Proofs and Programs

Semaine 4, TD 4 - Curry-Howard Expension

Philippe Audebaud, Aurore Alcolei

1 March 2018

Lemma 1 (Generation lemma). Let $\Delta \vdash t: T$,

- if t is a variable x then $x: T$ in Δ
- if $t \equiv a b$ then there exists S such that $\Delta \vdash a: S \rightarrow T$ and $\Delta \vdash b: S$
- if $t \equiv \lambda$ x.a with $x \notin \operatorname{dom}(\Delta)$ then $T=S \rightarrow U$ such that $\Delta, x: S \vdash a: U$

Proof. See Lectures on the Curry Howard Isomorphism for technical details.
Exercice 1 (Subject reduction). Prove that λ_{\rightarrow} has the subject reduction property:
If $\Delta \vdash m: T$ then for every $m \longrightarrow{ }_{\beta}^{*} m^{\prime}$, the typing judgement $\Delta \vdash m^{\prime}: T$ holds

1. (term substitution) Prove that if $\Delta, y: S \vdash t: T$ and $\Delta \vdash s: S$, then $\Delta \vdash t\langle s / y\rangle: T$;

Let us show the above property by induction on t, using the generation lemma:

- (base case) if t is a variable s then $x: T \in \Delta, y: S$ and so either $x \neq y$ hence $t\langle s / y\rangle=x$ and $\Delta \vdash x: T$ is a valid type derivation or $x=y, S=T$ hence $t\langle s / y\rangle=s$ and by hypothesis $\Delta \vdash s: T$ is a valid typing judgement.
- if $t \equiv a b$ then $t\langle s / y\rangle=a\langle s / y\rangle b\langle s / y\rangle$ and there exists R such that $\Delta, y: S \vdash a: R \rightarrow T$ and $\Delta, y: S \vdash b: R$. Applying the induction hypothesis we get $\Delta \vdash a\langle s / y\rangle: R \rightarrow T$ and $\Delta \vdash b\langle s / y\rangle: R$ and so (applying the \rightarrow_{E} rule) $\Delta \vdash t\langle s / y\rangle: S$.
- if $t \equiv \lambda x$.a, then by α-conversion we can assume that $x \notin \operatorname{dom}(\Delta) \cup y$ and so there exist R, U, such that $T=R \rightarrow U$ and $\Delta, y: S, x: R \vdash a: U$. By induction hypothesis $\Delta, x: R \vdash a\langle s / y\rangle: U$ and so, applying the \rightarrow_{I} rule, $\Delta \vdash t\langle s / y\rangle: S$ since $t\langle s / y\rangle=(\lambda x . a)\langle s / y\rangle=\lambda x \cdot a\langle s / y\rangle$.

2. Now, show the subject reduction property.

By induction over β, let us consider the basic reduction step $m \rightarrow_{\beta} m_{1}$:

- if $m=(\lambda x . a) b$ (wlog we assume that $x \notin \operatorname{dom}(\Delta))$ and $m_{1}=a\langle b / x\rangle$ then by generation lemma (applied twice) there exists S such that $\Delta, x: S \vdash a: T$ and $\Delta \vdash b: S$. Hence, by the above substitution lemma $\Delta \vdash a\langle b / x\rangle: T$, as desired.
- if $m=a b$ and $m_{1}=a^{\prime} b$ then by generation lemma there exists S such that $\Delta \vdash a: S \rightarrow T$ and $\Delta \vdash b: S$, and by induction hypothesis $\Delta \vdash a^{\prime}: S \rightarrow T$, so, applying the \rightarrow_{E} rule, $\Delta \vdash a^{\prime} b: T$ is a valid type judgement.
- cases with $m=a b, m_{1}=a b^{\prime}$ and $m=\lambda x \cdot a, m^{\prime}=\lambda x \cdot a^{\prime}$ are similar.

3. Show that the contraposite does not hold. (Hint: $\boldsymbol{\Omega}$ can help you to build a counter example) ($\lambda x . y . y) \Omega$ reduces to λx.x which is typable, but Ω is not.
