

Proofs and Programs

Semaine 4, TD 4 - Curry-Howard Expension

Philippe Audebaud, Aurore Alcolei

1 March 2018

Lemma 1 (Generation lemma). Let $\Delta \vdash t : T$,

- if t is a variable x then x:T in Δ
- if $t \equiv a \ b$ then there exists S such that $\Delta \vdash a : S \to T$ and $\Delta \vdash b : S$
- if $t \equiv \lambda x.a$ with $x \notin dom(\Delta)$ then $T = S \rightarrow U$ such that $\Delta, x: S \vdash a: U$

Proof. See Lectures on the Curry Howard Isomorphism for technical details.

Exercice 1 (Subject reduction). Prove that λ_{\rightarrow} has the subject reduction property:

If $\Delta \vdash m : T$ then for every $m \longrightarrow_{\beta}^{*} m'$, the typing judgement $\Delta \vdash m' : T$ holds

1. (term substitution) Prove that if $\Delta, y: S \vdash t: T$ and $\Delta \vdash s: S$, then $\Delta \vdash t \langle s/y \rangle: T$;

Let us show the above property by induction on t, using the generation lemma:

- (base case) if t is a variable s then $x : T \in \Delta, y : S$ and so either $x \neq y$ hence $t\langle s/y \rangle = x$ and $\Delta \vdash x : T$ is a valid type derivation or x = y, S = T hence $t\langle s/y \rangle = s$ and by hypothesis $\Delta \vdash s : T$ is a valid typing judgement.
- if $t \equiv a \ b$ then $t\langle s/y \rangle = a\langle s/y \rangle \ b\langle s/y \rangle$ and there exists R such that $\Delta, y : S \vdash a : R \to T$ and $\Delta, y : S \vdash b : R$. Applying the induction hypothesis we get $\Delta \vdash a\langle s/y \rangle : R \to T$ and $\Delta \vdash b\langle s/y \rangle : R$ and so (applying the \to_E rule) $\Delta \vdash t\langle s/y \rangle : S$.
- if $t \equiv \lambda x.a$, then by α -conversion we can assume that $x \notin \operatorname{dom}(\Delta) \cup y$ and so there exist R, U, such that $T = R \to U$ and $\Delta, y : S, x : R \vdash a : U$. By induction hypothesis $\Delta, x : R \vdash a \langle s/y \rangle : U$ and so, applying the \to_I rule, $\Delta \vdash t \langle s/y \rangle : S$ since $t \langle s/y \rangle = (\lambda x.a) \langle s/y \rangle = \lambda x.a \langle s/y \rangle$.

2. Now, show the subject reduction property.

By induction over β , let us consider the basic reduction step $m \rightarrow_{\beta} m_1$:

- if $m = (\lambda x.a)b$ (wlog we assume that $x \notin \text{dom}(\Delta)$) and $m_1 = a\langle b/x \rangle$ then by generation lemma (applied twice) there exists S such that $\Delta, x : S \vdash a : T$ and $\Delta \vdash b : S$. Hence, by the above substitution lemma $\Delta \vdash a \langle b/x \rangle : T$, as desired.
- if $m = a \ b$ and $m_1 = a' \ b$ then by generation lemma there exists S such that $\Delta \vdash a : S \to T$ and $\Delta \vdash b : S$, and by induction hypothesis $\Delta \vdash a' : S \to T$, so, applying the \to_E rule, $\Delta \vdash a' \ b : T$ is a valid type judgement.
- cases with $m = a \ b, \ m_1 = a \ b'$ and $m = \lambda x.a, \ m' = \lambda x.a'$ are similar.
- 3. Show that the contraposite does not hold. (Hint: Ω can help you to build a counter example) $(\lambda x.y.y)\Omega$ reduces to $\lambda x.x$ which is typable, but Ω is not.