Proofs and Programs

Semaine 4, TD 4 - Curry-Howard Expension

Philippe Audebaud, Aurore Alcolei

1 March 2018

HW is due on 6 March, 8 am.

Hightlights

- Extending the CH correspondence (syntactic and dynamics aspects), by dealing with other logical connectors than \Rightarrow (ex-1,2).
- Proving meta properties of λ_{\rightarrow} using induction (ex-3,4).

Exercice 1 (Product Type). In this exercise we are interested in extending the CH correspondence to $\mathrm{NJ}(\Rightarrow, \wedge)$, the NJ fragment with implication and conjunction. Following the BHK interpretation, a witness for the conjunction $A \wedge B$ will correspond to a pair of witnesses for A and B.

1. Recall the encoding of pair, π_{1} and π_{2} combinators seen in TD1. Can we use them to encode general pairs and projection in λ_{\rightarrow} ?
2. Instead, we extend types with products (\times) and pure λ-terms with three new constants pair, π_{1}, π_{2} (hence making the calculus unpure...):

$$
\begin{aligned}
S, T, \ldots & ::=X|S \rightarrow T| S \times T \\
a, b, \ldots & ::=x|\lambda x \cdot a| a b|\operatorname{pair}(a, b)| \pi_{i}(a)
\end{aligned}
$$

Give typing rules for the new constants so that they annotate the intro-elim rules of \wedge in NJ .
3. Similarly to the I / E-detour of \Rightarrow in $\mathrm{NJ}(\Rightarrow)$, explain what detours can be created by \wedge in proof derivations and how to eliminate them.
4. Deduce new reductions (β-rules and η-rules) for the extended λ-calculus. We will denote $\lambda_{\rightarrow, \times}$ this new calculus.
5. Inhabit the following types of $\lambda_{\rightarrow, x}$:
a) $(A \rightarrow B \rightarrow C) \rightarrow A \times B \rightarrow C$;
b) $(A \times B \rightarrow C) \rightarrow A \rightarrow B \rightarrow C$.
6. What is the grammar for β-normal terms in $\lambda_{\rightarrow, x}$?
7. Let $\Delta \vdash p: A \times B$, what proof simplification in $\mathrm{NJ}(\Rightarrow, \wedge)$ corresponds to the following reduction?

$$
\operatorname{pair}\left(\pi_{1} p\right)\left(\pi_{2} p\right) \longrightarrow_{\eta} p
$$

Exercice $2\left(\lambda_{\mathrm{NJ}}\right)$. Add new extensions to $\lambda_{\rightarrow, \times}$ and build a full correspondence with NJ. Types are extended with sums, \top (similar to the unit type) and \perp (also called the empty type):

$$
S, T, \ldots \quad::=\quad X|S \rightarrow T| S \times T|S+T| \top \mid \perp
$$

The sum type $S+T$ has two constructors ι_{1}, ι_{2} and one destructor case \ldots in \ldots corresponding to the disjunction introduction and elimination rules in NJ
$\frac{\Delta \vdash t: A}{\Delta \vdash \iota_{1} t: A+B}\left(\vee_{I(L)}\right) \quad \frac{\Delta \vdash t: B}{\Delta \vdash \iota_{2} t: A+B}\left(\vee_{I(R)}\right) \quad \frac{\Delta \vdash s: A+B \quad \Delta, x: A \vdash t_{1}: C \quad \Delta, y: B \vdash t_{2}: C}{\Delta \vdash \operatorname{case} s \text { in }\left|\iota_{1} x \cdot t_{1}\right| \iota_{2} y \cdot t_{2}: C}\left(\vee_{E}\right)$
case ... in ... allows to use what was encapsulated by the injections ι_{i}, it is similar to 'match with' in Caml. The empty type \perp corresponds to falsehood \perp in NJ. This only has one elimination rule:

$$
\frac{\Delta \vdash t: \perp}{\Delta \vdash \varepsilon^{A}(t): A}\left(\perp_{E}\right)
$$

It is not possible to build a closed term of type \perp, however ε can be viewed as a feature for error handling.
The unit type T corresponds to T in NJ and has only one introduction rule/constructor:

$$
\overline{\Delta \vdash \star: \top}\left(\top_{I}\right)
$$

1 . Give the β-reduction and η-reduction steps associated to sums.
2. What other proof simplifications can you find in NJ? Give their corresponding term reductions in $\lambda_{N J}$. (Hint: these reductions come from the possibility of commuting some rules in NJ.)
3. HW Inhabitate the following types:
a) $A+B \rightarrow B+A$;
b) $A \times(B+C) \rightarrow A \times B+A \times C$.

Exercice 3 (Subject reduction). Assuming the Generation lemma (recall in appendix 1), let us prove that λ_{\rightarrow} has the subject reduction property:

$$
\text { If } \Gamma \vdash m: T \text { then for every } m \longrightarrow \longrightarrow_{\beta}^{*} m^{\prime} \text {, the typing judgement } \Gamma \vdash m^{\prime}: T \text { holds }
$$

1. (term substitution) Prove that if $\Gamma, y: S \vdash t: T$ and $\Gamma \vdash s: S$, then $\Gamma \vdash t\langle s / y\rangle: T$;
2. Now, show the subject reduction property.
3. Show that the contraposite does not hold. (Hint: $\boldsymbol{\Omega}$ can help you to build a counter example)

Exercice 4 (More properties). HW Choose and prove two of the following property of λ_{\rightarrow} :

1. (minimal context) If $\Delta \vdash t: T$, then for every $x \in \mathrm{FV}(t), x \in \operatorname{dom}(\Delta)$. Deduce that closed terms are the only typable terms in an empty context.
2. (changing context). If $\Delta \vdash t: T$ and Δ, Δ^{\prime} are two contexts such that $\Delta_{\mid \mathrm{FV}(t)}=\Delta_{\mid \mathrm{FV}(t)}^{\prime}$, then $\Delta^{\prime} \vdash t: T-$ where $\Delta_{\mid \mathrm{FV}(t)}$ denotes the restriction of Δ to free variables in t.
3. (type substitution) If $\Delta \vdash t: T$, then for every type variable X and type $S, \Delta\langle S / X\rangle \vdash t: T\langle S / X\rangle$.

Exercice 5 (Saturated parts). Interpreting simple types as saturated parts of Λ is a way to show strong normalisation for λ_{\rightarrow}. In this exercise we are intersted in showing preliminary lemmas about saturated parts (definition is recall in Appendix).

1. (warmup) Show that \mathcal{N} is saturated.
2. Show that if $S \subseteq \Lambda$ is saturated, then for every $e \equiv(\lambda x . a) b$ such that $b \in \mathcal{N}$ and $e\langle b / x\rangle \in S$, then $e \in S$. (Hint: you can reason by induction on $l(a)$ and $l(b)$, where $l(t)$ is defined for every normal form t as the maximum lenght of its reduction paths... but you first need to justify this measure!)
3. (+++) Show that if X and Y are saturated, then $X \rightarrow Y=\{e \in \Lambda \mid \forall a \in X, e a \in Y\}$ is saturated.

A From your lectures

Lemma 1 (Generation lemma). Let $\Delta \vdash t: T$,

- if t is a variable x then $x: T$ in Δ
- if $t \equiv a b$ then there exists S such that $\Delta \vdash a: S \rightarrow T$ and $\Delta \vdash b: S$
- if $t \equiv \lambda x$.a with $x \notin \operatorname{dom}(\Delta)$ then $T=S \rightarrow U$ such that $\Delta, x: S \vdash a: U$

Definition 2. Let $S \subseteq \Lambda, S$ is said to be saturated if:

1. $\mathcal{N}_{0} \subseteq S \subseteq \mathcal{N}$,
2. If $e \in S$ and $e \beta e^{\prime}$ then $e^{\prime} \in S$,
3. If $e \in \Lambda$ is not an abstraction and $\operatorname{Succ}(e) \subseteq S$, then $e \in S$.
