Perfect Simulation of Processes with Long
Memory [arXiv:1106.5971]

Aurélien Garivier

CNRS & Telecom ParisTech

Groupe de travail "Modélisation” de Paris VII, le 31 Mai 2012

Coupling From the Past: Propp and Wilson's algorithm
Outline

Coupling From the Past: Propp and Wilson's algorithm

Stationary Markov Chains

Markov Chain (X)tez on the finite set G = {1,..., K}
Dynamical System Xy = ¢(Uy, Xt)
Kernel P(i,-) € Mi(G), such that

Vi,j € G, P(Xy1 =j|Xe =1) = P(i,7)

Stationary distribution 7 such that 7P =7

Coupling From the Past: Propp and Wilson's algorithm

Simulating the chain

Problem given a kernel P, simulate a sample path
Xo,X1,...,X, from the stationary Markov Chain
with kernel P

Update rule ¢ : [0,1[x{1,...,K} — {1,..., K} such that
Vij€ G AM{u: ¢(u.d) = j}) = PG,)

Recursion Given X3, taking X1 = ¢(Uy, X¢) works

— it is sufficient to sample X, from 7.

Coupling from the Past: the idea

Idea: given the sequence (Uy)i<o, | may know X even if | do not
know the value of X _g!

HLVLS

Coupling From the Past: Propp and Wilson's algorithm

Coupling from the Past: more formally

Local transition for each t < 0 let f; : G — G be defined by

fi(g) = ¢(Ut, 9)

Iterated transition Fy = f_jo0---0 f;
Propp-Wilson: if you know U, for all t > 7(n), where

7(n) = sup{t < 0: F; is constant} ,

then you know Xj.

Prop: 7(n) is of the same order of magnitude as the mixing
time of the chain!

Coupling From the Past: Propp and Wilson's algorithm

The Nummelin update rule

Nummelin coefficient:
K

s P
1 j_llglgnK (4, 7)

Update rule ¢ :[0,1[xG — G such that
u< Ay = Vi,i' € G, ¢(u,i) = ¢(u,i’)

Regeneration if Uy < Ay, then Xyy1, Xy49..., is independent
from X;, Xi_1,....

= alternative coupling from the past: wait for a
regeneration!

Outline

Chains of Infinite Order

Chains of Infinite Order

Context Tree Sources

Variable Length Markov Chains: the order of the chain is allowed
to depend on the past according to some tree structure

)] Y
trying wvanilla_ guiet
Example : 7' = {1, 10,100,000}

P(X} = 00110/ X%, = 10)

(X; = 0/X°, =10) (213, 1/3)

(Xy =0|X1, =100)
_11x2. —

EX3 = 1|X=, = 1000) (364, 174)

(

X, =1|X3, =10001)
X5 =0/X*, =100011)

X X X X
RRESES

(175, 45) (173, 2/3)

Chains of Infinite Order

Context Tree Sources

Variable Length Markov Chains: the order of the chain is allowed
to depend on the past according to some tree structure

)] Y
trying wvanilla_ guiet
Example : 7' = {1, 10,100,000}

P(X} = 00110/ X%, = 10)

(X; = 0/X°, =10) (213, 1/3)

(Xy =0|X!, =100)
12, —

EXg = 1X2, = 1000) o2

(

X, =1|X3, =10001)
X5 =0/X*, =100011)

X X X X
R ESES

(175, 45) (173, 2/3)

Chains of Infinite Order

Context Tree Sources

Variable Length Markov Chains: the order of the chain is allowed
to depend on the past according to some tree structure

)] Y
trying wvanilla_ guiet
Example : 7' = {1, 10,100,000}

P(X} = 00110/ X%, = 10)

(X; = 0/X°, =10) (213, 1/3)

(Xy =0|X!, =100)
_11x2. —

EX3 = 1|X%, = 1000) (364, 174)

(

X, =1|X3, =10001)
X5 =0/X*, =100011)

X X X X
REESES

(175, 45) (173, 2/3)

Chains of Infinite Order

Context Tree Sources

Variable Length Markov Chains: the order of the chain is allowed
to depend on the past according to some tree structure

)] Y
trying wvanilla_ guiet
Example : 7' = {1, 10,100,000}

P(X} = 00110/ X%, = 10)

(X; = 0/X°, =10) (213, 1/3)

(Xy =0|X!, =100)
_11x2. —

EX3 = 1|X%, = 1000) (364, 174)

(

X, =1|X3, =10001)
X5 =0/X*, =100011)

X X X X
RRRESES

(175, 4/5) (173, 2/3)

Chains of Infinite Order

Context Tree Sources

Variable Length Markov Chains: the order of the chain is allowed
to depend on the past according to some tree structure

)] Y
trying wvanilla_ guiet
Example : 7' = {1, 10,100,000}

P(X} = 00110/ X%, = 10)

(X1 =0]X°, =10) (213, 143)

(X2 = 0]XL, =100)
—1lx2. —

EX3 = 1|X%, = 1000) (364, 174)

(

X, =1|X3, =10001)
X5 =0/X*, =100011)

X X X X
RRSESES

(175, 45) (173, 2/3)

Chains of Infinite Order

Context Tree Sources

Variable Length Markov Chains: the order of the chain is allowed
to depend on the past according to some tree structure

)] Y
trying wvanilla_ guiet
Example : 7' = {1, 10,100,000}

P(X} = 00110/ X%, = 10)

(X; = 0/X°, =10) (2/3.113)

(Xy =0|X!, =100)
— 2 _

EX3 = 1|X%, = 1000) (364, 174)

(

X, =1|X3, =10001)
X5 =0/X*, =100011)

X X X X
RRSESES

(175, 45) (173, 2/3)

Chains of Infinite Order

Histories

History w = w_oe:—1 € G
Ultrametric distance §(w, z) = 2°WP{k<Owizzr}

— (G™N",9) is a complete and compact set.
Ball B C G~ is a (closed or open) ball if

B = {gs:ge G_N*} for some s € G*

Trees and roots B =T(s), s = R(B)
Ex: T(e) = G™N", the radius of T (s) is 2715I-1
Piecewise constant A mapping f defined on G™N" is piecewise

constant if the exists a family {s;};cn of elements of
G~ such that f is constant on each ball 7(s;).

Projection II" : G™N" — G™ be defined by 1" (w) = wp._1.

Chains of Infinite Order

Kernels

Kernel P: G™N" = My (G)
Total Variation distance: for p,q € M1(G),

p—qlrv = = le (@) =1->_p(a)

aEG aeG

Process (X¢)tez with distribution v on GZ is compatible with
kernel P if the latter is a version of the one-sided
conditional probabilities of the former:

v(X; =g|Xitj =wj,j € =N*) = P(glw)

for all i € Z,g € G and v-almost every w.

Chains of Infinite Order

Kernel continuity

continuity P : (G™N',8) = (M1(G),| - |1v)
oscillation of P on the ball T (s)

n(s) = sup {|P(w) — P([2)] gy w2 € T(s)}

P1. P is continuous if and only if
Vw € GV n(w_p._1) — 0 as k goes to infinity.
P2: P is continuous if and only if
sup{n(s) : s € G™*} — 0 as k goes to infinity.
P3: P is uniformly continuous if and only it is continuous.

Perfect Simulation for Chains of Infinite Order
Outline

Perfect Simulation for Chains of Infinite Order

Existing CFP algorithms

Comets, Fernandez, Ferrari 2002 simulation algortithm using a
Kalikow-type decomposition of the kernel as a
mixture of Markov Chains of all orders. Require
strong continuity conditions.

De Santis, Piccioni mix the ideas of CFF and the algorithm of PW:
they propose an hybrid simulation scheme working
with a Markov regime and a long-memory regime.

Gallo 2010 Relaxes the continuity condition, replaced by
conditions on the shape of the memory tree.
Our goal: describe a single procedure that generalizes the
sampling schemes of CFF and PW in an unified
framework.

Update rules

Def: ¢ :[0,1[xG™™" — G is called an update rule of P if
U~U(0,1)) = ¢(U,w) ~ P(|w)

for all w e GV,
Prop: There exists an update rule ¢ of P such that:

Vs e G*,0 <u<1-|Gn(s) = ¢(u,-) cston T(s).

Prop: If P is continuous, then for all u € [0, 1] the mapping
w — ¢(u,w) is continuous, i.e, piecewise constant.

Perfect Simulation for Chains of Infinite Order

Perfect Simulation Scheme

Goal:

Tool:

Idea:

draw (X,,...,X_1) from a stationary distribution
compatible with P

semi-infinite sequence of i.i.d. random variables
Ut ~ U([O, 1[)

Sy =(...,X4-1,X4),t € Z is a Markov Chain on
G~ with kernel @ given by:

Vw,z € GV Qw|z) = P(w_1]2) L, =2i<0 -

A Propp-Wilson Scheme

Local transition f; : G™N" — G™N" be defined by
fr(w) = wo(U, w);
Iterated transition Fy = f_10---0 f;
Projection H) =11" o F}
Continuity: HJ* is a piecewise constant mapping

Propp-Wilson: if you wait for
7(n) = sup{t < n: H{" is constant} ,

you will know (X,,,..., X 1)

Perfect Simulation for Chains of Infinite Order

Local Continuity Coefficients

For every w € G™N" the continuity of kernel P is locally
characterized by the coefficients

ap(glw_p.—1) = inf{P(glz) : 2 € T (w_p:—1)}
Ap(w_ge1) = Y ak(glw_p1)

geG
A= inf A
C L, A
ap(glw—p.—1) = Ap—1 (W_kt1:.-1) + Z {ar(hlw_p:—1) — ag—1 (h|w_t4+1.-1)}

h<g

Br(glw—p:—1) = Ap—1(W_pg1:-1) + Z {ag(h|lw_g:—1) — ar—1(h|lw_k+1:-1)}
h<g

Perfect Simulation for Chains of Infinite Order

Local characterization of the kernel continuity

Let P be a fixed kernel on G.
Prop: For all s € G*,

1= [Gln(s) < Ap(s) <1 n(s) .

Prop: The three assertions are equivalent:

(i) the kernel P is continuous;

(i) Vw € GV, Ap(w_p.1) — 1 as k — o0;
(i) A, — 1 as k goes to infinity.

Perfect Simulation for Chains of Infinite Order

Construction of the update rule

Prop: For every w € GV,

[07 1[: |_| [ak(g‘w—k:—l)v/Bk(g‘w—k:—l)[:

g€G,keN

Def: The mapping ¢ : [0, 1[xG™N" — G is defined as follows:

Sluw) = D gl (g) (e (W) -

g€G,keN
Prop: ¢ is an update rule such that Vs € G*,Vu € [0, 1]:

Vw,z € T(s), u<Ay(s) = d(u,w)=o(u,z) .

Perfect Simulation for Chains of Infinite Order

[llustration

Figure: Graphical representation of an update rule ¢ on alphabet
{0,1,2}: for each w_y._1, the intervals [a(g|w—_r.—1), B (glw—g.—1)]
are represented in blue (g = 0), red (g = 1) and green (g = 2). For
example, P(1]1) = ao(1l|e) + a1 (1]1) =1/8 4+ 1/4, and

P(0]00) = ap(0]e) + a1 (0]0) + a2(0]00) = 1/4 + 1/8 + 0.

Outline

Implementing the Algorithm

Implementing the Algorithm

Complete suffix Dictionaries

Def: a (finite or infinite) set of words D C P(G*) is a CSD if one
of the following equivalent properties is satisfied:

m every w € G~V has a unique suffix in D:
Vwe G N seD:wrs;
m {T(s):s¢€ D} is a partition of G™N" :
G™N =lepT(s).
The depth of D is
d(D) = sup{|s| : s € D}

The smallest possible CSD is {¢}: it has depth 0 and size 1.
The second smallest is G, it has depth 1.

Implementing the Algorithm

Representation as a trie
A CSD D can be represented by a trie, that is, a tree with edges
labelled by elements of (G such that the path from the root to any
leaf is labelled by an element of D.

Figure: Left: the trie representing the Complete Suffix Dictionary
D ={0,01,11}. Right: {00,10,001,101,11} = {0,01,11}. Both
examples concern the binary alphabet.

If D and D' are such that Vs € D', s = D, then we note D' = D.

Implementing the Algorithm

Piecewise constant functions

Def: For a CSD D, we say that a function f defined on
G~N"is D-constant if

Vs € D,Yw € T(s), f(w) = f(0s) .

Def: For every h € G™V" U G* we define
f(h)=f(T(h)=f (ﬁ(h)) and note that if
h = D, f(h) is a singleton.

Minimal CSD Df = CSD with minimal cardinality such that f is
constant on each of its elements.

Pruning if f is D-constant, then Df can be obtained by
recursive pruning of D.

Implementing the Algorithm

Recursive construction of H}'
The mapping H}* being piecewise constant, we define D = DH¢"

= Initialization: D™} = G, Vge G,Yw e T(s), H {(w) = g.
m Fort < —1, s € D(Uy) denote {g:(s)} = ¢(Uy, s) and define
E}(s) as follows:
m if sg;(s) = D}y, let EP(s) = {s};
m otherwise, let

o= U o

hg:(s)€DY, (s9:(s))

m Let
Er= |J EMNs).
s€D(Uy)
El" is a CSD, and H{" is E}'-constant.
m D} is obtained by pruning E}*
w for t = n, D! is equal to DI unless DI = {€}, in which
case D! = G.

Implementing the Algorithm

How it works
)i, and (U, -)

E.; and
1 r=11 0
lpruning
Dy and
\\\\ 1
1 0

g1 and Hy oy

Figure: Obtaining D} from Dy and DY, . For each function
¢(Uy,-), Dy and Dy, we represent a CSD on which it is constant, and
the values taken in each leaf; here, G = {0, 1}.

Implementing the Algorithm

Example

Renewal process For all k£ > 0, let
POj01*) =1-1/VE
Not Harris Observe that P(1]0) = limy_,o, P(0]01%) = 1, so

that ag = 0.
Slow continuity for k>0, Agyq = Ap(01¥F) =1 —1/VE, so that

ZﬁAE<oo

n k=2

— the continuity conditions of [Comets,
Fernandez, Ferrari] and [De Santis, Piccioni] do not

apply.
yet the algorithm works well

Implementing the Algorithm

Example: the coupling illustrated

Figure: Graphical representation of the of P - blue stands for 0, red
stands for 1

Implementing the Algorithm

Conclusion

The perfect simulation scheme described in this presentation is

Versatile: works as well for Markov Chains and for (mixing)
infinite memory processes
Powerful: needs weak continuity assumptions to converge

Fast: for (large order) Markov chains, much faster than
Propp-Wilson's algorithm on the extended chain: all
the tries encountered in the algorithm are of size at
most |D| x d(D) < 2/P!.

but a little hard to implement...

	Coupling From the Past: Propp and Wilson's algorithm
	Chains of Infinite Order
	Perfect Simulation for Chains of Infinite Order
	Implementing the Algorithm

