
Département Informatique | Mastère, M1 2017-2018

Proofs and Programs
Week 5, Tutorial 5 - Polymorphism

Philippe Audebaud, Aurore Alcolei

Thursday, 8th March 2018 — HW due before Tuesday, 13th March, 8h00 hard dead line

Goals (Weeks 5 & 6) : • Typability and inhabitation for System F (alias λ2). • Expressivity power
allowed by polymorphism. • In particular, representations of both Propositional Calculus (Logic) and
common Free Structures. • Major meta-properties and proof techniques. – Eventually, at the end of week
6, being able to play both sides of Curry-Howard correspondence (statics + dynamic), and being able to
extrapolate this understanding to higher-order types systems is at stake.

Notation Inference rules for System F à la Church are given in appendix.

Exercice 1 (Normal Forms). We admit that well-formed terms in System F are strongly normalising (see
lecture 6). Reduce the following term to its normal form (step by step):

(λb∀X,X→X→X .(ΛX.b (∀X.X → X → X (ΛX.λxXyX .y) (ΛX.λxXyX .x)))(ΛX.λxXyX .y)

Show that normal forms can be defined using a BNF grammar. (Hint: recall the one from λ→.)

Exercice 2 (terms and types new relationship). Assuming that X 6∈ FV(A) and Y 6∈ FV(B). Solve the
inhabitation problem (`? : T) when type T is:

a) A→ (∀X.(A→ X)→ X) ; (∀X.(A→ X)→ X)→ A ;

b) HW ∀Z∀Y.((∀X.(X → Z))→ Y → Z) ; ((∀Y.A)→ (∀X.B))→ (∀X,Y.A→ B).

Exercice 3 (Type inference). Study the type inference problem (` t :?) when term t is:

a) ΛX.λfX→X .λxX .f (f x) ;
ΛY.λx∀X.(X→X).x (Y → X) (x Y) ;

b) HW λf∀X.(X→T→X).ΛY.λxY .f (T → Y) (f Y x).

Starting from the following pure lambda-terms, which are therefore almost never well-formed in system F
à la Church, find whenever possible, a type “decoration” and a “ most general” type in system F :

a) I ≡ λx.x, T ≡ λx.λy.x, F ≡ λx.λy.y ;

b) from previous point, propose a coding for the type bool of booleans in system F. Complete with the
conditional if (cf. tutoral 1) ;

c) HW Let e ≡ (λy.λz.z (y I) (y F)) ∆, a pure λ-term. (i) Is it strongly normalising? (ii) Is it possible
to assign a type to e, in λ→ ? (iii) Is it possible to provide a decoration ê for e, as a well-formed term
in system F? Eventually build the full derivation tree leading to ê.

Exercice 4 (Product). By taking advantage of both the results from tutorial 1, and the previous analysis
of booleans, find a proper representation for the general product A×B of types A and B.

Since is > (True) is a “limit case”, deduce its proper representation in system F.

Exercice 5 (Sum). Do the same for the sum (co-product) A+B of types A and B and ⊥ (False).

Exercice 6 (Logic encoding). Take advantage of tutorial 4 to provide a complete representation of the
propositional calculus NJ in system F.

ENSL - DI Proofs and Programs 2017-2018

Exercice 7 (Church integers). For some reason, the correct representation for Church integers in system
F starts with the polymorphic type nat ≡ ∀X.X → (X → X)→ X.

a) In the light of previous exercises, explain this definition.

b) Provide a representation for each natural number representative n̄ : nat, where n ∈ N.

c) define zero Z and the successor function S. What would be the corresponding introduction rules for
nat related to them?

d) Propose an abstract elimination rule for nat, and show the existence of a well-formed term, in system
F, that codes for this elimination rule.

e) We want to offer the iteration schema, along the following abstract equalities :

iter x f Z = x and iter x f (S p) = f (iter x f p)

Show that iter is representable in system F. Is it true that for all n ∈ N, iter x f n+ 1 reduces to
f (iter x f n̄)?

f) HW Complete with the proper coding of both add and pred in system F.

g) HW We want to offer the even more powerful recursion schema. It should obey the abstract equalities:

R x f 0̄ = x and R x f n+ 1 = f (R x f n̄) n̄

Show off your skills!

A System F “à la Church”

Types can still be represented with the help of a BNF grammar (∀ is dominant over →):

(types) T ::= X ∈ V | T → T | ∀X.T

Pre-terms can also be described this way, but they do not necessarily correspond to well-formed terms

(terms) t ::= x ∈ X | λxT .t | t t | ΛT.t | t T

A typing context is an unordered list: ∆ ≡ x1 : T1, . . . , xn : Tn, st each term variable occurs only once.
The notation ∆ `λ2 t : T stands for any judgement which can be built upon the following inference
system:

(Hyp) x : T ∈ ∆
∆ ` x : T (→ I) ∆, x : S ` t : T

∆ ` λxS .t : S → T

∆ ` e : S → T ∆ ` s : S
∆ ` e s : T (→ E)

(∀I) ∆ ` t : T X 6∈ FV(∆)
∆ ` ΛX.t : ∀X.T

∆ ` t : ∀X.T
∆ ` t S : T 〈S/X〉 (∀E)

In particular, a pre-term t is well-formed iff there exists a context ∆, and a type T such that ∆ `λ2 t : T .
Reductions in System F are defined upon the two following steps:

(λx.t)s→β t〈s/x〉 (ΛX.t)T →B t〈T/X〉

Mastère, M1 Polymorphism 2 / 2

	A System F ``à la Church''

