Proofs and Programs

TD 3 - The heart of Curry-Howard

Philippe Audebaud, Aurore Alcolei

15 February 2018

HW is due on 27 February 8am

Highlights

- Working on basics of type theory (typability - ex 1, inhabitance - ex 2).
- Understanding the C.-H. Correspondence between $\mathrm{NJ}(\Rightarrow)$ derivation trees, and λ_{\rightarrow} terms (ex 3,5);
- Taking advantage of that understanding, by dealing with other logical connectors (ex-4).

Let X, Y, \ldots be type variables and x, y, \ldots be term variables. Types (capital letter) and pure terms (small letters) are inductively defined by:

$$
\begin{aligned}
S, T, \ldots & ::=X \mid S \rightarrow T \\
a, b, \ldots & ::=x|\lambda x \cdot a| a b
\end{aligned}
$$

The simply typed λ-calculus λ_{\rightarrow} is defined as the set of typable λ-terms in the following type system:

$$
\overline{\Delta, x: A \vdash x: A}(\operatorname{Hyp}) \quad \frac{\Delta, x: A \vdash m: B}{\Delta \vdash \lambda x \cdot m: A \rightarrow B}\left(\rightarrow_{I}\right) \quad \frac{\Delta \vdash f: A \rightarrow B \quad \Delta \vdash n: A}{\Delta \vdash f n: B}\left(\rightarrow_{E}\right)
$$

where every variable appears at most once in the context (hence viewed as a set of typed variables).
Simply typed λ-terms correspond to annotations of proof derivations in the implicative fragment of NJ, $\mathrm{NJ}(\Rightarrow)$. Then, for every proposition P :

$$
P \text { is provable in } \mathrm{NJ}(\Rightarrow) \quad \text { iff } \quad P \text { (viewed as a type) is inhabited in } \lambda_{\rightarrow}
$$

Exercice $1(\vdash t:$?). Provide the "most general types" that solve the following type inference problems or explain why it is not possible:

1. $t \equiv \lambda f . \lambda g . g(f \mathbf{F})(f \mathbf{T}) ;$
$t \equiv \lambda f . \lambda g . g(f \mathbf{I})(f \mathbf{T}) ;$
2. $t \equiv \lambda f . \lambda x . f(f x) ;$
$t \equiv \lambda f . \lambda x . f(x x) ;$
3. HW $t \equiv \lambda x . x(\mathbf{I I})$;
$t \equiv \mathbf{\Upsilon}$.

Exercice $2(\vdash$? : A). Recall that λ-terms in β-normal form are described by the following grammar:

$$
n:=a|\lambda x . n \quad a:=x| a n
$$

Solve the following inhabitance problems using terms in normal form or explain why it is not possible:

1. $A \equiv(S \rightarrow T) \rightarrow(T \rightarrow U) \rightarrow S \rightarrow U$;
2. $A \equiv(S \rightarrow T) \rightarrow((S \rightarrow U) \rightarrow U) \rightarrow(T \rightarrow U) \rightarrow U$.
3. $A \equiv((S \rightarrow T) \rightarrow S) \rightarrow S$ (Pierce's law)

Exercice 3 (Avoiding detours). 1. Give a term associated to the following $\mathrm{NJ}(\Rightarrow)$ proof

$$
\frac{\frac{\overline{P \vdash P}(H y p)}{\vdash P \Rightarrow P}\left(\Rightarrow_{I}\right) \frac{\frac{\overline{P \Rightarrow P, Q \vdash P \Rightarrow P}(H y p)}{P \Rightarrow P \vdash Q \Rightarrow P \Rightarrow P}\left(\Rightarrow_{I}\right)}{\vdash(P \Rightarrow P) \Rightarrow Q \Rightarrow P \Rightarrow P}\left(\Rightarrow_{I}\right)}{Q \Rightarrow P \Rightarrow P}\left(\Rightarrow_{E}\right)
$$

2. Reduce the term from question 1. and draw its type derivation tree. What is changed compare to the tree above?
3. Assuming the subject reduction and strong normalization properties of λ_{\rightarrow} (cf. Lecture notes: Lemma 4 and Theorem 6). Prove the following equivalences:

P is provable in $\mathrm{NJ}(\Rightarrow) \quad$ iff $\quad P$ (viewed as a type) is inhabited by a β-normal form of λ_{\rightarrow} iff $\quad P$ is provable without (I / E)-detours
4. Deduce that Pierce's law is not derivable in NJ.

Exercice 4 (Product Type). In this exercise we are interested in extending the CH correspondence to $\mathrm{NJ}(\Rightarrow, \wedge)$, the NJ fragment with implication and conjunction. Following the BHK interpretation, a witness for the conjunction $A \wedge B$ will correspond to a pair of witnesses for A and B.

1. Recall the encoding of pair, π_{1} and π_{2} combinators seen in TD1. Can we use them to encode general pairs and projection in λ_{\rightarrow} ?
2. Instead, we extend types with products (\times) and pure λ-terms with three new constants pair, π_{1}, π_{2} (hence making the calculus unpure...):

$$
\begin{aligned}
S, T, \ldots & ::=X|S \rightarrow T| S \times T \\
a, b, \ldots & ::=x|\lambda x . a| a b|\operatorname{pair}(a, b)| \pi_{i}(a)
\end{aligned}
$$

Give typing rules for the new constants so that they annotate the intro-elim rules of \wedge in NJ.
3. Similarly to the I / E-detour of \Rightarrow in $\mathrm{NJ}(\Rightarrow)$, explain what detours can be created by \wedge in proof derivations and how to eliminate them.
4. Deduce new reductions (β-rules) for the extended λ-calculus. We will denote $\lambda_{\rightarrow, \times}$ this new calculus.
5. Inhabit the following types of $\lambda_{\rightarrow, \times}$:
a) $(A \rightarrow B \rightarrow C) \rightarrow A \times B \rightarrow C$;
b) $(A \times B \rightarrow C) \rightarrow A \rightarrow B \rightarrow C$.
6. What is the grammar for β-normal terms in $\lambda_{\rightarrow, \times}$?
7. Let $\Delta \vdash p: A \times B$, what proof simplification in $\mathrm{NJ}(\Rightarrow, \wedge)$ corresponds to the following reduction?

$$
\operatorname{pair}\left(\pi_{1} p\right)\left(\pi_{2} p\right) \longrightarrow_{\eta} p
$$

Exercice 5 (Making a choice). HW Let A be a propositional variable and $P \equiv(A \Rightarrow A) \Rightarrow(A \Rightarrow A)$

1. Give a term corresponding to the following proof π_{1} :

$$
\overline{\vdash P}\left(\pi_{1}\right)=\frac{\frac{\overline{A \Rightarrow A, A \vdash A \Rightarrow A}(H y p) \quad \overline{A \Rightarrow A, A \vdash A}(H y p)}{A \Rightarrow A, A \vdash A}\left(\Rightarrow_{E}\right)}{A \Rightarrow A \vdash A \Rightarrow A}\left(\Rightarrow_{I}\right)\left(\Rightarrow_{I}\right)
$$

2. Give a term corresponding to the following proof π_{2} :

$$
\frac{\square}{\vdash P}\left(\pi_{2}\right)=\frac{\frac{\overline{P, P \vdash P}(H y p)}{\frac{P \vdash P \Rightarrow P}{\vdash P \Rightarrow P \Rightarrow P}\left(\Rightarrow_{I}\right)}\left(\Rightarrow_{I}\right) \frac{\overline{A \Rightarrow A \vdash A \Rightarrow A}(H y p)}{\vdash P}\left(\Rightarrow_{I}\right)}{\vdash P \Rightarrow P}\left(\Rightarrow_{E}\right) \quad \overline{\vdash P}\left(\pi_{1}\right) \vdash^{\circ P}\left(\Rightarrow_{E}\right)
$$

3. Reduce the previous term to its β-normal form and give at each step of β reduction the corresponding proof simplification.
4. What would have happened if you had choose a different annotation/witness for the first hypothesis $\overline{P, P \vdash P}(H y p)$?
