Perfect Simulation of Processes with Long Memory [arXiv:1106.5971]

Aurélien Garivier

CNRS & Telecom ParisTech

Groupe de travail "Modélisation" de Paris VII, le 31 Mai 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Outline

1 Coupling From the Past: Propp and Wilson's algorithm

2 Chains of Infinite Order

3 Perfect Simulation for Chains of Infinite Order

4 Implementing the Algorithm

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Stationary Markov Chains

Markov Chain $(X_t)_{t \in \mathbb{Z}}$ on the finite set $G = \{1, \dots, K\}$ Dynamical System $X_{t+1} = \phi(U_t, X_t)$ Kernel $P(i, \cdot) \in \mathcal{M}_1(G)$, such that

$$\forall i, j \in G, \quad \mathbb{P}(X_{t+1} = j | X_t = i) = P(i, j)$$

Stationary distribution π such that $\pi P = \pi$

Simulating the chain

Problem given a kernel P, simulate a sample path X_0, X_1, \ldots, X_n from the stationary Markov Chain with kernel P

Update rule $\phi: [0,1[\times\{1,\ldots,K\} \rightarrow \{1,\ldots,K\} \text{ such that}$

$$\forall i,j \in G: \quad \lambda \big(\{u: \phi(u,i)=j\} \big) = P(i,j)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Recursion Given X_t , taking $X_{t+1} = \phi(U_t, X_t)$ works

 \implies it is sufficient to sample X_0 from π .

Coupling From the Past: Propp and Wilson's algorithm

Coupling from the Past: the idea

Idea: given the sequence $(U_t)_{t \le 0}$, I may know X_0 even if I do not know the value of X_{-8} !

900

Coupling from the Past: more formally

Local transition for each t < 0 let $f_t : G \to G$ be defined by

 $f_t(g) = \phi(U_t, g)$

Iterated transition $F_t = f_{-1} \circ \cdots \circ f_t$ Propp-Wilson: if you know U_t for all $t \ge \tau(n)$, where

$$\tau(n) = \sup\{t < 0 : F_t \text{ is constant}\},\$$

then you know X_0 .

Prop: $\tau(n)$ is of the same order of magnitude as the *mixing* time of the chain!

The Nummelin update rule

Nummelin coefficient:

$$A_1 = \sum_{j=1}^{K} \min_{1 \le i \le K} P(i,j)$$

Update rule $\phi : [0,1[\times G \to G \text{ such that }$

$$u \le A_1 \implies \forall i, i' \in G, \ \phi(u, i) = \phi(u, i')$$

Regeneration if $U_t \leq A_1$, then $X_{t+1}, X_{t+2}...$, is independent from $X_t, X_{t-1}, ...$

⇒ alternative coupling from the past: wait for a regeneration!

Outline

1 Coupling From the Past: Propp and Wilson's algorithm

2 Chains of Infinite Order

3 Perfect Simulation for Chains of Infinite Order

4 Implementing the Algorithm

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Variable Length Markov Chains: the order of the chain is allowed to depend on the past according to some *tree structure*

Example : $T = \{1, 10, 100, 000\}$

$$\mathbb{P}(X_1^4 = 00110 | X_{-1}^0 = 10)$$

$$= \mathbb{P}(X_{1} = 0 | X_{-1}^{0} = 10) \\ \times \mathbb{P}(X_{2} = 0 | X_{-1}^{1} = 100) \\ \times \mathbb{P}(X_{3} = 1 | X_{-1}^{2} = 1000) \\ \times \mathbb{P}(X_{4} = 1 | X_{-1}^{3} = 10001) \\ \times \mathbb{P}(X_{5} = 0 | X_{-1}^{4} = 100011)$$

Variable Length Markov Chains: the order of the chain is allowed to depend on the past according to some *tree structure*

Example : $T = \{1, 10, 100, 000\}$

$$\mathbb{P}(X_1^4 = 00110 | X_{-1}^0 = 10)$$

$$= \mathbb{P}(X_{1} = 0 | X_{-1}^{0} = 10) \\ \times \mathbb{P}(X_{2} = 0 | X_{-1}^{1} = 100) \\ \times \mathbb{P}(X_{3} = 1 | X_{-1}^{2} = 1000) \\ \times \mathbb{P}(X_{4} = 1 | X_{-1}^{3} = 10001) \\ \times \mathbb{P}(X_{5} = 0 | X_{-1}^{4} = 100011)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

Variable Length Markov Chains: the order of the chain is allowed to depend on the past according to some *tree structure*

Example : $T = \{1, 10, 100, 000\}$

$$\mathbb{P}(X_1^4 = 00110 | X_{-1}^0 = 10)$$

$$= \mathbb{P}(X_{1} = 0 | X_{-1}^{0} = 10) \\ \times \mathbb{P}(X_{2} = 0 | X_{-1}^{1} = 100) \\ \times \mathbb{P}(X_{3} = 1 | X_{-1}^{2} = 1000) \\ \times \mathbb{P}(X_{4} = 1 | X_{-1}^{3} = 10001) \\ \times \mathbb{P}(X_{5} = 0 | X_{-1}^{4} = 100011)$$

Variable Length Markov Chains: the order of the chain is allowed to depend on the past according to some *tree structure*

Example : $T = \{1, 10, 100, 000\}$

$$\mathbb{P}(X_1^4 = 00110 | X_{-1}^0 = 10)$$

$$= \mathbb{P}(X_{1} = 0 | X_{-1}^{0} = 10) \\ \times \mathbb{P}(X_{2} = 0 | X_{-1}^{1} = 100) \\ \times \mathbb{P}(X_{3} = 1 | X_{-1}^{2} = 1000) \\ \times \mathbb{P}(X_{4} = 1 | X_{-1}^{3} = 10001) \\ \times \mathbb{P}(X_{5} = 0 | X_{-1}^{4} = 100011)$$

Variable Length Markov Chains: the order of the chain is allowed to depend on the past according to some *tree structure*

Example : $T = \{1, 10, 100, 000\}$

$$\mathbb{P}(X_1^4 = 00110 | X_{-1}^0 = 10)$$

$$= \mathbb{P}(X_{1} = 0 | X_{-1}^{0} = 10) \\ \times \mathbb{P}(X_{2} = 0 | X_{-1}^{1} = 100) \\ \times \mathbb{P}(X_{3} = 1 | X_{-1}^{2} = 1000) \\ \times \mathbb{P}(X_{4} = 1 | X_{-1}^{3} = 10001) \\ \times \mathbb{P}(X_{5} = 0 | X_{-1}^{4} = 100011)$$

Variable Length Markov Chains: the order of the chain is allowed to depend on the past according to some *tree structure*

Example : $T = \{1, 10, 100, 000\}$

$$\mathbb{P}(X_1^4 = 00110 | X_{-1}^0 = 10)$$

$$= \mathbb{P}(X_{1} = 0 | X_{-1}^{0} = 10) \\ \times \mathbb{P}(X_{2} = 0 | X_{-1}^{1} = 100) \\ \times \mathbb{P}(X_{3} = 1 | X_{-1}^{2} = 1000) \\ \times \mathbb{P}(X_{4} = 1 | X_{-1}^{3} = 10001) \\ \times \mathbb{P}(X_{5} = 0 | X_{-1}^{4} = 100011)$$

Histories

History $\underline{w} = w_{-\infty} - 1 \in G^{-\mathbb{N}^*}$ Ultrametric distance $\delta(\underline{w}, \underline{z}) = 2^{\sup\{k < 0: w_k \neq z_k\}}$ \implies $(G^{-\mathbb{N}^*}, \delta)$ is a complete and compact set. Ball $B \subset G^{-\mathbb{N}^*}$ is a (closed or open) ball if $B = \left\{ \underline{z}s : \underline{z} \in G^{-\mathbb{N}^*} \right\} \text{ for some } s \in G^*$ Trees and roots $B = \mathcal{T}(s), s = \mathcal{R}(B)$ Ex: $\mathcal{T}(\varepsilon) = G^{-\mathbb{N}^*}$, the radius of $\mathcal{T}(s)$ is $2^{-|s|-1}$ Piecewise constant A mapping f defined on $G^{-\mathbb{N}^*}$ is piecewise *constant* if the exists a family $\{s_i\}_{i \in \mathbb{N}}$ of elements of $G^{-\mathbb{N}^*}$ such that f is constant on each ball $\mathcal{T}(s_i)$. Projection $\Pi^n: G^{-\mathbb{N}^*} \to G^n$ be defined by $\Pi^n(\underline{w}) = w_{n:-1}$.

Kernels

Kernel $P: G^{-\mathbb{N}^*} \to \mathcal{M}_1(G)$ Total Variation distance: for $p, q \in \mathcal{M}_1(G)$,

$$|p - q|_{TV} = \frac{1}{2} \sum_{a \in G} |p(a) - q(a)| = 1 - \sum_{a \in G} p(a) \wedge q(a)$$

Process $(X_t)_{t \in \mathbb{Z}}$ with distribution ν on $G^{\mathbb{Z}}$ is *compatible* with kernel P if the latter is a version of the one-sided conditional probabilities of the former:

$$\nu\left(X_{i}=g|X_{i+j}=w_{j}, j\in -\mathbb{N}^{*}\right)=P(g|\underline{w})$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

for all $i \in \mathbb{Z}, g \in G$ and ν -almost every \underline{w} .

Kernel continuity

continuity $P: (G^{-\mathbb{N}^*}, \delta) \to (\mathcal{M}_1(G), |\cdot|_{TV})$ oscillation of P on the ball $\mathcal{T}(s)$

$$\eta(s) = \sup\left\{ \left| P(\cdot|\underline{w}) - P(\cdot|\underline{z}) \right|_{TV} : \underline{w}, \underline{z} \in \mathcal{T}(s) \right\}.$$

- P1: P is continuous if and only if $\forall \underline{w} \in G^{-\mathbb{N}^*}, \eta(w_{-k:-1}) \to 0$ as k goes to infinity.
- P2: P is continuous if and only if $\sup\{\eta(s): s \in G^{-k}\} \to 0$ as k goes to infinity.
- P3: P is uniformly continuous if and only it is continuous.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

1 Coupling From the Past: Propp and Wilson's algorithm

2 Chains of Infinite Order

3 Perfect Simulation for Chains of Infinite Order

4 Implementing the Algorithm

- ▲ロ > ▲ 圖 > ▲ 国 > ▲ 国 > クタマ

Existing CFP algorithms

Comets, Fernandez, Ferrari 2002 simulation algorithm using a Kalikow-type decomposition of the kernel as a mixture of Markov Chains of all orders. Require strong continuity conditions.

- De Santis, Piccioni mix the ideas of CFF and the algorithm of PW: they propose an hybrid simulation scheme working with a Markov regime and a long-memory regime.
 - Gallo 2010 Relaxes the continuity condition, replaced by conditions on the *shape* of the memory tree.
 - Our goal: describe a single procedure that generalizes the sampling schemes of CFF and PW in an unified framework.

Update rules

Def: $\phi : [0, 1[\times G^{-\mathbb{N}^*} \to G \text{ is called an } update \ rule \ of \ P \ if$ $U \sim \mathcal{U}([0, 1[) \implies \phi(U, \underline{w}) \sim P(\cdot | \underline{w})$ for all $\underline{w} \in G^{-\mathbb{N}^*}$. Prop: There exists an update rule ϕ of P such that: $\forall s \in G^*, 0 \le u < 1 - |G|\eta(s) \implies \phi(u, \cdot) \ \text{cst on } \mathcal{T}(s)$. Prop: If P is continuous, then for all $u \in [0, 1[$ the mapping

 $\underline{w} \rightarrow \phi(u, \underline{w})$ is continuous, i.e, piecewise constant.

Perfect Simulation Scheme

- Goal: draw (X_n, \ldots, X_{-1}) from a stationary distribution compatible with P
- Tool: semi-infinite sequence of i.i.d. random variables $U_t \sim \mathcal{U}([0, 1[)$
- Idea: $S_t = (\dots, X_{t-1}, X_t), t \in \mathbb{Z}$ is a Markov Chain on $G^{-\mathbb{N}^*}$, with kernel Q given by:

$$\forall \underline{w}, \underline{z} \in G^{-\mathbb{N}^*}, \quad Q(\underline{w}|\underline{z}) = P(w_{-1}|\underline{z}) \mathbb{1}_{w_{i-1}=z_i:i<0}.$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

A Propp-Wilson Scheme

Local transition $f_t : G^{-\mathbb{N}^*} \to G^{-\mathbb{N}^*}$ be defined by $f_t(\underline{w}) = \underline{w}\phi(U_t,\underline{w});$ Iterated transition $F_t = f_{-1} \circ \cdots \circ f_t$ Projection $H_t^n = \Pi^n \circ F_t$ Continuity: H_t^n is a piecewise constant mapping Propp-Wilson: if you wait for

$$\tau(n) = \sup\{t < n : H_t^n \text{ is constant}\},\$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

you will know (X_n, \ldots, X_{-1})

Local Continuity Coefficients

For every $\underline{w}\in G^{-\mathbb{N}^*}$ the continuity of kernel P is locally characterized by the coefficients

$$\begin{aligned} a_k(g|w_{-k:-1}) &= \inf\{P(g|\underline{z}) : \underline{z} \in \mathcal{T}(w_{-k:-1})\}\\ A_k(w_{-k:-1}) &= \sum_{g \in G} a_k(g|w_{-k:-1})\\ A_k^- &= \inf_{s \in G^{-k}} A_k(s)\\ \alpha_k(g|w_{-k:-1}) &= A_{k-1}(w_{-k+1:-1}) + \sum_{h < g} \{a_k(h|w_{-k:-1}) - a_{k-1}(h|w_{-k+1:-1})\}\\ \beta_k(g|w_{-k:-1}) &= A_{k-1}(w_{-k+1:-1}) + \sum_{h \le g} \{a_k(h|w_{-k:-1}) - a_{k-1}(h|w_{-k+1:-1})\} \end{aligned}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

Local characterization of the kernel continuity

Let P be a fixed kernel on G. **Prop:** For all $s \in G^*$,

$$1 - |G|\eta(s) \le A_{|s|}(s) \le 1 - \eta(s)$$
.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ○○○

Prop: The three assertions are equivalent:

(i) the kernel P is continuous; (ii) $\forall \underline{w} \in G^{-\mathbb{N}^*}$, $A_k(w_{-k:-1}) \to 1$ as $k \to \infty$; (iii) $A_k^- \to 1$ as k goes to infinity.

Construction of the update rule

Prop: For every
$$\underline{w} \in G^{-\mathbb{N}^*}$$
,

$$[0,1[=\bigsqcup_{g\in G,k\in\mathbb{N}} [\alpha_k(g|w_{-k:-1}),\beta_k(g|w_{-k:-1})].$$

Def: The mapping $\phi : [0, 1[\times G^{-\mathbb{N}^*} \to G \text{ is defined as follows:}$

$$\phi(u,\underline{w}) = \sum_{g \in G, k \in \mathbb{N}} g \mathbb{1}_{[\alpha_k(g), \beta_k(g)]}(u) .$$

Prop: ϕ is an update rule such that $\forall s \in G^*, \forall u \in [0, 1]$:

$$\forall \underline{w}, \underline{z} \in \mathcal{T}(s), \quad u < A_{|s|}(s) \implies \phi(u, \underline{w}) = \phi(u, \underline{z}) \;.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Illustration

Figure: Graphical representation of an update rule ϕ on alphabet $\{0,1,2\}$: for each $w_{-k:-1}$, the intervals $[\alpha_k(g|w_{-k:-1}),\beta_k(g|w_{-k:-1})[$ are represented in blue (g=0), red (g=1) and green (g=2). For example, $P(1|1) = \alpha_0(1|\varepsilon) + \alpha_1(1|1) = 1/8 + 1/4$, and $P(0|00) = \alpha_0(0|\varepsilon) + \alpha_1(0|0) + \alpha_2(0|00) = 1/4 + 1/8 + 0.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline

1 Coupling From the Past: Propp and Wilson's algorithm

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

2 Chains of Infinite Order

3 Perfect Simulation for Chains of Infinite Order

4 Implementing the Algorithm

Complete suffix Dictionaries

Def: a (finite or infinite) set of words $D \subset \mathcal{P}(G^*)$ is a CSD if one of the following equivalent properties is satisfied:

• every $\underline{w} \in G^{-\mathbb{N}^*}$ has a unique suffix in D:

$$\forall \underline{w} \in G^{-\mathbb{N}^*}, \exists ! s \in D : \underline{w} \succeq s ;$$

• $\{\mathcal{T}(s):s\in D\}$ is a partition of $G^{-\mathbb{N}^*}$:

$$G^{-\mathbb{N}^*} = \sqcup_{s \in D} \mathcal{T}(s)$$
.

The *depth* of D is

$$d(D) = \sup\{|s| : s \in D\}$$

The smallest possible CSD is $\{\epsilon\}$: it has depth 0 and size 1. The second smallest is G, it has depth 1.

Representation as a trie

A CSD D can be represented by a *trie*, that is, a tree with edges labelled by elements of G such that the path from the root to any leaf is labelled by an element of D.

Figure: Left: the trie representing the Complete Suffix Dictionary $D = \{0, 01, 11\}$. Right: $\{00, 10, 001, 101, 11\} \succeq \{0, 01, 11\}$. Both examples concern the binary alphabet.

If D and D' are such that $\forall s \in D', s \succeq D$, then we note $D' \succeq D_{s}$

Piecewise constant functions

Def: For a CSD D, we say that a function f defined on $G^{-\mathbb{N}^*}$ is $D\text{-}constant}$ if

$$\forall s \in D, \forall w \in \mathcal{T}(s), f(\underline{w}) = f(\underline{0}s) .$$

Def: For every
$$h \in G^{-\mathbb{N}^*} \cup G^*$$
 we define
 $f(h) = f(\mathcal{T}(h)) = f\left(\vec{D}(h)\right)$ and note that if
 $h \succeq D, f(h)$ is a singleton.

Minimal CSD $D^f = CSD$ with minimal cardinality such that f is constant on each of its elements.

Pruning if f is D-constant, then D^f can be obtained by recursive pruning of D.

Recursive construction of H_t^n

The mapping H_t^n being piecewise constant, we define $D_t^n = D^{H_t^n}$.

 $\blacksquare \mbox{ Initialization: } D_{-1}^{-1} = G, \quad \forall g \in G, \forall \underline{w} \in \mathcal{T}(s), H_{-1}^{-1}(\underline{w}) = g.$

- For t < -1, $s \in D(U_t)$ denote $\{g_t(s)\} = \phi(U_t, s)$ and define $E_t^n(s)$ as follows:
 - if $sg_t(s) \succeq D_{t+1}^n$, let $E_t^n(s) = \{s\}$;

otherwise, let

$$E_t^n(s) = \bigcup_{hg_t(s) \in D_{t+1}^n(sg_t(s))} \{h\} \; .$$

Let

$$E_t^n = \bigcup_{s \in D(U_t)} E_t^n(s) \; .$$

 E_t^n is a CSD, and H_t^n is E_t^n -constant.

Dⁿ_t is obtained by pruning Eⁿ_t
for t = n, D^t_t is equal to D^{t+1}_t unless D^{t+1}_t = {e}, in which case D^t_t = G.

How it works

Figure: Obtaining D_t^n from D_t and D_{t+1}^n . For each function $\phi(U_t, \cdot), D_{t+1}^n$ and D_t^n , we represent a CSD on which it is constant, and the values taken in each leaf; here, $G = \{0, 1\}$.

Example

Renewal process For all $k \ge 0$, let

$$P(0|01^k) = 1 - 1/\sqrt{k}$$

Not Harris Observe that $P(1|0) = \lim_{k\to\infty} P(0|01^k) = 1$, so that $a_0 = 0$.

Slow continuity for $k \ge 0$, $A_{k+1} = A_k(01^k) = 1 - 1/\sqrt{k}$, so that

$$\sum_{n} \prod_{k=2}^{n} A_k^- < \infty$$

⇒ the continuity conditions of [Comets, Fernandez, Ferrari] and [De Santis, Piccioni] do not apply.

yet the algorithm works well

Implementing the Algorithm

Example: the coupling illustrated

Figure: Graphical representation of the of ${\cal P}$ - blue stands for 0, red stands for 1

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Conclusion

The perfect simulation scheme described in this presentation is

Versatile: works as well for Markov Chains and for (mixing) infinite memory processes

Powerful: needs weak continuity assumptions to converge

Fast: for (large order) Markov chains, much faster than Propp-Wilson's algorithm on the extended chain: all the tries encountered in the algorithm are of size at most $|D| \times d(D) \ll 2^{|D|}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

but a little hard to implement...