

Proofs and Programs

Semaine 4, TD 4 - Curry-Howard Expension

Philippe Audebaud, Aurore Alcolei

1 March 2018

HW is due on 6 March, 8am.

Hightlights

- Extending the CH correspondence (syntactic and dynamics aspects), by dealing with other logical connectors than \Rightarrow (ex-1,2).
- Proving meta properties of λ_{\rightarrow} using induction (ex-3,4).

Exercice 1 (Product Type). In this exercise we are interested in extending the CH correspondence to $NJ(\Rightarrow, \land)$, the NJ fragment with implication and conjunction. Following the BHK interpretation, a witness for the *conjunction* $A \land B$ will correspond to a *pair* of witnesses for A and B.

- 1. Recall the encoding of **pair**, π_1 and π_2 combinators seen in TD1. Can we use them to encode general pairs and projection in λ_{\rightarrow} ?
- 2. Instead, we extend types with *products* (×) and pure λ -terms with three new *constants* **pair**, π_1 , π_2 (hence making the calculus unpure...):

$$S, T, \dots ::= X \mid S \to T \mid S \times T$$

$$a, b, \dots ::= x \mid \lambda x.a \mid ab \mid \mathsf{pair}(a, b) \mid \pi_i(a)$$

Give typing rules for the new constants so that they annotate the intro-elim rules of \wedge in NJ.

- 3. Similarly to the I/E-detour of \Rightarrow in NJ(\Rightarrow), explain what detours can be created by \land in proof derivations and how to eliminate them.
- 4. Deduce new reductions (β -rules and η -rules) for the extended λ -calculus. We will denote $\lambda_{\rightarrow,\times}$ this new calculus.
- 5. Inhabit the following types of $\lambda_{\rightarrow,\times}$:

a)
$$(A \to B \to C) \to A \times B \to C$$
; b) $(A \times B \to C) \to A \to B \to C$

- 6. What is the grammar for β -normal terms in $\lambda_{\rightarrow,\times}$?
- 7. Let $\Delta \vdash p : A \times B$, what proof simplification in $NJ(\Rightarrow, \land)$ corresponds to the following reduction?

$$\mathsf{pair}(\pi_1 \ p)(\pi_2 \ p) \longrightarrow_{\eta} p$$

Exercice 2 (λ_{NJ}) . Add new extensions to $\lambda_{\rightarrow,\times}$ and build a full correspondence with NJ. Types are extended with sums, \top (similar to the unit type) and \perp (also called the empty type):

$$S, T, \dots \quad ::= \quad X \mid S \to T \mid S \times T \mid S + T \mid \top \mid \bot$$

The sum type S + T has two constructors ι_1, ι_2 and one destructor case ... in ... corresponding to the disjunction introduction and elimination rules in NJ

$$\frac{\Delta \vdash t : A}{\Delta \vdash \iota_1 \ t : A + B} (\lor_{I(L)}) \qquad \frac{\Delta \vdash t : B}{\Delta \vdash \iota_2 \ t : A + B} (\lor_{I(R)}) \qquad \frac{\Delta \vdash s : A + B \ \Delta, x : A \vdash t_1 : C \ \Delta, y : B \vdash t_2 : C}{\Delta \vdash \text{case } s \text{ in } |\iota_1 x. t_1| |\iota_2 y. t_2 : C} (\lor_E)$$

case ... in ... allows to use what was encapsulated by the injections ι_i , it is similar to 'match with' in Caml. The **empty type** \perp corresponds to falsehood \perp in NJ. This only has one elimination rule:

$$\frac{\Delta \vdash t : \bot}{\Delta \vdash \varepsilon^A(t) : A} \ (\bot_E)$$

It is not possible to build a closed term of type \perp , however ε can be viewed as a feature for error handling. The **unit type** \top corresponds to \top in NJ and has only one introduction rule/constructor:

$$\overline{\Delta \vdash \star : \top} \ (\top_I)$$

- 1. Give the β -reduction and η -reduction steps associated to sums.
- 2. What other proof simplifications can you find in NJ? Give their corresponding term reductions in λ_{NJ} . (Hint: these reductions come from the possibility of commuting some rules in NJ.)
- 3. **HW** Inhabitate the following types:

a)
$$A + B \rightarrow B + A;$$

b) $A \times (B + C) \rightarrow A \times B + A \times C$.

Exercice 3 (Subject reduction). Assuming the Generation lemma (recall in appendix 1), let us prove that λ_{\rightarrow} has the subject reduction property:

If $\Gamma \vdash m : T$ then for every $m \longrightarrow_{\beta}^{*} m'$, the typing judgement $\Gamma \vdash m' : T$ holds

- 1. (term substitution) Prove that if $\Gamma, y: S \vdash t: T$ and $\Gamma \vdash s: S$, then $\Gamma \vdash t \langle s/y \rangle: T$;
- 2. Now, show the subject reduction property.
- 3. Show that the contraposite does not hold. (Hint: Ω can help you to build a counter example)

Exercice 4 (More properties). **HW** Choose and prove two of the following property of λ_{\rightarrow} :

- 1. (minimal context) If $\Delta \vdash t : T$, then for every $x \in FV(t)$, $x \in dom(\Delta)$. Deduce that closed terms are the only typable terms in an empty context.
- 2. (changing context). If $\Delta \vdash t : T$ and Δ, Δ' are two contexts such that $\Delta_{\mid FV(t)} = \Delta'_{\mid FV(t)}$, then $\Delta' \vdash t : T$ where $\Delta_{\mid FV(t)}$ denotes the restriction of Δ to free variables in t.
- 3. (type substitution) If $\Delta \vdash t : T$, then for every type variable X and type S, $\Delta \langle S/X \rangle \vdash t : T \langle S/X \rangle$.

Exercice 5 (Saturated parts). Interpreting simple types as saturated parts of Λ is a way to show strong normalisation for λ_{\rightarrow} . In this exercise we are intersted in showing preliminary lemmas about saturated parts (definition is recall in Appendix).

- 1. (warmup) Show that \mathcal{N} is saturated.
- 2. Show that if $S \subseteq \Lambda$ is saturated, then for every $e \equiv (\lambda x.a)b$ such that $b \in \mathcal{N}$ and $e\langle b/x \rangle \in S$, then $e \in S$. (Hint: you can reason by induction on l(a) and l(b), where l(t) is defined for every normal form t as the maximum length of its reduction paths... but you first need to justify this measure!)
- 3. (+++) Show that if X and Y are saturated, then $X \to Y = \{e \in \Lambda \mid \forall a \in X, e \ a \in Y\}$ is saturated.

A From your lectures

Lemma 1 (Generation lemma). Let $\Delta \vdash t : T$,

- if t is a variable x then x:T in Δ
- if $t \equiv a \ b$ then there exists S such that $\Delta \vdash a : S \to T$ and $\Delta \vdash b : S$
- if $t \equiv \lambda x.a$ with $x \notin dom(\Delta)$ then $T = S \rightarrow U$ such that $\Delta, x : S \vdash a : U$

Definition 2. Let $S \subseteq \Lambda$, S is said to be *saturated* if:

- 1. $\mathcal{N}_0 \subseteq S \subseteq \mathcal{N}$,
- 2. If $e \in S$ and $e\beta e'$ then $e' \in S$,
- 3. If $e \in \Lambda$ is not an abstraction and $\operatorname{Succ}(e) \subseteq S$, then $e \in S$.