alphabet
{0, 1, 2}: for each w−k:−1, the intervals [αk(g|w−k:−1), βk(g|w−k:−1)[
are represented in blue (g = 0), red (g = 1) and green (g = 2). For
example, P (1|1) = α0(1|ε) + α1(1|1) = 1/8 + 1/4, and
P (0|00) = α0(0|ε) + α1(0|0) + α2(0|00) = 1/4 + 1/8 + 0.

Implementing the Algorithm

Outline

1 Coupling From the Past: Propp and Wilson’s algorithm

2 Chains of Infinite Order

3 Perfect Simulation for Chains of Infinite Order

4 Implementing the Algorithm

Implementing the Algorithm

Complete suffix Dictionaries

Def: a (finite or infinite) set of words D ⊂ P(G∗) is a CSD if one
of the following equivalent properties is satisfied:

every w ∈ G−N
∗

has a unique suffix in D:

∀w ∈ G−N∗

,∃!s ∈ D : w � s ;

{T (s) : s ∈ D} is a partition of G−N∗

:

G−N
∗

= ⊔s∈D T (s) .

The depth of D is

d(D) = sup{|s| : s ∈ D}

The smallest possible CSD is {ǫ}: it has depth 0 and size 1.
The second smallest is G, it has depth 1.

Implementing the Algorithm

Representation as a trie
A CSD D can be represented by a trie, that is, a tree with edges
labelled by elements of G such that the path from the root to any
leaf is labelled by an element of D.

10

0 1

Figure: Left: the trie representing the Complete Suffix Dictionary
D = {0, 01, 11}. Right: {00, 10, 001, 101, 11} � {0, 01, 11}. Both
examples concern the binary alphabet.

If D and D′ are such that ∀s ∈ D′, s � D, then we note D′ � D.

Implementing the Algorithm

Piecewise constant functions

Def: For a CSD D, we say that a function f defined on
G−N

∗

is D-constant if

∀s ∈ D,∀w ∈ T (s), f(w) = f(0s) .

Def: For every h ∈ G−N∗ ∪G∗ we define

f(h) = f(T (h)) = f
(

~D(h)
)

and note that if

h � D, f(h) is a singleton.

Minimal CSD Df = CSD with minimal cardinality such that f is
constant on each of its elements.

Pruning if f is D-constant, then Df can be obtained by
recursive pruning of D.

Implementing the Algorithm

Recursive construction of Hn
t

The mapping Hn
t being piecewise constant, we define Dn

t = DHn
t .

Initialization: D−1
−1 = G, ∀g ∈ G,∀w ∈ T (s),H−1

−1 (w) = g.

For t < −1, s ∈ D(Ut) denote {gt(s)} = φ(Ut, s) and define
En

t (s) as follows:
if sgt(s) � Dn

t+1, let E
n
t (s) = {s};

otherwise, let

En
t (s) =

⋃

hgt(s)∈Dn

t+1
(sgt(s))

{h} .

Let
En

t =
⋃

s∈D(Ut)

En
t (s) .

En
t is a CSD, and Hn

t is En
t -constant.

Dn
t is obtained by pruning En

t

for t = n, Dt
t is equal to Dt+1

t unless Dt+1
t = {ǫ}, in which

case Dt
t = G.

Implementing the Algorithm

How it works

pruning

completion
1

1

1

1

1 0

1 1 0

1

1 0

1

Dk+1:t and Hk+1:t

Dk:t and

Ek:t and H

0

Dk and φ(Uk, ·)

Figure: Obtaining Dn
t from Dt and Dn

t+1. For each function
φ(Ut, ·), Dn

t+1 and Dn
t , we represent a CSD on which it is constant, and

the values taken in each leaf; here, G = {0, 1}.

Implementing the Algorithm

Example

Renewal process For all k ≥ 0, let

P (0|01k) = 1− 1/
√
k

Not Harris Observe that P (1|0) = limk→∞ P (0|01k) = 1, so
that a0 = 0.

Slow continuity for k ≥ 0, Ak+1 = Ak(01
k) = 1− 1/

√
k, so that

∑

n

n
∏

k=2

A−
k < ∞

=⇒ the continuity conditions of [Comets,
Fernandez, Ferrari] and [De Santis, Piccioni] do not
apply.

yet the algorithm works well

Implementing the Algorithm

Example: the coupling illustrated

Figure: Graphical representation of the of P - blue stands for 0, red
stands for 1

Implementing the Algorithm

Conclusion

The perfect simulation scheme described in this presentation is

Versatile: works as well for Markov Chains and for (mixing)
infinite memory processes

Powerful: needs weak continuity assumptions to converge

Fast: for (large order) Markov chains, much faster than
Propp-Wilson’s algorithm on the extended chain: all
the tries encountered in the algorithm are of size at
most |D| × d(D) ≪ 2|D|.

but a little hard to implement...

	Coupling From the Past: Propp and Wilson's algorithm
	Chains of Infinite Order
	Perfect Simulation for Chains of Infinite Order
	Implementing the Algorithm

