

Proofs and Programs

TD 3 - The heart of Curry-Howard

Philippe Audebaud, Aurore Alcolei

15 February 2018

HW is due on 27 February 8am

Highlights

- Working on basics of type theory (typability ex 1, inhabitance ex 2).
- Understanding the C.-H. Correspondence between $NJ(\Rightarrow)$ derivation trees, and λ_{\rightarrow} terms (ex 3,5);
- Taking advantage of that understanding, by dealing with other logical connectors (ex-4).

Let X, Y, \ldots be type variables and x, y, \ldots be term variables. Types (capital letter) and pure terms (small letters) are inductively defined by:

$$\begin{array}{rcl} S,T,\ldots & ::= & X \mid S \to T \\ a,b,\ldots & ::= & x \mid \lambda x.a \mid ab \end{array}$$

The simply typed λ -calculus λ_{\rightarrow} is defined as the set of typable λ -terms in the following type system:

$$\frac{\Delta, x: A \vdash x: A}{\Delta, x: A \vdash x: A} (\text{Hyp}) \quad \frac{\Delta, x: A \vdash m: B}{\Delta \vdash \lambda x. m: A \to B} (\to_I) \quad \frac{\Delta \vdash f: A \to B \quad \Delta \vdash n: A}{\Delta \vdash fn: B} (\to_E)$$

where every variable appears at most once in the *context* (hence viewed as a set of typed variables). Simply typed λ -terms correspond to annotations of proof derivations in the implicative fragment of NJ, NJ(\Rightarrow). Then, for every proposition P:

P is provable in NJ(\Rightarrow) iff *P* (viewed as a type) is inhabited in λ_{\rightarrow}

Exercice 1 ($\vdash t$: ?). Provide the "most general types" that solve the following *type inference problems* or explain why it is not possible:

1. $t \equiv \lambda f \cdot \lambda g \cdot g (f \mathbf{F}) (f \mathbf{T});$ 2. $t \equiv \lambda f \cdot \lambda x \cdot f (f x);$ 3. **HW** $t \equiv \lambda x \cdot x (\mathbf{II});$ $t \equiv \lambda f \cdot \lambda x \cdot f (x x);$ $t \equiv \lambda f \cdot \lambda x \cdot f (x x);$ $t \equiv \mathbf{Y}.$

Exercice 2 (\vdash ? : *A*). Recall that λ -terms in β -normal form are described by the following grammar:

$$n := a \mid \lambda x.n \qquad \qquad a := x \mid a \mid n$$

Solve the following *inhabitance problems* using terms in normal form or explain why it is not possible:

- 1. $A \equiv (S \rightarrow T) \rightarrow (T \rightarrow U) \rightarrow S \rightarrow U$;
- 2. $A \equiv (S \to T) \to ((S \to U) \to U) \to (T \to U) \to U.$
- 3. $A \equiv ((S \to T) \to S) \to S$ (Pierce's law)

Exercice 3 (Avoiding detours). 1. Give a term associated to the following $NJ(\Rightarrow)$ proof

$$\frac{\frac{\overline{P \vdash P}(Hyp)}{\vdash P \Rightarrow P}(\Rightarrow_{I})}{Q \Rightarrow P \Rightarrow P} \stackrel{(\overline{P} \Rightarrow P, Q \vdash P \Rightarrow P}{(\Rightarrow_{I})}(\Rightarrow_{I})}{\frac{P \Rightarrow P \vdash Q \Rightarrow P \Rightarrow P}{\vdash (P \Rightarrow P) \Rightarrow Q \Rightarrow P \Rightarrow P}} \stackrel{(\Rightarrow_{I})}{(\Rightarrow_{I})}(\Rightarrow_{E})$$

 (TT_{a})

- 2. Reduce the term from question 1. and draw its type derivation tree. What is changed compare to the tree above?
- 3. Assuming the *subject reduction* and *strong normalization* properties of λ_{\rightarrow} (cf. Lecture notes: Lemma 4 and Theorem 6). Prove the following equivalences:

P is provable in NJ(\Rightarrow) iff P (viewed as a type) is inhabited by a β -normal form of λ_{\rightarrow} iff P is provable without (I/E)-detours

4. Deduce that Pierce's law is not derivable in NJ.

Exercice 4 (Product Type). In this exercise we are interested in extending the CH correspondence to $NJ(\Rightarrow, \land)$, the NJ fragment with implication and conjunction. Following the BHK interpretation, a witness for the *conjunction* $A \land B$ will correspond to a *pair* of witnesses for A and B.

- 1. Recall the encoding of **pair**, π_1 and π_2 combinators seen in TD1. Can we use them to encode general pairs and projection in λ_{\rightarrow} ?
- 2. Instead, we extend types with *products* (×) and pure λ -terms with three new *constants* **pair**, π_1 , π_2 (hence making the calculus unpure...):

$$S, T, \dots ::= X \mid S \to T \mid S \times T$$

$$a, b, \dots ::= x \mid \lambda x.a \mid ab \mid \mathsf{pair}(a, b) \mid \pi_i(a)$$

Give typing rules for the new constants so that they annotate the intro-elim rules of \wedge in NJ.

- 3. Similarly to the I/E-detour of \Rightarrow in NJ(\Rightarrow), explain what detours can be created by \land in proof derivations and how to eliminate them.
- 4. Deduce new reductions (β -rules) for the extended λ -calculus. We will denote $\lambda_{\rightarrow,\times}$ this new calculus.
- 5. Inhabit the following types of $\lambda_{\rightarrow,\times}$:

a)
$$(A \to B \to C) \to A \times B \to C$$
; b) $(A \times B \to C) \to A \to B \to C$.

- 6. What is the grammar for β -normal terms in $\lambda_{\rightarrow,\times}$?
- 7. Let $\Delta \vdash p : A \times B$, what proof simplification in $NJ(\Rightarrow, \land)$ corresponds to the following reduction?

$$\mathsf{pair}(\pi_1 \ p)(\pi_2 \ p) \longrightarrow_{\eta} p$$

Exercice 5 (Making a choice). **HW** Let A be a propositional variable and $P \equiv (A \Rightarrow A) \Rightarrow (A \Rightarrow A)$

1. Give a term corresponding to the following proof π_1 :

$$\frac{\overline{A \Rightarrow A, A \vdash A \Rightarrow A} (Hyp) \quad \overline{A \Rightarrow A, A \vdash A} (Hyp)}{A \Rightarrow A, A \vdash A} (Hyp)}_{(\Rightarrow_E)} (\Rightarrow_E)$$

$$\frac{\overline{A \Rightarrow A, A \vdash A}}{A \Rightarrow A \vdash A \Rightarrow A} (\Rightarrow_I)$$

$$(\Rightarrow_I)$$

2. Give a term corresponding to the following proof π_2 :

$$\frac{\overline{P,P \vdash P}(Hyp)}{P \vdash P \Rightarrow P} (\Rightarrow_{I}) \xrightarrow{A \vdash A \Rightarrow A} (Hyp)}{P \vdash P \Rightarrow P \Rightarrow P} (\Rightarrow_{I}) \xrightarrow{A \Rightarrow A \vdash A \Rightarrow A} (Hyp)}{P \vdash P} (\Rightarrow_{I}) (\Rightarrow_{E}) \xrightarrow{P \Rightarrow P} (\pi_{1})} (\Rightarrow_{E})$$

- 3. Reduce the previous term to its β -normal form and give at each step of β reduction the corresponding proof simplification.
- 4. What would have happened if you had choose a different annotation/witness for the first hypothesis $\overline{P, P \vdash P}$ (*Hyp*) ?