

Proofs and Programs

TD 10 - Revisions

Philippe Audebaud, Aurore Alcolei

12 april2018

Exercice 1. (Warming up)

1. Inhabit the following types in $\lambda_{\rightarrow,\times}$:

 $X \to (X \to R) \to R \qquad A \times ((B \to R) \to R) \to (A \times B \to R) \to R$

2. Recall the encoding of binary trees with element of type A in system F. How could you generalize it to *n*-ary trees? to infinite branching trees?

Exercice 2 (Typing with type algebra). In this exercise we give more power to the simple type system by considering types up to some congruence \equiv . For example, we can have equivalence of the form $A \equiv A \rightarrow B$. Typing rules remains unchanged but a type can be replaced by an equivalent type at any point of the derivation. In this system, type derivations are denoted $\Delta \vdash_{\equiv} t : A$.

- Show that if $A \equiv A \to B$ then $\vdash_{\equiv} \Omega : B$. (Hint : first show that $\vdash_{\equiv} \lambda \ x.xx : A$)
- Show that if \equiv is a congruence for \rightarrow then the subject reduction property holds. You can use the generation lemma associated to simply typed lambda-calculus.

Exercice 3 (Existential in System F). In propositional second order intuitionistic logic the existential quantifier is introduced and destructed via the following (annotated) rules:

$$\frac{\Delta \vdash t : T\langle S/X \rangle}{\Delta \vdash [S,t]_{\exists X.T} : \exists X.T} \ (\exists I) \qquad \frac{\Delta \vdash t : \exists X.T \quad \Delta, x : T \vdash s : B \quad X \notin FV(\Delta,B)}{\Delta \vdash \text{let} \ [X,x : T] = t \text{ in } s : B} \ (\exists E)$$

From a logical point of view existentials can be seen as infinite disjunction, from a programming point of view they can be interpreted as an encapsulation mechanism.

- 1. Find an appropriate type representation for the existential in System F, with an encoding for $[-, -]_-$ and let ... in Check that it validates the corresponding β rule.
- 2. Recall the encoding of NJ in System F and deduce that second order propositional intuituinistic logic is representable in System F.
- 3. In programming, streams are co-inductive datatypes with two accessors:

$$hd : Str_A \to A \qquad tl : Str_A \to Str_A$$

and a building function build : $(A \to B) \to \operatorname{Str}_A \to \operatorname{Str}_B$ such that

hd (build f(s) = f(hds) tl (build f(s) = build f(tls)

What could be an encoding of Str_A in System F?

4. Define the function $\operatorname{nth}: \operatorname{Nat} \to \operatorname{Str}_A \to A$ that returns the n^{th} element of a stream.

Exercise 4 (Final 2017 – Equivalence lifting). In HoTT, proofs can become involved. The goal is to prove that if $f: A \to B$ is an equivalence between A and B, then for each pair of elements a, a': A, the map $\operatorname{ap}_{f,a,a'}: a =_A a' \to f(a) =_B f(a')$ is an equivalence as well. Let $g: B \to A$ being an of f meaning that there are witnesses $\alpha: \prod_{x:A}g(f x) =_A \operatorname{id}_A x$ and $\beta: \prod_{b:B}f(g x) =_B \operatorname{id}_B x$ In the sequell we will left the subscript a, a' in ap_f implicit.

Question 1 As a quasi-inverse candidate for ap_f , let us consider $G(\cdot)$, defined by

$$G(q) \equiv \alpha(a)^{-1} \cdot \mathbf{ap}_q(q) \cdot \alpha(a') \tag{1}$$

To satisfy the requirement, we have to exhibit homotopies γ (as left inverse) and δ (as right inverse):

$$\gamma: \prod_{p:J} G(\operatorname{ap}_f(p)) =_J p \quad \text{et} \quad \delta: \prod_{q:K} \operatorname{ap}_f(G(q)) =_K q$$

- a) What are the types J and K? What is the type of the candidate $G(\cdot)$?
- b) Prove the existence of a witness γ .
- c) Why is that not possible to use a similar approach to prove the existence of δ ?

Question 2. Let $T: \mathcal{U}$ and $\varphi: T \to T$ such that $\varepsilon: \prod_{x:T} \varphi(x) =_T \operatorname{id}_T(x)$.

- a) Given x, x' : T and $r : x =_T x'$, prove that $\varepsilon(x)^{-1} \cdot \mathbf{ap}_{\varphi}(r) \cdot \varepsilon(x') =_S r$, where the type S will be made explicit.
- b) Conclude that, for all x : T, $\varepsilon(\varphi(x)) = \mathbf{ap}_{\varphi}(\varepsilon(x))$.

Question 3. Given x : A, let us note $\nu(x) \equiv \beta(f(x))^{-1} \cdot \beta(f(x))$.

- a) State the type of $\nu(\cdot)$.
- b) Prove that $\beta(f(a))^{-1} \cdot \operatorname{ap}_f(\operatorname{ap}_g(q)) \cdot \beta(f(a')) =_K q$.
- c) Simplify the path $\nu(a) \cdot \mathbf{ap}_f(G(q)) \cdot \nu(a')$.
- d) Conclude for the existence of an homotopy proof δ such that

$$\delta \quad : \quad \prod_{q:K} \operatorname{ap}_f(G(q)) =_K q$$

Exercice 5 (More on equivalences). Prove the following statements:

- 1. (identity) For all $A : \mathcal{U}$, quasi-inverse (id_A) ;
- 2. (between identity types) For all $A : \mathcal{U}, x, y : A$ and $p : x =_A y$,
 - $(p \cdot -): y = z \rightarrow x = z$ and $(p^{-1} \cdot -)$ are quasi-inverse one of the other ;
 - $(-\cdot p): z = x \to z = y$ et $(-\cdot p^{-1})$ are quasi-inverse one of the other.
- 3. (transport) If $P: A \to \mathcal{U}$, then $\operatorname{tr}^{P}(p, -): P(x) \to P(y)$ has $\operatorname{tr}^{P}(p^{-1}, -)$ for a quasi-inverse.

Exercice 6 (Barendregt natural numbers). Back to pure λ -calculus The Barendregt natural numbers $\lceil n \rceil$ $(n \in \mathbb{N})$ are defined by:

$$[0] \equiv \mathbf{I}$$
 $[n+1] \equiv (\text{pair } \mathbf{F} [n])$

- a) Using the alternative representation, code the successor, predecessor and test-to-zero functions.
- b) Implement the addition.
- c) In your understanding, how to the two natural numbers encodings (Church vs Barendregt) compare ?