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Stationary Markov Chains

Markov Chain (X)tez on the finite set G = {1,..., K}
Dynamical System Xy = ¢(Uy, Xt)
Kernel P(i,-) € Mi(G), such that

Vi,j € G, P(Xy1 =j|Xe =1) = P(i,7)

Stationary distribution 7 such that 7P =7



Coupling From the Past: Propp and Wilson's algorithm

Simulating the chain

Problem given a kernel P, simulate a sample path
Xo,X1,...,X, from the stationary Markov Chain
with kernel P

Update rule ¢ : [0,1[x{1,...,K} — {1,..., K} such that
Vij€ G AM{u: ¢(u.d) = j}) = PG, )

Recursion Given X3, taking X1 = ¢(Uy, X¢) works

— it is sufficient to sample X, from 7.



Coupling from the Past: the idea

Idea: given the sequence (Uy)i<o, | may know X even if | do not
know the value of X _g!

HLVLS




Coupling From the Past: Propp and Wilson's algorithm

Coupling from the Past: more formally

Local transition for each t < 0 let f; : G — G be defined by

fi(g) = ¢(Ut, 9)

Iterated transition Fy = f_jo0---0 f;
Propp-Wilson: if you know U, for all t > 7(n), where

7(n) = sup{t < 0: F; is constant} ,

then you know Xj.

Prop: 7(n) is of the same order of magnitude as the mixing
time of the chain!



Coupling From the Past: Propp and Wilson's algorithm

The Nummelin update rule

Nummelin coefficient:
K

s P
1 j_llglgnK (4, 7)

Update rule ¢ :[0,1[xG — G such that
u< Ay = Vi,i' € G, ¢(u,i) = ¢(u,i’)

Regeneration if Uy < Ay, then Xyy1, Xy49..., is independent
from X;, Xi_1,....

= alternative coupling from the past: wait for a
regeneration!
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Chains of Infinite Order

Context Tree Sources

Variable Length Markov Chains: the order of the chain is allowed
to depend on the past according to some tree structure
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Chains of Infinite Order

Histories

History w = w_oe:—1 € G
Ultrametric distance §(w, z) = 2°WP{k<Owizzr}

— (G™N",9) is a complete and compact set.
Ball B C G~ is a (closed or open) ball if

B = {gs:ge G_N*} for some s € G*

Trees and roots B =T(s), s = R(B)
Ex: T(e) = G™N", the radius of T (s) is 2715I-1
Piecewise constant A mapping f defined on G™N" is piecewise

constant if the exists a family {s;};cn of elements of
G~ such that f is constant on each ball 7(s;).

Projection II" : G™N" — G™ be defined by 1" (w) = wp._1.



Chains of Infinite Order

Kernels

Kernel P: G™N" = My (G)
Total Variation distance: for p,q € M1(G),

p—qlrv = = le (@) =1->_p(a)

aEG aeG

Process (X¢)tez with distribution v on GZ is compatible with
kernel P if the latter is a version of the one-sided
conditional probabilities of the former:

v(X; =g|Xitj =wj,j € =N*) = P(glw)

for all i € Z,g € G and v-almost every w.



Chains of Infinite Order

Kernel continuity

continuity P : (G™N',8) = (M1(G),| - |1v)
oscillation of P on the ball T (s)

n(s) = sup {|P(w) — P([2)] gy w2 € T(s)}

P1. P is continuous if and only if
Vw € GV n(w_p._1) — 0 as k goes to infinity.
P2: P is continuous if and only if
sup{n(s) : s € G™*} — 0 as k goes to infinity.
P3: P is uniformly continuous if and only it is continuous.
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Existing CFP algorithms

Comets, Fernandez, Ferrari 2002 simulation algortithm using a
Kalikow-type decomposition of the kernel as a
mixture of Markov Chains of all orders. Require
strong continuity conditions.

De Santis, Piccioni mix the ideas of CFF and the algorithm of PW:
they propose an hybrid simulation scheme working
with a Markov regime and a long-memory regime.

Gallo 2010 Relaxes the continuity condition, replaced by
conditions on the shape of the memory tree.
Our goal: describe a single procedure that generalizes the
sampling schemes of CFF and PW in an unified
framework.



Update rules

Def: ¢ :[0,1[xG™™" — G is called an update rule of P if
U~U(0,1)) = ¢(U,w) ~ P(|w)

for all w e GV,
Prop: There exists an update rule ¢ of P such that:

Vs e G*,0 <u<1-|Gn(s) = ¢(u,-) cston T(s).

Prop: If P is continuous, then for all u € [0, 1] the mapping
w — ¢(u,w) is continuous, i.e, piecewise constant.



Perfect Simulation for Chains of Infinite Order

Perfect Simulation Scheme

Goal:

Tool:

Idea:

draw (X,,...,X_1) from a stationary distribution
compatible with P

semi-infinite sequence of i.i.d. random variables
Ut ~ U([O, 1[)

Sy =(...,X4-1,X4),t € Z is a Markov Chain on
G~ with kernel @ given by:

Vw,z € GV Qw|z) = P(w_1]2) L, =2i<0 -



A Propp-Wilson Scheme

Local transition f; : G™N" — G™N" be defined by
fr(w) = wo(U, w);
Iterated transition Fy = f_10---0 f;
Projection H) =11" o F}
Continuity: HJ* is a piecewise constant mapping

Propp-Wilson: if you wait for
7(n) = sup{t < n: H{" is constant} ,

you will know (X,,,..., X 1)



Perfect Simulation for Chains of Infinite Order

Local Continuity Coefficients

For every w € G™N" the continuity of kernel P is locally
characterized by the coefficients

ap(glw_p.—1) = inf{P(glz) : 2 € T (w_p:—1)}
Ap(w_ge1) = Y ak(glw_p1)

geG
A= inf A
C L, A
ap(glw—p.—1) = Ap—1 (W_kt1:.-1) + Z {ar(hlw_p:—1) — ag—1 (h|w_t4+1.-1)}

h<g

Br(glw—p:—1) = Ap—1(W_pg1:-1) + Z {ag(h|lw_g:—1) — ar—1(h|lw_k+1:-1)}
h<g



Perfect Simulation for Chains of Infinite Order

Local characterization of the kernel continuity

Let P be a fixed kernel on G.
Prop: For all s € G*,

1= [Gln(s) < Ap(s) <1 n(s) .

Prop: The three assertions are equivalent:

(i) the kernel P is continuous;

(i) Vw € GV, Ap(w_p.1) — 1 as k — o0;
(i) A, — 1 as k goes to infinity.



Perfect Simulation for Chains of Infinite Order

Construction of the update rule

Prop: For every w € GV,

[07 1[: |_| [ak(g‘w—k:—l)v/Bk(g‘w—k:—l)[ :

g€G,keN

Def: The mapping ¢ : [0, 1[xG™N" — G is defined as follows:

Sluw) = D gl (g) (e (W) -

g€G,keN
Prop: ¢ is an update rule such that Vs € G*,Vu € [0, 1]:

Vw,z € T(s), u<Ay(s) = d(u,w)=o(u,z) .



Perfect Simulation for Chains of Infinite Order

[llustration

Figure: Graphical representation of an update rule ¢ on alphabet
{0,1,2}: for each w_y._1, the intervals [a(g|w—_r.—1), B (glw—g.—1)]
are represented in blue (g = 0), red (g = 1) and green (g = 2). For
example, P(1]1) = ao(1l|e) + a1 (1]1) =1/8 4+ 1/4, and

P(0]00) = ap(0]e) + a1 (0]0) + a2(0]00) = 1/4 + 1/8 + 0.
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Implementing the Algorithm

Complete suffix Dictionaries

Def: a (finite or infinite) set of words D C P(G*) is a CSD if one
of the following equivalent properties is satisfied:

m every w € G~V has a unique suffix in D:
Vwe G N seD:wrs;
m {T(s):s¢€ D} is a partition of G™N" :
G™N =lepT(s).
The depth of D is
d(D) = sup{|s| : s € D}

The smallest possible CSD is {¢}: it has depth 0 and size 1.
The second smallest is G, it has depth 1.



Implementing the Algorithm

Representation as a trie
A CSD D can be represented by a trie, that is, a tree with edges
labelled by elements of (G such that the path from the root to any
leaf is labelled by an element of D.

Figure: Left: the trie representing the Complete Suffix Dictionary
D ={0,01,11}. Right: {00,10,001,101,11} = {0,01,11}. Both
examples concern the binary alphabet.

If D and D' are such that Vs € D', s = D, then we note D' = D.



Implementing the Algorithm

Piecewise constant functions

Def: For a CSD D, we say that a function f defined on
G~N"is D-constant if

Vs € D,Yw € T(s), f(w) = f(0s) .

Def: For every h € G™V" U G* we define
f(h)=f(T(h)=f (ﬁ(h)) and note that if
h = D, f(h) is a singleton.

Minimal CSD Df = CSD with minimal cardinality such that f is
constant on each of its elements.

Pruning if f is D-constant, then Df can be obtained by
recursive pruning of D.



Implementing the Algorithm

Recursive construction of H}'
The mapping H}* being piecewise constant, we define D = DH¢"

= Initialization: D™} = G, Vge G,Yw e T(s), H {(w) = g.
m Fort < —1, s € D(Uy) denote {g:(s)} = ¢(Uy, s) and define
E}(s) as follows:
m if sg;(s) = D}y, let EP(s) = {s};
m otherwise, let

o= U o

hg:(s)€DY,  (s9:(s))

m Let
Er= |J EMNs).
s€D(Uy)
El" is a CSD, and H{" is E}'-constant.
m D} is obtained by pruning E}*
w for t = n, D! is equal to DI unless DI = {€}, in which
case D! = G.



Implementing the Algorithm

How it works
)i, and (U, -)

E.; and
1 r=11 0
lpruning
Dy and
\\\\ 1
1 0

g1 and Hy oy

Figure: Obtaining D} from Dy and DY, . For each function
¢(Uy,-), Dy and Dy, we represent a CSD on which it is constant, and
the values taken in each leaf; here, G = {0, 1}.



Implementing the Algorithm

Example

Renewal process For all k£ > 0, let
POj01*) =1-1/VE
Not Harris Observe that P(1]0) = limy_,o, P(0]01%) = 1, so

that ag = 0.
Slow continuity for k>0, Agyq = Ap(01¥F) =1 —1/VE, so that

ZﬁAE<oo

n k=2

— the continuity conditions of [Comets,
Fernandez, Ferrari] and [De Santis, Piccioni] do not

apply.
yet the algorithm works well



Implementing the Algorithm

Example: the coupling illustrated

Figure: Graphical representation of the of P - blue stands for 0, red
stands for 1



Implementing the Algorithm

Conclusion

The perfect simulation scheme described in this presentation is

Versatile: works as well for Markov Chains and for (mixing)
infinite memory processes
Powerful: needs weak continuity assumptions to converge

Fast: for (large order) Markov chains, much faster than
Propp-Wilson's algorithm on the extended chain: all
the tries encountered in the algorithm are of size at
most |D| x d(D) < 2/P!.

but a little hard to implement...
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