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Abstract—Texture segmentation constitutes a central task in image
processing, classically based on two-step procedures consisting first in
computing hand-crafted features devised from a priori expert knowledge
and second in combining them into clustering algorithms. Deep learning
approaches can be seen as merging these two steps into a single one
with both discovering features and performing segmentation. Using
fractal textures, often seen as relevant models in real-world applications,
the present work compares a recently devised texture segmentation
algorithm incorporating expert-driven scale-free features estimation into
a Joint TV optimization framework against convolutional neural network
architectures. From realistic synthetic textures, comparisons are drawn
not only for segmentation performance, but also with respect to computa-
tional costs, architecture complexities and robustness against departures
between training and testing datasets.

Index Terms—Deep learning, CNN, Texture, Segmentation, Fractal,
Total variation, Wavelets.

I. INTRODUCTION

Context. Automated image segmentation constitutes a crucial task in
image processing and computer vision, for many different purposes
ranging from medical imaging [1] to autonomous driving [2]. In the
last decade, the tremendous increase in computational/storage capa-
bilities has triggered a massive use of deep learning for segmentation,
because deep convolutional neural networks have the potential to
discover and aggregate relevant information from large scale shapes
to fine scale structures. Recently, numerous real-world applications,
related to biological tissues [3], [4], geological samples [5], satellite
images [6],. . . drove the focus specifically on texture segmentation,
at the core of the present work. Texture segmentation however
differs drastically from object detection. Indeed, textures are mostly
characterized by small scale statistical properties rather than by
geometry and large scale structures.
Related works. For years, texture segmentation was performed via a
classical two-step procedure: First, prior knowledge or expert choice
driven features are computed (e.g., Gabor, gradients, differences
of oriented Gaussians,. . . ) ; Second, these features are combined
via a clustering algorithm (cf. [7] for a state-of-the-art review).
Recently, research focus has been on combining these two steps into
a single one to improve interface detection and thus segmentation
performance. This has been first envisaged by retaining hand-crafted
features but modifying classical frameworks (e.g., spectral clustering
based on multiple local cues in [8], nonnegative matrix factorization
in [9] or combining estimation and detection into a convex optimiza-
tion formulation [10]). Recently, Deep Learning renewed this topic,
jointly performing feature selection [11] as well as segmentation, first
for semantic segmentation [12], [13], [14], [15], rapidly followed by
texture segmentation [16], [7], [17].
Amongst others, fractal textures, also referred to as scale-free because
their statistics are not controlled by particular scales, are considered
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relevant models for and massively used in numerous real-world
applications very different in nature (cf. e.g., [18], [19], [20], [21],
[22], [10]), ranging from physics of rough materials [6] to art
investigations [23]. Interested readers are referred to several other
contributions for further examples [21], [24], [25] and to a recent
work [26], implementing a fractal dimension-based contour detector
as a Convolutional Neural Network (CNN).
Goal, contributions and outline. Making use of mixtures of syn-
thetic fractal textures (defined in Section II-A), the goal of the present
work is to compare expert-knowledge driven texture segmentation
exploiting a priori chosen scale-free features (such as local regular-
ity) within an advanced unsupervised joint TV based optimization
framework [10] (see Section II-B) versus blind or non informed
supervised CNN based Deep Learning (DL) approaches (described in
Section III) inspired from those in [7]. Comparisons are reported in
Section IV not only in terms of absolute segmentation performance
but also in terms of architecture complexities (three DL architectures
are devised and compared), of learning complexities (computational
costs and hyper-parameter tuning issues are discussed) as well as
of robustness with respect to both the size of the training set and
departures between training and testing sets, a realistic issue in real-
world applications, where one cannot always fully control the natural
variability encountered in data.

II. UNSUPERVISED LEARNINGFOR FRACTAL TEXTURES

A. Fractal textures

Fractal textures. A fractal texture consists of a stationary Gaussian
field X(z), whose covariance structure is fully defined by its variance
Σ2 and a fractal parameter H (cf. e.g. [27] for detailed definition).
Textured images correspond to discretization of the field X on a pixel
grid, denoted X = (Xn)n∈Ω ∈ RN1×N2 .
Piecewise fractal textures. For the present study, we consider
piecewise fractal textures, consisting of a mixture of Q fractal textures
(cf. Fig. 1, top left, for an example with Q = 3), each characterized
by parameters

(
Σ2
q, Hq

)
, q = {1, . . . , Q}.

Local multiscale analysis. It has been well-documented that fractal
textures can be well analyzed using multiscale transforms, such as
wavelet coefficients and wavelet leaders (cf. e.g., [27]). Wavelet
leaders Lj,k at scale j and location 2jk, are defined as a supremum
of all wavelet coefficients located into a small spatial neighborhood
at all finer scales [27]. It has been shown then that textures can be
well-characterized by a local multiscale analysis as

Lj,k =
2j→0

vn2jhn , n = 2jk, (1)

with v2
n ∝ σ2

n (a local variance) and where hn quantifies the
regularity of the texture locally around location n. For homogeneous
fractal textures, local variance and local regularities are constant over
the texture: hn ≡ H and σ2

n ≡ Σ2. For piecewise fractal textures,
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Fig. 1: Fully convolutional neural network for texture segmentation. Sketch of FCNN with skip connexions (simplest architecture, 4 105

weights).

hn and σ2
n are expected to form piecewise constant regions where

∀n ∈ Ωq , σ2
n ≡ Σ2

q and hn ≡ Hq .

B. Joint TV segmentation

Goal. The aim is to recover the underlying partition Ω = ∪Qq=1Ωq (cf.
bottom-right on Fig. 1) of the image domain Ω from estimations of
hn and σ2

n performed locally (i.e. pixel-wise) using wavelet leaders.
Segmentation scheme. To achieve that goal, we designed in [10]
an objective function combining a least square data fidelity term,
fitting the mathematical model (1), and total variation penalization,
enforcing piecewise constancy, leading to the optimization problem:(

v̂, ĥ
)

:= arg min
v,h

j2∑
j=j1

‖v + jh− `j(X)‖22 + λPα(v,h) (2)

where `j(X) = log2(Lj) ∈ RN1×N2 , j = {j1, . . . , j2} are the
non-decimated log-leaders and Pα = TV(v) + αTV(h) (cf. [28]
for TV definition). The regularization parameters, λ > 0 and α > 0,
have to be tuned to reach the best segmentation accuracy.

To perform the minimization (2), we have recourse to an acceler-
ated proximal primal-dual algorithm with convergence guarantees to
the global minimizer

(
v̂, ĥ

)
[29]. The segmentation M̂ROF (i.e. a

label map of same size as the analyzed image) is then obtained by
thresholding ĥ as proposed in [30], i.e. M̂ROF = TQ(ĥ).

III. SUPERVISED FULLY CNN

Fully convolutional neural networks (FCNN). - We followed the
work of Andrearczyk et al. [7] in which the state-of-the-art semantic
segmentation FCN-8s Network [13], is tailored to texture segmenta-
tion. Mathematically, the FCNN takes entry X(`) (256×256 image)
and outputs 256×256 label map M (`) ≡ Rθ(X(`)), where θ denotes
the weights of the network and Rθ encapsulates the successive

(convolution, activation, . . .) operations. The two major ingredients
tuned to texture segmentation are, first, the skip connections with
shallow layers (enabling to keep precise localization), and second,
making use of a large number of filters at each layer to capture as
much as can be of the rich properties of textures. The state-of-the-art
FCNN in [7] reaches a size of 8 · 107 weights for textured images of
size N1 = N2 = 256.
Networks designed here. Starting from the state-of-the-art FCNN
described above, we further propose two successively simplified
versions, whose sizes reduce respectively to 2 · 106 and 4 · 105

weights. The global architecture of the three networks is thus similar
and they only differ in complexity (number of weights). Hence,
in the following, they are referred to by their number of weights
to emphasize the complexity hierarchy. The proposed networks are
composed of
(i) Several successive convolutional blocks, or layers, (BLOCKS 1, 2
on Fig. 1) combining a sequence of convolutions with ReLU ac-
tivations. Layers are terminated by a polling operation, inducing
resolution decrease enabling to deal with more global features as
one gets deeper into the network.
(ii) These layers are followed by a fully convolutional block com-
posed of one convolutional layer having a large number of filters and
wider kernels of size 5, one convolution getting to targeted final
depth Q and one transposed convolution, upsampling the feature
maps (BLOCK F on Fig. 1).
(iii) This is followed by skip connections between the output of
shallow blocks (e.g. BLOCK 1 on Fig. 1) and the output of BLOCK F,
performing successive appropriate upsampling to produce a label map
with same resolution N1 ×N2 as input images.
(iv) Finally, a softmax activation is applied to produce decision, that
is one class label per pixel.
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Fig. 2: Texture configurations
{(

Σ2
q, Hq

)
, q = 1, . . . , Q

}
.

These four steps are summarized in Fig. 1 for the 4 ·105 w. network.
For all networks, the default filter size is p = 3, the default stride is
s = 1 and a (2, 2) pooling is applied at the end of each block.

The three explored architectures are
• 4 · 105 w. net: This proposed network is composed of 2 convolu-
tional blocks. More specifically, BLOCK 1 is composed of two layers,
each having 32 filters and BLOCK 2 has two layers, each having
64 filters. The fully convolutional layer in BLOCK F contains 256
filters. One skip connection combine information from BLOCK 1 and
BLOCK F using Q filters.
• 2 · 106 w. net: This proposed network is composed of 3 blocks,
BLOCK 1 with two layers, each having 32 filters, BLOCK 2 with
two layers, each having 64 filters and BLOCK 3 with three layers
each having 128 filters. The fully convolutional layer in BLOCK F
contains 512 filters. Two skip connections connect BLOCK 1 and
BLOCK 2 to the final block, each having Q filters.
• 8 · 107 w. net: Andrearczyk et al. [7] network is composed of 4
convolutional blocks. BLOCK 1 is composed of two layers, with
64 filters, BLOCK 2 is composed of two layers, with 128 filters,
BLOCK 3 is composed of three layers with 256 filters and BLOCK 4
has three layers, each having 512 filters. The fully convolutional layer
in BLOCK F contains 4096 filters. Three skip connections connect
BLOCK 1, BLOCK 2 and BLOCK 3 to final block.
Supervised learning – From a database

{
X(`),M (`)

}L
`=0

an op-
timization strategy estimates the optimal weights θ̂ of the network
as:

θ̂ = argminθ d(M̂
(`)
,Rθ(X(`))

)
(3)

where Rθ summarized the successive steps (i)-(iv), composing the
neural network. Finally the supervised segmentation is obtained as
M̂

(`)

FCN = Rθ̂(X).

IV. EXPERIMENTS ON SYNTHETIC TEXTURES

A. Experimental settings

Learning dataset. As sketched in Fig. 2, we investigate Q-class
segmentation with Q ∈ {2, 3, 4}. Each training image X(`) is built
from a partition

Ω(`) = ∪Qq=1Ω(`)
q , with q 6= q′ ⇒ Ω(`)

q ∩ Ω
(`)

q′ = ∅ (4)

randomly generated, and from the fractal descriptors of the Q textures(
Σ2
q, Hq

)
q=1,...,Q

. For each Q, we consider two configurations,
i.e., two different sets of characteristic descriptors {

(
Σ2
q, Hq

)
, q =

1, . . . , Q}. In Config. I (in blue on Fig.1) textures to be segmented
have large ∆H ≡ Hq − Hq′ and small ∆Σ2 ≡ Σ2

q − Σ2
q′ and

conversely in Config. II (in red in Fig.1).
To train neural networks, for Config. I, II and Q = {2, 3, 4},
we generated a data set of 2000 X(`), associated with ground

2 classes 3 classes 4 classes

Trained on Config. I, tested on Config. I

Trained on 2000 images
Joint TV 93.2± 0.8% 69.3± 2.8% 58.6± 1.5%

FCNN 8 · 107 / S = 2000 97.3± 0.6% 97.8± 0.3% 97.1± 0.4%
FCNN 2 · 106 / S = 2000 97.4± 0.6% 98.1± 0.3% 96.8± 0.5%
FCNN 4 · 105 / S = 2000 96.9± 0.7% 98.0± 0.3% 96.5± 0.5%

Trained on 20 images
FCNN 8 · 107 / S = 20 95.5± 0.9% 97.5± 0.4% 95.4± 0.8%
FCNN 2 · 106 / S = 20 95.4± 1.1% 97.4± 0.5% 95.9± 0.7%
FCNN 4 · 105 / S = 20 96.6± 0.7% 98.0± 0.4% 96.5± 0.5%

Trained on Config. II, tested on Config. II

Joint TV 97.8± 0.2% 95.2± 3.1% 64.9± 1.4%

Trained on 2000 images
FCNN 8 · 107 / S = 2000 99.1± 0.2% 98.3± 0.3% 95.7± 0.5%
FCNN 2 · 106 / S = 2000 99.0± 0.2% 98.5± 0.3% 95.6± 0.5%
FCNN 4 · 105 / S = 2000 99.1± 0.2% 98.4± 0.3% 95.2± 0.6%

Trained on 20 images
FCNN 8 · 107 / S = 20 98.8± 0.2% 97.9± 0.3% 94.5± 0.7%
FCNN 2 · 106 / S = 20 98.6± 0.3% 97.4± 0.4% 93.0± 0.9%
FCNN 4 · 105 / S = 20 98.8± 0.3% 98.3± 0.3% 94.8± 0.6%

Trained on Config. I, tested on Config. II

Joint TV 79.2± 2.9% 95.2± 1.2% 66.3± 1.1%

Trained on 2000 images
FCNN 8 · 107 / S = 2000 91.2± 2.1% 65.7± 7.2% 55.6± 3.4%
FCNN 2 · 106 / S = 2000 87.9± 2.5% 69.0± 7.6% 50.8± 4.0%
FCNN 4 · 105 / S = 2000 81.8± 3.8% 65.2± 7.2% 46.4± 3.7%

Trained on 20 images
FCNN 8 · 107 / S = 20 91.4± 1.6% 63.3± 7.1% 54.7± 3.3%
FCNN 2 · 106 / S = 20 92.4± 1.6% 65.6± 7.4% 44.4± 3.4%
FCNN 4 · 105 / S = 20 86.3± 2.6% 64.9± 7.2% 48.4± 3.8%

Trained on Config. II, tested on Config. I

Joint TV 90.9± 2.8% 66.7± 2.5% 52.0± 1.5%

Trained on 2000 images
FCNN 8 · 107 / S = 2000 56.2± 13.5% 73.5± 8.2% 50.9± 3.9%
FCNN 2 · 106 / S = 2000 55.1± 14.0% 74.9± 8.2% 51.3± 4.3%
FCNN 5 105 / S = 2000 55.5± 13.8% 72.6± 8.1% 50.2± 3.8%

Trained on 20 images
FCNN 8 · 107 / S = 20 57.1± 13.3% 71.1± 8.2% 52.6± 3.8%
FCNN 2 · 106 / S = 20 55.3± 14.0% 71.7± 8.4% 49.6± 4.2%
FCNN 5 105 / S = 20 62.3± 11.5% 71.0± 8.2% 54.1± 3.7%

TABLE I: Segmentation accuracy (% of well-classified pixels).

truth segmentation M (`) (label map equivalent to the partition
Ω(`) = ∪Qq=1Ω

(`)
q ). Each texture X(`) contains samples of each Q

textures (i.e. Ω
(`)
q 6= ∅, ∀q, ∀`).

TV-based texture segmentation. Following [10], the wavelet trans-
form of textured images is performed using Daubechies wavelets



with two vanishing moments [31]. The considered scales range from
2j1 = 21 to 2j2 = 23. For each Q and each configuration, the Joint
algorithm is run on one training image X(1) over a 20× 20 grid of
regularization parameters (λ, α), so as to select optimal parameters
(in term of segmentation accuracy). Parameters λ and α are then
frozen to optimal values and used to segment a set of one hundred
test images (built in the same way as training images).
FCNN supervised training. The training for supervised learning
consists in minimizing the loss d, computed over the entire training
dataset (cf. Eq. (3)) with respect to the weights θ of the network. Two-
class segmentation is trained minimizing binary cross entropy, while
three and four-class use categorical cross entropy. The minimization
is performed using ADAM optimizer with AMSGrad strategy [32],
learning rate 2 10−4 and batch size of 20 images. By construction of
ADAM algorithm, all the textures in the training set are used once
in the implementation of each epoch of Stochastic Gradient Descent.
Thus, we defined the number of images processed along the training
of FCNN, as the number of epochs times the size of training set.
Performance for FCNN are evaluated by applying temporarily frozen
FCNN on the same test set of one hundred textures as the one used
for Joint TV optimization Algorithm.

(a) w.r.t. epochs (b) w.r.t. images processed

Fig. 3: Evolution of accuracy along training phase. Accuracy of
different FCNN trained on Config. I, for two-classes segmentation.

B. Results and Discussion

Convergence. Fig. 3a reports, for Config. I and with Q = 2, the
evolution of accuracy for the three networks, trained on the training
dataset of 2000 textures. Fig. 3a clearly shows that FCNN trained
on the full dataset of 2000 textures do converge to a stable maximal
accuracy after the use of 30 epochs. Equivalent plots and conclusions
are obtained for other configurations.
Performance. Tab. I reports segmentation performance after con-
vergence, defined as segmentation accuracies (percentage of well-
classified pixels). For Q = 2, Tab. I shows that both FCNN and
Joint TV optimization Algorithm achieve comparably high accuracy
on Config I and II. For Q = 3, FCNN perform as well as for Q = 2
for both configurations, while Joint TV optimization Algorithm
only maintains competitive accuracy on Config II. For Q = 4,
FCNN performance suffer only from a mild decrease, while those
of Joint TV optimization Algorithm significantly degrade. FCNN
with different complexities (different depth and width) show similar
performance despite a decrease by 200 of the number of parameters
from the largest state-of-the-art FCN-8s to the smallest FCNN tested
here.
Robustness w.r.t. training set size S. To investigate the impact of the
training set size, learning was conducted a second time using a small
subset of the learning dataset described in Sec IV-A of only S = 20
textures. Fig. 3a shows that convergence requires a significantly larger
number of epochs. Yet, Fig. 3b shows, that convergence occurs for

(a) Truth (b) Joint (c) FCNN 8 · 107

Fig. 4: Q = 2-class segmentation (trained and tested on Config. I),
showing irregular contours for FCNN segmentation.

both the large and small data sets, for a comparable number of
training samples actually used and reused, referred to as the number
of images processed. Altogether it shows that the number of epochs
required is inversely proportional to the database size.
Further, Tab. I indicates only a slight decrease in performance when
the small training set is used (despite its significantly smaller size).
The use of a smaller training set goes along with a significant
reduction in memory cost during training.
Robustness w.r.t. training configuration. To investigate the robust-
ness of the segmentation procedures with respect to a mismatch
between training and testing sets, Tab. I reports performance achieved
when FCNN training and Joint TV parameter tuning are performed
using one configuration, and testing is conducted using the other
configuration. When trained on Config. I (large ∆H , small ∆Σ2) and
tested on Config. II (small ∆H , large ∆Σ2), FCNN perform accurate
segmentation for Q = 2 above Joint TV optimization performance.
However, FCNN suffer from severe performance degradation as the
number of classes Q increases, while Joint TV optimization degrades
significantly less. When trained on Config. II and tested on Config. I,
Joint TV optimization turns out to be significantly more robust than
FCNN for Q = 2. All procedures show a lack of robustness for
Q = 4. All together, Joint TV optimization shows equivalent, if not
better (see Training on Config. I, tested on Config II with Q = 3, 4
classes in Tab. I), robustness compared to FCNN. Also, the FCNN
with larger complexity does not show more robustness than the one
with the lowest complexity.
Computational load. We now evaluate computational costs. For
FCNN, W weights are learned, on S (either 2000 or 20) training
segmented images, running ADAM for I (either 30 or 3000) epochs,
resulting in a cost of

C =W ×S × I. (5)

For Joint TV optimization, there are W = 2 hyperparameters (λ, α)
to tune and a single image (S = 1) is processed 400 times (20× 20
couples (λ, α)), each performing 2.5 104 iterations, for a total of
I = 107 iterations. Resulting computational costs are compared in
Tab. II showing drastically smaller costs for Joint TV optimization
compared to FCNN.

W S I C

Joint TV 2 1 107 2 107

FCNN 8 · 107 / S = {20, 2000} 8 · 107 {20, 2000} {3000, 30} 4.8 1012

FCNN 2 · 106 / S = {20, 2000} 2 · 106 {20, 2000} {3000, 30} 1.2 1011

FCNN 4 · 105 / S = {20, 2000} 4 · 105 {20, 2000} {3000, 30} 2.4 1010

TABLE II: Computational cost C for training phase. The estimation
is performed using the formula proposed in Eq. (5).



Interface accuracy. FCNN lead to irregular interfaces (as empha-
sized in [7] and illustrated on Fig. 4). Yet, for applications requiring
precise interface length measurements, such as [10], it is crucial to
recover accurate and smooth contours. Tab. III compares relative
errors on total interface length (i.e., the number of pixels at the
border of two different regions) for Q = 2-class segmentation, and
shows that joint TV optimization systematically and significantly
outperforms FCNN. Moreover, when trained in one configuration
and tested on another, FCNN perform particularly bad at measuring
interfaces.

Train/Test Config. I/I Config. II/II Config. I/II Config. II/I

Joint TV 14± 4 13± 2 48± 22 16± 4
FCNN 8 · 107 33± 3 36± 2 112± 24 68± 18
FCNN 2 · 106 37± 3 41± 3 213± 72 77± 4
FCNN 4 · 105 24± 3 18± 2 337± 131 62± 9

TABLE III: Relative error on interface length for two-class
segmentation. FCNN are trained on S = 2000 images. (Similar
results are obtained with S = 20.)

V. CONCLUSION

This work showed that supervised FCNN compares favorably
against unsupervised hand-crafted feature Joint TV optimization for
fractal texture segmentation, even with reduced training data sets, and
reduced complexities (compared to state-of-the-art architectures), at
the cost though of much larger computation and memory resources.
However, FCNN did not show robustness in training/testing datasets
mismatch (even those with largest complexities) and yield poor
estimation of interface lengths, thus still making their use debatable
in real-world applications. Following recent works in deep learning
literature a natural option would be to combine both approaches so
as to exploit the advantages of each, as LISTA [33] did.
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