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Highlights

• Working on basics of type theory (typability - ex 1, inhabitance - ex 2).
• Understanding the C.-H. Correspondence between NJ(⇒) derivation trees, and λ→ terms (ex 3,5);
• Taking advantage of that understanding, by dealing with other logical connectors (ex-4).

Let X,Y, . . . . be type variables and x, y, . . . be term variables. Types (capital letter) and pure terms
(small letters) are inductively defined by:

S, T, . . . ::= X | S → T

a, b, . . . ::= x | λx.a | ab

The simply typed λ-calculus λ→ is defined as the set of typable λ-terms in the following type system:

∆, x : A ` x : A (Hyp) ∆, x : A ` m : B
∆ ` λx.m : A→ B

(→I)
∆ ` f : A→ B ∆ ` n : A

∆ ` fn : B (→E)

where every variable appears at most once in the context (hence viewed as a set of typed variables).
Simply typed λ-terms correspond to annotations of proof derivations in the implicative fragment of NJ,
NJ(⇒). Then, for every proposition P :

P is provable in NJ(⇒) iff P (viewed as a type) is inhabited in λ→

Exercice 1 (` t : ?). Provide the “most general types” that solve the following type inference problems or
explain why it is not possible:

1. t ≡ λf.λg.g (f F) (f T) ; t ≡ λf.λg.g (f I) (f T) ;

2. t ≡ λf.λx.f (f x) ; t ≡ λf.λx.f (x x) ;

3. HW t ≡ λx.x(I I) ; t ≡ Υ.

Exercice 2 (`? : A). Recall that λ-terms in β-normal form are described by the following grammar:

n := a | λx.n a := x | a n

Solve the following inhabitance problems using terms in normal form or explain why it is not possible:

1. A ≡ (S → T )→ (T → U)→ S → U ;

2. A ≡ (S → T )→ ((S → U)→ U)→ (T → U)→ U .

3. A ≡ ((S → T )→ S)→ S (Pierce’s law)

Exercice 3 (Avoiding detours). 1. Give a term associated to the following NJ(⇒) proof

P ` P
(Hyp)

` P ⇒ P
(⇒I)

P ⇒ P,Q ` P ⇒ P
(Hyp)

P ⇒ P ` Q⇒ P ⇒ P
(⇒I)

` (P ⇒ P )⇒ Q⇒ P ⇒ P
(⇒I)

Q⇒ P ⇒ P
(⇒E)
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2. Reduce the term from question 1. and draw its type derivation tree. What is changed compare to
the tree above?

3. Assuming the subject reduction and strong normalization properties of λ→ (cf. Lecture notes: Lemma 4
and Theorem 6). Prove the following equivalences:

P is provable in NJ(⇒) iff P (viewed as a type) is inhabited by a β-normal form of λ→
iff P is provable without (I/E)-detours

4. Deduce that Pierce’s law is not derivable in NJ.
Exercice 4 (Product Type). In this exercise we are interested in extending the CH correspondence to
NJ(⇒,∧), the NJ fragment with implication and conjunction. Following the BHK interpretation, a witness
for the conjunction A ∧B will correspond to a pair of witnesses for A and B.

1. Recall the encoding of pair, π1 and π2 combinators seen in TD1. Can we use them to encode general
pairs and projection in λ→?

2. Instead, we extend types with products (×) and pure λ-terms with three new constants pair, π1, π2
(hence making the calculus unpure. . . ):

S, T, . . . ::= X | S → T | S × T
a, b, . . . ::= x | λx.a | ab | pair(a, b) | πi(a)

Give typing rules for the new constants so that they annotate the intro-elim rules of ∧ in NJ.

3. Similarly to the I/E-detour of ⇒ in NJ(⇒), explain what detours can be created by ∧ in proof
derivations and how to eliminate them.

4. Deduce new reductions (β-rules) for the extended λ-calculus. We will denote λ→,× this new calculus.

5. Inhabit the following types of λ→,×:

a) (A→ B → C)→ A×B → C ; b) (A×B → C)→ A→ B → C.

6. What is the grammar for β-normal terms in λ→,×?

7. Let ∆ ` p : A×B, what proof simplification in NJ(⇒,∧) corresponds to the following reduction?
pair(π1 p)(π2 p) −→η p

Exercice 5 (Making a choice). HW Let A be a propositional variable and P ≡ (A⇒ A)⇒ (A⇒ A)
1. Give a term corresponding to the following proof π1:

` P
(π1) =

A⇒ A,A ` A⇒ A
(Hyp)

A⇒ A,A ` A
(Hyp)

A⇒ A,A ` A
(⇒E)

A⇒ A ` A⇒ A
(⇒I)

` P
(⇒I)

2. Give a term corresponding to the following proof π2:

` P
(π2) =

P, P ` P
(Hyp)

P ` P ⇒ P
(⇒I)

` P ⇒ P ⇒ P
(⇒I) A⇒ A ` A⇒ A

(Hyp)
` P

(⇒I)
` P ⇒ P

(⇒E)
` P

(π1)
` P

(⇒E)

3. Reduce the previous term to its β-normal form and give at each step of β reduction the corresponding
proof simplification.

4. What would have happened if you had choose a different annotation/witness for the first hypothesis

P, P ` P
(Hyp) ?

Mastère, M1 The heart of Curry-Howard 2 / 2


