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ABSTRACT

Texture segmentation constitutes a task of utmost importance in sta-
tistical image processing. Focusing on the broad class of monofrac-
tal textures characterized by piecewise constancy of the statistics
of their multiscale representations, recently shown to be versatile
enough for real-world texture modeling, the present work renews
this recurrent topic by proposing an original approach enrolling
jointly scale-free and local variance descriptors into a convex,
but non smooth, minimization strategy. The performance of the
proposed joint approach are compared against disjoint strategies
working independently on scale-free features and on local variance
on synthetic piecewise monofractal textures. Performance are also
compared for multiphase flow image characterization, a topic of
crucial importance in geophysics as well as in industrial processes.
Applied to large-size images (above two million pixels), the pro-
posed approach is shown to significantly improve state-of-the-art
strategies by permitting the detection of the smallest gas bubbles
and by offering a better understanding of multiphase flow structures.

Index Terms— Total Variation, Primal-dual proximal algo-
rithm, Texture segmentation, Strong convexity, Multiphase flow.

1. INTRODUCTION

Texture characterization – A texture is a perceptual attribute whose
characterization has been envisaged with various mathematical mod-
els involving geometric or statistical attributes such as e.g., local
variance or local spectral histograms. Amongst state-of-the-art tex-
ture segmentation techniques, one can refer to Yuan et al. [1] relying
on Gabor coefficients as features followed by a selection procedure
based on a matrix factorization step or to the multiscale contour de-
tection procedure whose descriptors are the concatenation of bright-
ness, color and texture (using textons) information followed by the
computation of an oriented watershed transform [2]. In the present
work, particular attention is granted to another class of multiscale
techniques relying on scale-free local features [3], well-suited for
multiphase flow texture modeling.
Challenges in multiphase flow characterization – Understanding
and predicting the dynamics of multiphase flows is a major issue
in geosciences (soil decontamination, CO2 sequestration) and in the
industry (enhanced oil recovery, catalytic reactions) [4, 5]. Such
phenomena all involve a joint gas and liquid flow inside a porous
medium. Quantifying the contact areas between the different phases,
where chemical reactions take place, is of tremendous importance
for analyzing and predicting the efficiency of such processes [6].
However, the porous medium produces a global, multiscale texture
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which makes it difficult to extract gas-liquid interfaces. Segmenta-
tion techniques based on morphological tools used so far to differ-
entiate phases in multiphase flows [7] present severe limitations: ar-
bitrary threshold setting, non-physical irregular bubble contour, non
detection of small bubbles. In addition, recent development in high-
resolution imaging yield large-size images thus bringing forward is-
sues in memory and computational costs.
Model – In the present study, we consider a broad class of textured
images x = (xn)n∈Ω ∈ R|Ω| of size |Ω| = N1 × N2, piecewise
monofractal textures, characterized by piecewise constant statistical
properties of their multiscale coefficients

(
X (j)
n

)
n∈Ω,j∈N∗ , where 2j

denotes the scale. These multiscale coefficients consist of either the
absolute value of wavelet coefficients or wavelet leaders of texture x
[3], and behave locally as

X (j)
n ' sn2jhn when 2j → 0 (1)

where s ∈ R|Ω|, the local variance, and h ∈ R|Ω|, the local regular-
ity, are assumed to be piecewise constant fields.

To model multiphase flow textures, it is not assumed a priori that
both s and h have edges at same locations. In this context, perform-
ing texture segmentation thus consists in estimating sharp changes
in s and h from image x.
State-of-the-art – Model (1) is of common use for modeling scale-
free textures [8] and has proven its efficiency to caracterized homo-
geneous textures as encountered in art investigation [9] or medical
imaging [10], i.e. sn ≡ s0 and hn ≡ h0. The common approach
to estimate s and h naturally involves the use of (weighted) linear
regression across scales as

log2 X
(j)
n ' log2 sn + jhn as 2j → 0. (2)

When homogeneous texture are analysed, the multiscale coefficients
are first averaged across space and then linear regressions on those
averages lead to accurate estimates of h0 and s0, notably using
wavelet leaders [3]. However, when the objective consists in obtain-
ing local estimates to capture changes in h or s, other strategies need
to be deployed. In [8], estimation relies on a two-step procedure
(as often in texture segmentation) consisting in (i) estimating ĥReg

by linear regression across scales from X (j)
n and (ii) obtaining from

ĥReg a piecewise constant estimate of h denoted ĥTV by means
of total-variation denoising. In [8], we also proposed to combine
both steps by incorporating the regression weight estimation into the
optimization process leading to:

minimize
h,w

∑
n∈Ω

(∑
j

w(j)
n log2 X

(j)
n − hn

)2

+ λΩ(h,w)

where λ > 0 denotes a regularization parameter and Ω a convex
regularization term inducing flexibility in the choice of the weights



(w.r.t unbiased estimator) and where h is assumed to be piecewise
constant. This procedure lead to satisfactory estimation performance
at the price though of high computational and memory costs.
Contribution – In this work, we propose a new estimation/segmenta-
tion procedure that perform jointly the estimation of h of s. The pro-
posed method aims (i) to estimate simultaneously the local variance
and the local regularity, (ii) to rely on a fast algorithmic procedure
and (iii) to involve a limited amount of memory. In Section 2, we
formulate joint estimation as an optimization problem. The algorith-
mic solution devised to solve the optimization problem is presented
in Section 3. Performance of the proposed strategies are assessed
and compared to disjoint estimation procedure on synthetic piece-
wise constant monofractal textures in Section 4. Results achieved
on multiphase flow images are detailed in Section 5 and compared
to those obtained from state-of-the-art segmentation methods.

2. SEGMENTATION AS AN OPTIMIZATION PROCEDURE

We adopt a variational approach to estimate jointly s and h from the
multiresolution quantity X :

minimize
s∈R|Ω|,h∈R|Ω|

F (s, h;X ) +G(s, h). (3)

where F (·, ·;X ) : R|Ω|×R|Ω| →]−∞,+∞] is a data-fidelity term
reminiscent of (2) and G : R|Ω| × R|Ω| →] −∞,+∞] is a penal-
ization favoring piecewise constant estimates, based on the use of
total variation. From (2), a natural choice for the data-fidelity term
F reads:

F (s, h;X ) =
1

2

J2∑
j=J1

‖ log2 X
(j) − log2 s− jh‖

2
2, (4)

where 1 ≤ J1 < J2. To manipulate convex data-term, we set
v = log2 s and deal with the minimization problem over (v, h)
rather than over (s, h) leading to

(v̂, ĥ) ∈ Argmin
v,h

∑
j

‖ log2 X
(j) − v − jh‖22 + ηTV(h) + ζTV(v)

(5)
with ŝ = 2v̂ , and where η > 0, ζ > 0 are regularization parameters.
TV models the isotropic total variation. Let D : R|Ω| → R|Ω|×2

computing the horizontal and vertical variations of intensity at each
location n = (n1, n2) ∈ Ω,

(Dy)n1,n2
=

(
yn1,n2+1 − yn1,n2

yn1+1,n2 − yn1,n2

)
, (6)

the total variation is defined as, for every y ∈ R|Ω|, TV(y) =

||Dy||2,1 where for every z = (z1, z2) ∈ R|Ω|×2:

‖z‖2,1 =

N1−1∑
n1=1

N2−1∑
n2=1

√
(z1)2

n1,n2
+ (z2)2

n1,n2
. (7)

3. STRONG CONVEXITY AND FAST ALGORITHM

3.1. Primal-dual algorithms and strong convexity

Problem (5) can be rewritten in a general form

ŷ ∈ Argmin
y∈H

ϕ(y) + ψ(Ly) (8)

where ϕ : H → R and ψ : G → R are proper lower semi-
continuous convex functions defined on Hilbert spacesH and G, and

L : H → G is a bounded linear operator. When the proximal oper-
ators of functions ϕ and ψ, defined as proxϕ(y) = argmin

ỹ

1
2
‖y −

ỹ‖22 + ϕ(ỹ) (and similarly for ψ), have closed form expressions,
this problem can be solved using Chambolle-Pock primal-dual algo-
rithm [11], belonging to the class of proximal algorithms [12, 13]
and particularly efficient when dealing with TV penalties.

However, when working with large size data, as e.g. in multi-
phase flows, the basic form of Chambolle-Pock primal-dual algo-
rithm suffers from too high and hence redhibitory computational
cost. To deal with high dimensionality problems, it is necessary to
take advantage of additional properties of the functions ϕ and ψ,
such as strong convexity. A function ϕ is said to be µ−strongly con-
vex, for a given µ > 0, when the function y 7→ ϕ(y) − µ

2
‖y‖22 is

convex.
When ϕ is µ-strongly convex, it is proven in [11] that it is pos-

sible to design an accelerated algorithm, relying on adaptive step-
sizes, to solve (8). This algorithm is detailed in Algorithm 1 where
the sequence (y[k])k∈N converges to the solution of (8).

Algorithm 1: Accelerated Chambolle-Pock algorithm.

Initialization : Set y[0], z[0] = Ly[0].
Set δ0 > 0 and ν0 > 0 such that δ0ν0‖L‖2 < 1.
for k ∈ N∗ do

y[k+1] = proxδkϕ

(
y[k] − δkL∗z̄[k]

)
z[k+1] = proxνkψ∗

(
z[k] + νkLy[k+1]

)
ϑk = (1 + 2µδk)−1/2, δk+1 = ϑkδk, νk+1 = νk/ϑk

z̄[k+1] = z[k+1] + ϑk
(
z[k+1] − z[k]

)
3.2. Strong convexity of the data-fidelity term

A differentiable function ϕ is µ-strongly convex if and only if

(∀ (y, z) ∈ H×H) 〈∇ϕ(y)−∇ϕ(z), y − z〉 ≥ µ‖y − z‖2

where 〈. , .〉 denotes the usual scalar product. For the data-fidelity
term considered here that is,H = R|Ω|×R|Ω| and ∀y = (v, h) ∈ H,

ϕ(y) = F̃ (v, h;X ) =

J2∑
j=J1

‖ log2 X
(j) − v − jh‖22, (9)

one directly finds∇F̃ (v, h;X ) = M (v, h)T, with M =

(
S0I S1I
S1I S2I

)
is block matrix defined from

Sm =

J2∑
j=J1

jm, (10)

and I is the identity matrix of R|Ω|. Since the gradient∇F̃ is linear,
the condition for F̃ to be µ−strongly convex rewrites: ∀(v, h) ∈ H,

〈∇F̃ (v, h;X ), (v, h)〉 =
〈

M (v, h)T , (v, h)T
〉
≥ µ ‖(v, h)‖2

Moreover M is symmetric and positive definite, thus, denoting
by β its lowest eigenvalue, β > 0 and〈

M (v, h)T , (v, h)T
〉
≥ β

〈
(v, h)T , (v, h)T

〉
, (11)

we conclude that the function F̃ (v, h;X ) is µ-strongly convex w.r.t
the variables (v, h), with µ = β.
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Fig. 1: Estimates for local variance (top) and regularity (bottom) : linear regressions (column 1), disjoint TV estimation (column 2), PLOVER
(column 3). Average re-estimates for disjoint TV and PLOVER (columns 4 and 5 resp.).
3.3. Proposed algorithm for texture segmentation

Given the strong convexity result of the previous section, it is thus
possible to use the general accelerated primal-dual Algorithm 1 for
solving Problem (5). The iterations are customized to the minimiza-
tion of (5) in Algorithm 2 setting y = (v, h). The proximity operator
of the data-fidelity term is provided in Proposition 1 while the prox-
imal operator of the conjugate function of the mixed 2,1-norm is
derived in [14]. The convergence of

(
v[k], h[k]

)
k∈N

to a minimizer

of Problem (5) is insured by δ0ν0‖D‖2 < 1.

Algorithm 2: PLOVER (Piecewise constant LOcal VariancE
and local Regularity joint estimation)

Initialization v[0], h[0] ∈ R|Ω|, u[0] = ū[0] = Dv[0]

`[0] = ¯̀[0] = Dh[0] ∈ R|Ω|×2; δ0, ν0 > 0, s.t. δ0ν0‖D‖2 < 1
for k ∈ N∗ do(

v[k+1]

h[k+1]

)
= proxδkF̃

((
v[k]

h[k]

)
− δk

(
D∗ū[k]

D∗ ¯̀[k]

))
 u[k+1] = proxνkζ‖·‖∗2,1

(
u[k] + νkDv[k+1]

)
`[k+1] = proxνkη‖·‖∗2,1

(
`[k] + νkDh[k+1]

)
ϑk = (1 + 2µδk)−1/2, δk+1 = ϑkδk, νk+1 = νk/ϑk(
ū[k+1]

¯̀[k+1]

)
=

(
u[k+1]

`[k+1]

)
+ ϑk

((
u[k+1]

`[k+1]

)
−
(
u[k]

`[k]

))

Proposition 1 (Computation of proxF̃ ). Let F̃ be defined as in (9).

Let S =
∑
j log2 X (j), T =

∑
j

(
j log2 X (j)

)
and N = (1 +

S0)(1+S2)−S2
1 , {Sm}m∈{0,1,2} defined in (10). For every (v, h) ∈

R|Ω| × R|Ω|, (p, q) = proxF̃ (v, h) with{
p = ((1 + S2)(S + v)− S1(T + h)) /N ,
q = ((1 + S0)(T + h)− S1(S + v)) /N .

4. PERFORMANCE ASSESSMENT

Simulation settings – To evaluate the performance of the proposed
piecewise constant local variance and local regularity estimation
PLOVER procedure (cf. Algorithm 2), we generate piecewise
monofractal textures fully characterized by their (piecewise) local

variance s and (piecewise) local regularity h. An example is dis-
played in Fig. 2(a), while underlying masks for local variance and
local regularity are represented on Figs. 2(b) and (c). Synthetic
textures consist of three regions embedded in a background, char-
acterized with sn ≡ 0.3 and hn ≡ 0.1: Region 1(left) corresponds
to a change in local regularity h (w.r.t. the background) but no
change in local variance s (sn ≡ 0.3, hn ≡ 0.6) ; Region 2 (mid-
dle) corresponds to changes in both local variance and regularity
(sn ≡ 0.6, hn ≡ 0.6) ; Region 3 (right) corresponds to changes in
local variance only (sn ≡ 0.6, hn ≡ 0.1). The masks consisting of
three different size disks permit to test the impact of region sizes on
performance. Wavelet leaders, local suprema of wavelet coefficients
[3] are chosen as multiresolution quantities X . Scales involved in
the minimization range from J1 = 1 to J2 = 5.
Performance evaluation – Fig. 1 reports estimation performance
compared i) when performing linear regressions equivalent to solve
Problem (5) when η = ζ = 0 leading to (v̂Reg, ĥReg) and with
ŝReg = 2v̂Reg (column 1) ; ii) when applying a simple TV denoising
on v̂Reg and ĥReg separately, i.e., solving the minimization prob-
lem ŷTV = argmin

y

1
2
‖y − ŷReg‖22 + λyTV(y) where y = {s, h}

(column 2) ; iii) when applying the proposed PLOVER procedure
(column 3).
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Fig. 2: (a) Synthetic piecewise monofractal textures using piecewise
local variance (b) and regularity (c).

Because it is now well known that TV-based estimation suffers
from large biases [15] that precludes the recovery of exact values
for s and h in the different regions. To overcome this difficulty, we
first perform a K-means segmentation from the estimates (ŝ•, ĥ•)
and re-estimate from the multiscale coefficientsX the values of local
variance and regularity for the segmented regions by global averages
within segmented regions. Achieved performance are displayed in
the fourth and fifth columns, λ, η and ζ are chosen as those leading
to the best SNR on these re-estimates.



(a) Image x ∈ R|Ω| (b) Zoom of x ∈ R|Ω| (c) PLOVER : ŝ (d) PLOVER : ĥ
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Fig. 3: Multiphase flow image (a) and zooms (b). PLOVER estimates for local variance (c) and regularity (d). State-of-the-art segmentations
applied on x (e) and (f), K-means based segmentation from disjoint estimates (g) and PLOVER (h).

Local regularity and variance estimation is clearly improved by
the proposed joint estimation PLOVER procedure, compared to dis-
joint estimation. This is significantly the case for the local regularity
estimates, a significant outcome as local regularity is a notoriously
difficult quantity to estimate. Moreover, edges of estimates are found
to be more regular for the proposed PLOVER procedure, an out-
come of practical importance for multiphase flow analysis, where
bubble perimeter estimation if of critical importance. For piecewise
monofractal textures, it has been shown that texture segmentation
state-of-the-art methods such as those in [1, 2] do not yield satis-
factory results (cf. [8, Fig.3]), the corresponding comparisons not
reported here for space reasons further confirm such findings.

5. MULTIPHASE FLOW LARGE-SIZE IMAGE ANALYSIS
Data acquisition – Experiments of joint gas and liquid flow through
a porous medium were performed in a quasi-2D vertical cell (Hele-
Shaw cell of width 210 mm, height 410 mm and gap 2 mm). The
porous medium is an open cell solid foam of NiCrFeAl alloy, with
a typical pore diameter of 580 µm. Constant gas and liquid flow
rates are injected at the bottom of the cell through nine injectors (air)
and a homogeneous slit (water). Images of the multiphase flow are
acquired by a high-resolution camera (Basler, 2048×2048 pixels) at
100 Hz [16]. The size of the images to analyze is 1677× 1160. An
example is provided in Fig. 3(a), showing that the gas phase (blue or
yellow structures) is textured because of the solid porous medium.
The liquid phase (in green) is also textured though at smaller scales
(cf. Fig. 3(b)).
Discussion – Figs. 3(c)-(d) clearly show that the local variance ŝ and
local regularity ĥ provide information different in nature: ĥ captures
well all gas bubbles and it can be conjectured that the value of ĥ
is linked to bubble thickness variations ; ŝ brings forward bubbles

located in the foreground only (yellow structures in Fig. 3(b)), thus
providing rich information on the bubble distribution in the cell gap.
Comparisons with state-of-art – Fig. 3 (2nd row) compares
segmentation outcomes of the proposed PLOVER procedure to
those obtained from state-of-the-art texture segmentation methods:
Fig. 3(e) illustrates the segmentation obtained with the oriented
watershed transform of Arbelaez et al [2] and Fig. 3(f) shows the
segmentation obtained following Yuan et al [1] method based on
matrix factorization. The results of disjoint TV estimation proce-
dure [8] are displayed on Fig. 3(g). For disjoint TV and PLOVER
results, the segmentation is obtained by performing K-means over
ĥ• and ŝ•. The proposed method PLOVER yields better determi-
nation of individual objects (bubbles), this is critically the case for
the smaller size bubbles, of great importance in a forthcoming quan-
tification of phase contact surfaces, critical features in multiphase
flow characterization. In addition, PLOVER produces an enhanced
separation of the foreground and background bubble populations,
which yield an improved description of multiphase flows. Further,
some state-of-the-art approaches are so demanding computational
and memory-resource wise, that they could not be applied to the
large-size images directly while the current PLOVER implementa-
tion permits a fast analysis of such large-size images. Results were
hence compared for cropped versions of actual images.

6. CONCLUSION
These computational efficiency of PLOVER combined to the sig-
nificant improvements in multiphase flow large-size image analysis
pave the way towards a systematic use in this application. Analy-
ses on much larger simulated and real-world image datasets are un-
der current investigations together with the automated tuning of the
hyper-parameters λ, η and ζ.
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