
Département Informatique | Mastère, M1 2017-2018

Proofs and Programs
Week 6, Tutorial 6 - Encodings in System F

Philippe Audebaud, Aurore Alcolei

Thursday, 15th March 2018 — HW due before Tuesday, 20th March, 8h00 hard dead line

Goal : Explore the expressivity power allowed by polymorphism, via the encodings of several free struc-
tures.

Notation Inference rules for System F à la Church are given in appendix.

Exercice 1. (Warming up)

1. Recall the encodings of pairsA×B and sumA+B in system F and their main constructors/destructors.
Explain informally why this constructions make sense.

2. For τ(Y) a type in system F with some free type variable Y , we say that τ(Y) is (weakly) functorial
if there exists a term F in normal form such that

` F : ∀Y1, Y2, (Y1 → Y2)→ τ(Y1)→ τ(Y2)

Show that the encodings of A + B and A × B are weakly functorial by varying one of their two
variables.

Exercice 2 (Lists, Trees, and more). In this exercise we want to capture a general recipe to build free
structures in System F. In general, a structure Θ is generated by a finite number of constructors c1, · · · , cn,
of respective type Si such that

Si ≡ T i1 → · · · → T iki
→ Θ

where Θ can only occurs positively (ie. left to an even number of arrows) in the T ij ’s.
Good type candidates for encoding such structures must at least provide a way to encode their con-

structors and a way to “destruct” them, that is, a way to define functions by induction on the structure of
Θ. Starting from some type U and functions g1, · · · , gn of types Si〈U/Θ〉 this amounts to be able to define
a function h : Θ→ U such that

h(ci x1 · · ·xki
) = gi(hx1) · · · (hxik)

1. Explain why the type T ≡ ∀X.S1〈X/Θ〉 → · · · → Sn〈X/Θ〉 → X is a good candidate to encode Θ
according to the above criteria.

2. Using the previous recipe, give an encoding for lists of element of type A (express it first as a free
structure!). Can you define a map function using this encoding?

3. HW Same question for trees of elements of type B.

Exercice 3 (Church integers). For some reason, the correct representation for Church integers in system
F starts with the polymorphic type nat ≡ ∀X.X → (X → X)→ X.

a) In the light of previous exercises, explain this definition.

b) Provide a representation n̄ : nat for each natural number n ∈ N. Show that these are actually the only
terms in normal form inhabiting nat. Is that true if nat ≡ ∀X.(X → X)→ X → X?

c) Define zero Z and the successor function S. What would be the corresponding introduction rules for
nat related to them?

ENSL - DI Proofs and Programs 2017-2018

d) Propose an abstract elimination rule for nat, and show the existence of a well-formed term, in system
F, that codes for this elimination rule.

e) We want to offer the iteration schema, along the following abstract equalities :

iter x f Z = x and iter x f (S p) = f (iter x f p)

Show that iter is representable in system F. Is it true that for all n ∈ N, iter x f n+ 1 reduces to
f (iter x f n̄)?

f) HW Complete with the proper coding of both add and pred in system F.

g) HW We want to offer the even more powerful recursion schema. It should obey the abstract equalities:

R x f 0̄ = x and R x f n+ 1 = f (R x f n̄) n̄

Exercice 4 (Algebraic datatypes). In previous exercises we have seen several examples of encodings of free
structures in system F. In this exercise we study an other “general recipe” for encoding algebraic datatypes.
Algebraic datatypes are those that can be defined by an equation Θ = A(Θ) where A is described with
sums and products.

The idea will be to choose as representative for these types, the type of system F that corresponds to
the initial algebra for A(Θ). In other word, we will define T the representative type of Θ such that T has
a principle of induction I : A(T) → T (ie T is an algebra) and T is the most general possible types that
enjoys this property (T is initial).

1. Give an algebraic definition for lists of elements of type A. Can you generalise this construction to
any free structures?

2. In Exercise 1 we saw that the encodings of A × B and A + B are functorial. More generally, prove
that any algebraic type A(T) is functorial.

3. For A(X) a functorial type, let ι ≡ ∀X, (A(X) → X) → X. Find two closed terms, I : A〈ι/X〉 → ι
and R : ∀X, (A(X)→ X)→ ι→ X such that for every t : A〈B/X〉 → B

(R B t)(I x)→∗β f(A ι B(R B f)x))

4. For A(X) a functorial type, we call A-algebra the data of a type T and a term t such that ` t :
A〈T/X〉 → A. We say that a A-algebra (T, t) is initial if for every T -algebra (T ′, t′) there exists a
(unique) term (in normal form) s : T → T ′, such that λxA〈T/X〉.s (t x) =β λx

A〈T/X〉.t′ ((F T T ′ s) x).
Explain why being an initial A-algebra formalize the idea of being the most general encoding of an
algebraic type A(X). Show that (ι, I) is an initial T -algebra.

A System F “à la Church”

Types T ::= X ∈ V | T → T | ∀X.T
Pre-terms t ::= x ∈ X | λxT .t | t t | ΛT.t | t T
Typing rules

(Hyp) x : T ∈ ∆
∆ ` x : T (→ I) ∆, x : S ` t : T

∆ ` λxS .t : S → T

∆ ` e : S → T ∆ ` s : S
∆ ` e s : T (→ E)

(∀I) ∆ ` t : T X 6∈ FV(∆)
∆ ` ΛX.t : ∀X.T

∆ ` t : ∀X.T
∆ ` t S : T 〈S/X〉 (∀E)

Reductions in System F are defined upon the two following steps:

(λx.t)s→β t〈s/x〉 (ΛX.t)T →B t〈T/X〉

Mastère, M1 Encodings in System F 2 / 2

	A System F ``à la Church''

