
Département Informatique | Mastère, M1 2019-2020

Proofs and Programs
Week 1, TD 1 - Pure lambda-calculus

Philippe Audebaud, Aurore Alcolei

Wednesday 14 February 2017

N.B. In the following we do not detail every questions. Please only refer to full answers to know which
level of details is expected from you. Feel free to contact your teacher for any further questions.

Exercice 1 (Warmup!). TD

a) • I ≡ λx.x is the identity term so I I→β I
• T I ≡ λx.λy.x I→β λy. I ≡ λy.λx.x ≡ F. (note that F I � I)
• the β-reduction performs capture-avoiding substitution hence it is sometimes necessary to rename

bounded variable in a term before substituting: (λf.λg.f) g ≡ (λf.λh.f) g →β λh.g.
• application has left priority so

(λx.λy.xy)(λx.x (λy.y ))(λx.xx)→2
β (λx.x (λy.y ))(λx.xx)→β (λy.y)(λx.xx)→β (λx.xx)

b) true true
true false

Exercice 2 (Turing completeness). Complementary remark: The following exercises lead you through an
encoding of some data structures in the pure λ-calculus, in particular we define booleans, pairs and integers.
However the syntax of the pure λ-calculus is not restricted so it is always possible to write something like
n+ true, that is why it may be useful to think about these encodings as terms of ML (think ocaml if you
wish) to get a better idea of what are their expected behaviours.

Exercice 3 (Booleans and conditionals). TD

a) In ocaml T and F would be typed by ′a→′ a→′ a

b) if : bool →′ a →′ a →′ a. We define if ≡ λb.λt.λe.bte. This really is syntactic sugar! By definition,
if T t e→β T t e→β t since T is the left selector. Idem for if F t e

c) HW (other encodings are possible) orelse ≡ λb1, b2. if b1 T b2, not ≡ λb.bF T, xor ≡ λb1, b2. if b1(notb2)b2.

Exercice 4 (Pairs and projections). TD Given a, b ∈ Λ, it is easy to pack them; for instance by building
the λ-term λx.x a b. Let us explore that path:

a) pair ≡ λa.λb.λx.xab :′ a →′ b → (′a →′ b →′ c) →′ c. This construction is based on the isomorphism
(A×B)→ C ∼= A→ B → C (curryfication).

b) π1 ≡ λp.pT,π2 ≡ λp.pF (checking the operational behaviour is left to the reader)

c) t ≡ λp.pair(f(π1p))(π1p), indeed t(pair ab) � pair(fa)a since in particular π1(pair ab) � a. Variable f
is free in t, we can abstract it to get the closed term φ ≡ λf.t.

Exercice 5 (Church encodings of integers). TD

a) Z ≡ λf.λx.x, S ≡ λn.f(nfx).

b) isZero? ≡ λn.n(λm.F) T

c) iter ≡ λa, b, n.nba. By induction on n we show that iter a b n̄ =β b
na:



ENSL - DI Proofs and Programs 2019-2020

• case n = 0 : iter a bZ =β a ≡ b0a

• case n = n′ +1 : iter a b (S n̄′) =β b(n̄′ab), (n̄′ab) =β iter a b n̄′ and by induction iter a b n̄′ =β b
n′
a

hence iter a b (S n̄′) =β b
na.

d) iter is syntactic sugar and the proof does not hold with the use of �.

e) HW add ≡ λn1, n2. iter n2 S n1. mult ≡ λn1, n2. iter Z (add n2) n1

f) HW pred ≡ λn.π2 (iter (pair Z Z) (φS) n).

Exercice 6 (Recursion). TD

a) Υ is called a fixed point combinator this means that given a function f , Υ f is a fixed point for this
function id est, Υm =β m (Υm). The relation does not holds with �.

b) Let fact aux ≡ λf.λn. if (isZero? n) (S Z) (mult n (f (pred n)))) then fact ≡ Υ fact aux. (here you
can think of Υ as the let rec in ocaml).

fact 2 =β fact aux fact 2
=β mult 2 (fact pred 2)
=β mult 2 (fact 1)
=β mult 2 (fact aux fact 1)
=β mult 2 (mult 1 (fact 0))
=β mult 2 (mult 1 (fact aux fact 0))
=β mult 2 (mult 1 1)
=β 2

c) HW immediate.

Exercice 7 (Barendregt natural numbers). HW

a) successor ≡ λn.pair Fn, predecessor ≡ λn.π2 n, test-to-zero ≡ λn.n T.

b) addition ≡ Υ(λadd aux.λn1, n2. if (test-to-zero n1) n2 (add aux (predecessor n1) (successor n2)))

c) Barendregt natural numbers are easier to compute with but compare to Church encoding their structure
does not allow iteration, one need to use a fixed point combinator.

Mastère, M1 Pure lambda-calculus 2 / ??


