
The wtrans1d package
Managing 1-dimensional wavelet transforms

and

The extrema1d package
Managing wavelet transform extrema representation

Emmanuel Bacry
CMAP, Ecole polytechnique, 91128 Palaiseau Cedex, France

email : lastwave@cmap.polytechnique.fr
web : http://www.cmap.polytechnique.fr/ ˜ bacry/LastWave

The wtrans1d and extrema1d packages was co-written by

• Benjamin Audit Computational Genomics Group, EMBL-European Bioinformatics
Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
e-mail: audit@ebi.ac.uk
web: http://www.ebi.ac.uk/

• Emmanuel Bacry CMAP, Ecole Polytechnique, 91128 Palaiseau Cedex France.

• Nicolas Decoster CRPP Avenue Schweitzer, 33600 Pessac France.

• Stéphane Mallat CMAP, Ecole Polytechnique, 91128 Palaiseau Cedex France

• Jean François Muzy, CNRS, Université de Corse, Quartier Grossetti, 20250, Corte,
France.
email : muzy@univ-corse.fr

• Cédric Vaillant, CRPP, Avenue Schweitzer, 33600 Pessac, France.

3

GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

Version 2, June 1991

0. This License applies to any program or other work which contains a notice placed by the copyright holder
saying it may be distributed under the terms of this General Public License. The ”Program”, below, refers to
any such program or work, and a ”work based on the Program” means either the Program or any derivative
work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim
or with modifications and/or translated into another language. (Hereinafter, translation is included without
limitation in the term ”modification”.) Each licensee is addressed as ”you”.

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running the Program is not restricted, and the output from the Program is covered
only if its contents constitute a work based on the Program (independent of having been made by running
the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of
any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

• a) You must cause the modified files to carry prominent notices stating that you changed the files
and the date of any change.

• b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

• c) If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Exception: if the Program itself is interactive
but does not normally print such an announcement, your work based on the Program is not required
to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you distribute them as separate works.
But when you distribute the same sections as part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by
you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work
based on the Program) on a volume of a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

• a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

• b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge
no more than your cost of physically performing source distribution, a complete machine-readable
copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above
on a medium customarily used for software interchange; or,

• c) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components (compiler, kernel, and
so on) of the operating system on which the executable runs, unless that component itself accompanies the
executable.
If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source along with the object code.
4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.
5. You are not required to accept this License, since you have not signed it. However, nothing else grants you
permission to modify or distribute the Program or its derivative works. These actions are prohibited by law
if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based
on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.
6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the recipients’ exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this License.
7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance
of the section is intended to apply and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other property right claims
or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of
the free software distribution system, which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.
8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries, so that distribution is permitted only
in or among countries not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.
9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail

to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies a version number of this
License which applies to it and ”any later version”, you have the option of following the terms and conditions
either of that version or of any later version published by the Free Software Foundation. If the Program
does not specify a version number of this License, you may choose any version ever published by the Free
Software Foundation.
10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status of all derivatives of our free software
and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTH-
ERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM ”AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR RE-

DISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,

INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING

OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO

LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU

OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PRO-

GRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY

OF SUCH DAMAGES.

Contents

I Documentation 11

1 Using the wavelet transform (wtrans1d) package 13

1.1 Loading the wtrans1d package . 13

1.2 The wavelet transform structure in LastWave 13

1.2.1 Introduction . 13

1.2.2 The main fields of &wtrans . 14

1.3 A simple continuous wavelet transform . 14

1.4 Display and mouse interaction . 16

1.4.1 The GraphWtrans graphic object . 16

1.5 A simple orthogonal wavelet transform . 17

1.6 The objCur variable and the prompt . 18

2 Using the Wavelet Transform Extrema (extrema1d) package 21

2.1 Loading the package . 21

2.2 The extrema representation structure and the extremum structure 21

2.2.1 Introduction . 21

2.2.2 The main fields of &extrep . 21

2.2.3 The main fields of &ext . 22

2.3 A simple example . 22

2.4 Addressing an &extrep . 23

2.5 Display and mouse interaction . 23

2.5.1 The GraphExtrep graphic object . 24

2.6 Playing around with &ext . 24

II Reference 25

3 Package extrema1d 2.0 27

3.1 Defined types . 27

3.1.1 Type &ext . 27

3.1.2 Type &extrep . 28

3.2 Commands related to 1d wavelet transform extrema 29

3.3 Graphic class GraphExtrep (inherits from GObject) 30

3.4 Demos . 30

9

10

4 Package wtrans1d 2.0 31
4.1 Defined types . 31

4.1.1 Type &wtrans . 31
4.2 Commands for dealing with Wavelet transform structures 32
4.3 Wavelet transform commands . 32
4.4 Script Commands . 33
4.5 Graphic class GraphWtrans (inherits from GObject) 33
4.6 Demos . 34

Part I

Documentation

11

Chapter 1

Using the wavelet transform
(wtrans1d) package

1.1 Loading the wtrans1d package

As for any package, you must load the wtrans1d package for using 1d-wavelet transforms.
This is done by the original startup file or directly by typing package load wtrans1d in
the terminal.

1.2 The wavelet transform structure in LastWave

1.2.1 Introduction

In LastWave, a wavelet transform corresponds to a structure that is able to store a con-
tinuous or a (bi)orthogonal wavelet transform of a sampled signal. It mainly consists in 2
two-dimensional arrays of signals.

• The A array. It corresponds to the approximation signals (which represent the convo-
lution of the original signal with the smoothing function),

• The D array. It corresponds to the detail signals (which represent the wavelet trans-
form).

A wavelet transform is performed on a given number of octaves noct using a given number
of voices nvoice per octave. The voice number v of the octave number o corresponds to
the scale a given by

a = 2noct2v/nvoice (1.1)

where v varies from 0 to nvoice-1 and o varies from 1 to noct. Both noct and nvoice are
fields of a wavelet transform structure in LastWave. They are both stored in the structure
when you perform a wavelet transform.

The first parameter of the two-dimensional arrays A and D corresponds to the voice
number and the second one corresponds to the octave number. Thus, the signal D[o,v]
corresponds to the wavelet transform at octave o and voice v whereas the signal A[o,v]
corresponds to the approximation at octave o and scale v. The original signal the wavelet
transform is performed on is the signal A[0,0].

13

14 CHAPTER 1. USING THE WAVELET TRANSFORM (WTRANS1D) PACKAGE

Let us note that in the case of a (bi)orthogonal wavelet transform the parameter nvoice
is always equal to 1 and both arrays A and D are used whereas in the case of a continuous
wavelet transform nvoice is given by the user and only the D array is used. Thus, for in-
stance, in the case of an orthogonal wavelet transform, the signal D[1,0] corresponds to the
smallest scale of the wavelet transform whereas A[2,0] corresponds to the approximation
at scale 4 and the signals D[i,j] and A[i,j] with j different from 0 are not used. On
the other hand, in the case of a continous wavelet transform, the signals D[i,j] are used
to store the wavelet coefficients for i>0 and 0<j<nvoice and the A array is not used. In

any case, the signals A[0,i] for i>0 and D[0,j] for j ≥ 0 are never used by any wavelet
transforms. They can be used by the user for convenience.

1.2.2 The main fields of &wtrans

The main fields are

• noct : the number of octaves

• nvoice : the number of voices

• amin: the first scale

• A[o,v]: the approximation signal at octave o and voice v,

• D[o,v]: the detail signal at octave o and voice v,

• name: the name of the wavelet transform

• size : the size field of the original signal

• x0 : the x0 field of the original signal

• dx : the dx field of the original signal

• wavelet : the name of the analyzing wavelet that have been used

• extrep (read-only) : the &extrep variable it corresponds to (null if none) (see Chap-
ter 2)

1.3 A simple continuous wavelet transform

In order to assign a variable to a wavelet transform, one should use the new command along
with the &wtrans type

a> w = [new &wtrans]

= <&wtrans;0x208cf138>

a> type(w)

= ’&wtrans’

1.3. A SIMPLE CONTINUOUS WAVELET TRANSFORM 15

Let us note that (as explained in the main documentation of LastWave) the variable a

corresponds to the current object which is a &wtrans variable. So instead of creating a new
variable w you could use a as well. It assigns the variable named w with a new structure
that is able to store a wavelet transform.Such a variable is of type &wtrans.

In order to refer to the signal A[<o>,<v>] one can either use the “regular” syntax

w.A[<o>,<v>]

or the “abreviated syntax”

<o><v>w

Thus for instance the signal A[0,0] of w (i.e., the original signal the wavelet transform
will be performed on) is accessed either by the syntax w.A[0,0] or by the syntax 0w whereas
the signal A[3,4] can be accessed using the syntax 34w. The detail signals (i.e., the signals
of D) are accessed in the same way except that i) for the “regular” synatx A is replaced
by A and ii) for the “abreviated” syntax you must add a dot. Thus D[3,4] corresponds
to w.D[3,4] or equivalently to .34w. Thus, for instance, let us suppose that we want to
perform (in w) the continuous wavelet transform of a dirac function. The dirac must be put
in the signal A[0,0]. A discrete dirac signal of size 512 can be assigned to A[0,0] in the
following way :

a> 0w = I(512)==256

= <size=512;0,0,0,0,0,0,...>

Remark : In the Section 1.6 you will learn about what the “current wavelet transform” is.
That will allow you to avoid reminding LastWave that you want to work on w. Thus you
will be able to ommit all the references to w in the last command (i.e., typing 0 instead of
0w) and in each command that follows.

Then we just need to call the continuous wavelet transform decomposition command cwtd

a> cwtd w 1 3 6 ’g2’

which computes, starting from scale 1, the continuous wavelet transform of the signal
A[0,0] in w using 3 octaves, 6 voices per each octave and the second-order Mexican hat g2
analyzing wavelet. If you want to display the 8th scale of the decomposition (i.e., the signal
D[3,0]), you just need to do

a> disp .30w

Actually you can use the command disp to display an image which represents the
wavelet transform we have just computed

a> disp w

16 CHAPTER 1. USING THE WAVELET TRANSFORM (WTRANS1D) PACKAGE

Now you can use the disp command in the same way as we did for signals in the last
section. You can even combine signals and wavelet transforms. For instance to display the
signal above the wavelet transform you just type

a> disp 0w w

Remark : Let us note that the morlet complex wavelet can be used in cwtd. The modulus
of the wavelet coefficients will be stored in the D signals and the phase (between 0 and 2pi)
in the A signals.

1.4 Display and mouse interaction

To learn about display and mouse interaction, you should run the Demos of
the wtrans1d package. You can use the mouse within the graph that displays the wavelet

transform. Dragging the left mouse button allow to perform zooms (if you hit the z key you
change zoom mode). The middle mouse button zooms out the wavelet transform. Use the
c key to get a cross-hair cursor. Moreover, you can use the mouse buttons along with the
shift key to get horizontal (left mouse button) sections or vertical sections (middle mouse
button for linear scale and right mouse button for logarithm scale) of the wavelet transform.
These sections will be drawn in the “last” window of type &signali (read the disp manual
pages of the main LastWave manual). All these behavior were defined in the script file
scripts/wtrans1d/wtrans1d.pkg. You can modify them or create more complex actions
that you can perform using the mouse. In order to do so, you should read the sections
Managing events and More about managing events of the main LastWave manual.

1.4.1 The GraphWtrans graphic object

A wtrans structure is displayed using a GraphWtrans graphic object. The fields of that
graphic class are

• cm : the colormap that is used to display the wavelet transform,

• causal : a flag (0 or 1) which indicates whether the wavelet transform coefficients
affected by border effects should be displayed or not,

• norm : a (string) field that indicates how the coding should be done. Its value could
be either

– ’global’ : The colors are coded from the global minimum of the absolute value
and the global maximum of the wavelet corfficients,

– ’local’ : Same as ’global’ but the maximum and minimum are computed only
on the portion of the image which is displayed (if the full image is displayed, the
two modes are equivalent).

– ’lglobal’ : The colors are coded separately at each scale from the global mini-
mum of the absolute value (at each scale) and the global maximum of the wavelet
coefficients,

1.5. A SIMPLE ORTHOGONAL WAVELET TRANSFORM 17

– ’llocal’ : Same as ’lglobal’ but the maximum and minimum are computed
only on the portion of the image which is displayed (if the full image is displayed,
the two modes are equivalent).

• graph : which allows to set/get the wtrans structure that will be displayed.

1.5 A simple orthogonal wavelet transform

Let’s now compute the orthogonal wavelet decomposition (on 5 octaves) of the same dirac
function using the Daubechies 3 analyzing wavelet. This is done in the following way :

a> owtf ’D3.o’

a> owtd w 5

Remark : The directory were the filters are must be stored in the LastWave variable
Wtrans1dFilterDirectory (look in the file scripts/wtrans1d/wtrans1d.pkg where it is
set).

You can look at the coefficients (D[1,0], D[2,0], D[3,0], D[4,0] and D[5,0]) using the
disp command :

a> disp .10w .20w .30w .40w .50w

Then, you can reconstruct the original signal using the owtr command

a> owtr w 1w

The reconstructed signal is in the signal referred to as 1w (i.e., A[0,1]), and you can
display it using

a> disp 1w

You could also display an image corresponding to the wavelet transform by just typing

a> disp w

WARNING : The code number we gave to refer to the signals in A and D does not allow
you to access the voice numbers with 2 digits. Indeed, the code 213w will be understood
as the octave number 21 and the voice number 3 and not the octave number 2 and the
voice number 13. In order to do so you should use the “regular’ syntax w.D[2,13]. Let us

threshold (using a threshold value of 0.2) all the wavelet coefficients of the noised dirac we
computed just before, one could do

18 CHAPTER 1. USING THE WAVELET TRANSFORM (WTRANS1D) PACKAGE

a> .10w = .10w*(abs(.10w)>.2)

and the same things for all the other scales (you could write a simple loop!)

a> .20w = .20w*(abs(.20w)>.2)

a> .30w = .30w*(abs(.30w)>.2)

a> .40w = .40w*(abs(.40w)>.2)

a> .50w = .50w*(abs(.50w)>.2)

then we can reconstruct and display the result

a> ocwtr w 1w

a> disp 1w

Remark : The command wthresh is a powerful C-command that performs thresholding
of wavelet transforms. If you are not satisfied with it, it is very easy to write your own one
using the script language.

1.6 The objCur variable and the prompt

You should first read the Section The current object objCur - The prompt &wtrans
>a of the main LastWave manual A lot of LastWave commands about wavelet trans-

forms or about any complex structures we will see later (e.g., books of Matching pursuit....)
know about a “current” structure named objCur (in the current environment). It means
that, by default, if no wavelet transform variable is specified in a command dealing with
wavelet transforms (e.g., owtr, owtd, cwtd), or generally, if no variable pointing to a com-
plex structure is specified in a command dealing with these complex structures, the variable
objCur of the local environment is used. The prompt tells you what this variable (in the
global environment) is pointing to. Let us see how it works on wavelet transforms.

If the wtrans1d package has been loaded, then 2 wavelet transform variables named a

and b have been created. Moreover, the objCur (i.e, the current object you are working
with) has been assigned to a. Then automatically, the prompt will be

(&wtrans) a>

Which means that the current object is the structure pointed to by the variable a and
is of type &wtrans. Thus, for instance, if we assign the objCur variable to be the variable
b, the prompt will automatically change :

(&wtrans) a> objCur=b

(&wtrans) b>

1.6. THE OBJCUR VARIABLE AND THE PROMPT 19

Let us note that this behavior of the prompt, is defined in script in the startup file
using the terminal prompt command that lets you associate any script command to com-
pute the prompt. Let us also note that in the wtrans1d package (look in the script file
scripts/wtrans1d/wtrans1d.pkg) we have also created 2 commands named a and b al-
lowing to set the objCur to the wavelet transforms a or b. This gives a more convenient
way than typing setvar objCur b to change the objCur to b:

a> b

b> a

a>

In the case of wavelet transforms, if the objCur is set to a, it means that the default
wavelet transform that will be used is a. Thus instead of typing

a> owtd a 5

one could just type

a> owtd 5

Moreover, you don’t need to specify the wavelet name also in the “abreviated” syntax.
Thus instead of typing

a> 0a = I(512)==256

a> owtd a 5

a> owtr a 1a

a> disp 1a

you could just type

a> 0= I(512)==256

a> owtd 5

a> owtr 1

a> disp 1

which is much simpler !

Remark : The disp command expects &valobj arguments (see LastWave main manual),
i.e., anything but a number. Thus when you write disp 1, LastWave understands that
1 actually means 1a Remark : If you want to use the objCur variable (implicitely or

explicitely) in a script command, don’t forget to import it from the calling level (if it
exists there) or from the global level. A very good example is given by the loop in the
scripts/wtrans1d/wtrans1d.pkg file that allows to create the a and b wavelet transforms
along with the a and b command.

20 CHAPTER 1. USING THE WAVELET TRANSFORM (WTRANS1D) PACKAGE

WARNING : Whenever you use LastWave evaluator if you want to access signals that
belong to the current wavelet transform, you must, in every case, specify the name of the
wavelet transform associated to the signal. Indeed, otherwise, the evaluator would think
you just typed a regular number. Thus to compute the absolute value of the signal 0a and
put it back in 0a, one cannot write

a> 0=abs(0)

but instead, in order to avoid any ambiguity, one must write

a> 0= abs(0a)

Remark : Be careful if you have a wavelet transform named e10 and if you write abs(1e10).
There is no way to understand if you mean the number 1e10 or the signal A[0,1] of e10.
As we have already explained, the objCur system will be used in a lot of other packages

exactly in the same way as for the wtrans1d package. As you will see, after using LastWave
a little bit, this is extremely useful.

Chapter 2

Using the Wavelet Transform
Extrema (extrema1d) package

2.1 Loading the package

Again, the first thing you need to do is to use this package is to load it. This is done
automatically by the original startup file or directly by typing package load extrema1d

in the terminal.

2.2 The extrema representation structure and the extremum
structure

2.2.1 Introduction

In LastWave, each wavelet transform (&wtrans) variable is associated to an extrema repre-
sentation structure of type (&extrep). This structure allows to store all the maxima of the
modulus of the wavelet transform (when the scale is fixed). Its fields are similar to the fields
of the wavelet transform. It has its own nvoice and noct fields and since we want to store
the maxima of the wavelet transform at each scale, the extrema representation structure
involves a two-dimensionnal array D whose first parameter is the octave number and the
second one the voice number. This array is no longer an array of signals of course but an
array of extremum structures. Each extremum is of type &ext.

2.2.2 The main fields of &extrep

They are

• noct : the number of octaves

• nvoice : the number of voices

• size : the size field of the original signal

• x0 : the x0 field of the original signal

• dx : the dx field of the original signal

21

22CHAPTER 2. USING THE WAVELET TRANSFORM EXTREMA (EXTREMA1D) PACKAGE

• wavelet : the name of the analyzing wavelet that have been used

• D[o,v] : the first extremum (i.e., the extremum with the smallest abscissa) at octave
o and voice v

• name : the name of the &extrep

• wtrans (read-only) : the &wtrans variable it corresponds to (null if none)

2.2.3 The main fields of &ext

They are

• x : the abscissa of the extremum,

• index: the index number corresponding to the sample where the extremum is,

• y: the scale number of the extremum. For the sake of simplicity this number is an
integer corresponding to o*noct+v where o is the octave number of the extremum, v
is the voice number of the extremum and nvoice the number of voices per octave.

• z: (referred to in the C code as the ordinate field) it corresponds to the value of the
wavelet transform at this maximum.

At each scale (i.e., at each octave number and voice number), these extrema are organized
as chained lists. Thus from an extremum you can refer to the next one or to the previous

one. Moreover, since we will need to chain the extrema along the scales, one can refer (if
the extrema were chained) to the coarser (going to coarser scales) one and the finer one
(going to finer scales). Thus, the other fields of &ext are

• next (read-only): the next extremum (the closest, at the same scale and with an
abscissa greater than the current extremum abscissa; null if none)

• previous (read-only): the previous extremum (the closest, at the same scale and with
an abscissa smaller than the current extremum abscissa; null if none))

• finer (read-only): the closest extremum at the next smaller scale (null if none)

• coarser (read-only): the closest extremum at the next greater scale (null if none)

2.3 A simple example

Let’s compute the continuous wavelet transform of the dirac function as in the previous
section :

a> 0=I(512)==256

a> cwtd 1 3 6 ’g2’

in order to compute the extrema representation (on the current wavelet transform, i.e.,
a), one just need to do

2.4. ADDRESSING AN &EXTREP 23

a> extrema

= 54

which returns the number of extrema that was found. It AUTOMATICALLY chains
them through scales AND delete all the chains that haven’t been chained down to the
smallest scale. This is very important in order to stabilize the extrema computation (which
is a priori a very unstable computation). You can use option -C to keep LastWave from
chaining (and deleting).

2.4 Addressing an &extrep

All the commands about extrema representations normally require an argument which is
the extrema representation it will work on. Each wavelet transform structure is associated
to an extrema representation structure. You address this extrema representation using the
field extrep. Thus, for instance, a.extrep is the extrema representation of the wavelet
transform a. Of course, if you need to you can create an extrema representation which
is not associated to any wavelet transform. For that purpose you need to use the new

command :

a> er = [new &extrep]

= <&extrep;0x209c2388>

a> type(er)

= ’&extrep’

We can recompute the extrema representation of the dirac directly into the variable er

a> extrema a er

= 90

a> disp er

2.5 Display and mouse interaction

To display the extrema representation you again use the disp command! Thus, you just
need to do

a> disp a.extrep

You can even combine signals, wavelet transforms and extrema representations. For
instance to display the signal above the wavelet transform above the extrema representation,
you just type

a> disp 0 a a.extrep

24CHAPTER 2. USING THE WAVELET TRANSFORM EXTREMA (EXTREMA1D) PACKAGE

The disp command uses the graphic class GraphExtrep to display extrema representa-
tions. To learn about interactions with extrema representations you should run

the Demos of the extrema1d package You should be able to use the mouse within the

graph that displays the extrema representation. As for wavelet transforms, dragging the
left mouse button allow to perform zooms (if you hit the z key you change zoom mode).
The middle mouse button zooms out the the view. Use the c key to get a cross-hair cursor.
If you hit it again, you’ll get a very useful cursor which circles and gives you information
about the extremum which is the closest to the mouse pointer!

Moreover, you can use the mouse buttons along with the shift key to get sections
along a maxima line (middle button for linear scales, right button for log scales and left
button just to light up the line). These sections will be drawn in the “last” window of type
&signali (read the disp manual pages).

All these behavior were defined in the script file scripts/extrema1d/extrema1d.pkg.
You can modify them or create more complex actions that you can perform using the mouse.
In order to do so, you should read the Sections Managing events and More about managing
events of the main LastWave manual.

2.5.1 The GraphExtrep graphic object

An extrep structure is displayed using a GraphExtrep graphic object. The main fields of
that graphic class are

• chain : a flag which indicates whether the maxima lines should be displayed or not,

• graph : which allows to set/get the extrep structure that will be displayed,

2.6 Playing around with &ext

You can access individually each extremum of an extrema representation using the D field.
Thus er.D[1,5] refers to the first extremum of the octave number 1 and voice number 5
of the extrema representation er. You can get the values of its field

a> er.D[1,5].index = 247

a> er.D[1,5].z

= -0.25079748

In order to loop on the extrema at a given scale you can do

a> for {ext = er.D[1,5]} (ext isnot null) {ext = ext.next} {
--> printf ’%d\n’ ext.index

--> }
247

256

265

You will find a lot of other examples of such loops in the script file scripts/extrema1d/extrema1d.pkg
that defines the mouse behavior for extrema representation displays.

Part II

Reference

25

Chapter 3

Package extrema1d 2.0

Package allowing to deal with 1d wavelet transform local extrema.
** Authors and Copyright : B.Audit, E.Bacry, J.F.Muzy and C.Vaillant

3.1 Defined types

3.1.1 Type &ext

This type is used to store a local extremum of a wavelet transform. It is itself in a structure
of type &extrep (i.e., an extrema representation)

• &ext.x [= <x>]

Sets/Gets the abscissa of an extremum.

• &ext.index [= <index>]

Sets/Gets the position of an extremum using an integer index.

• &ext.y

Gets the scale of an extremum. It is an integer (0 corresponds to the smallest scale).

• &ext.z [= <wtValue>]

Sets/Gets the wavelet transform value at the extremum.

• &ext.nbExt

Gets the number of extrema at the same scale as this extremum.

• &ext.next

Gets the next extremum (or null if none) at the same scale.

• &ext.last

Gets the last extremum at the smae scale.

• &ext.first

Gets the first extremum at the same scale.

• &ext.previous

Gets the previous extremum (or null if none) at the same scale.

27

28 CHAPTER 3. PACKAGE EXTREMA1D 2.0

• &ext.coarser

Gets the coarser extremum (or null if none) at the next larger scale on the same chain.

• &ext.coarsest

Gets the coarsest extremum (or null if none) on the same chain.

• &ext.finer

Gets the finer extremum (or null if none) at the next smaller scale on the same chain.

• &ext.finest

Gets the finest extremum (or null if none) on the same chain.

• &ext.extrep

Gets the extrema representation (type &extrep), the extremum is in.

3.1.2 Type &extrep

This type is used to store the local extrema of a 1d wavelet transform.

• &extrep.D [o,v]

Get the first extrema at octave ’o’ and voice ’v’

• &extrep.name [= <name>]

Sets/Gets the name of an extrep

• &extrep.dx [= <dx>]

Sets/Gets the abscissa step of the original signal of the extrema representation.

• &extrep.x0 [= <x0>]

Sets/Gets the first abscissa of the original signal of the extrep.

• &extrep.nvoice

Gets the number of voices per octave of the extrema representation.

• &extrep.noct

Gets the number of octave of the extrema representation.

• &extrep.size [= <size>]

Sets/Gets the size of the original signal of the extrema representation.

• &extrep.wavelet [= <name>]

Gets/Sets the name of the analyzing wavelet used for the extrema representation.

• &extrep.wtrans

Gets the wavelet transform associated to the extrema representation.

3.2. COMMANDS RELATED TO 1D WAVELET TRANSFORM EXTREMA 29

3.2 Commands related to 1d wavelet transform extrema

• chain [<extrep>=objCur] [-d]

Chains the extrema of the extrema representation <extrep> and deletes all the extrema
which are not part of chains that reach the smallest scale (unless option ’-d’ is specified).
It returns the number of chains found.

• chaindelete [<extrep>=objCur]

deletes all the extrema of the extrema representation <extrep> which are not part of chains
that reach the smallest scale. It returns the number of chains found. This command is called
(by default) by the ’chain’ command.

• chainmax [<extrep>=objCur] [<exponent>=0]

Replaces the wavelet trasnform value of an extremum by the maximum value along its
chain. This routine allows to perform the scale adaptative version of the WTMM method.
The coefficients are first multiply by aMin*(2ˆ (exponent*(o-1+v/nvoice))). This is useful
in the case some maxima chains do not decay when going to small scales.

• ecopy <extrepIn> <extrepOut>

Copies an extrema representation into another.

• eread [<extrep>=objCur] (<file> | <stream>)

Reads an extrema representation from a <file> or a <stream>.

• ewrite [<extrep>=objCur] (<file> | <stream>) [-h]

Writes an extrema representation in a <file> or in a <stream> (with no header if ’-h’).

• ext

• ext <removechain> <ext>

Removes the extrema chain the extremum <ext> belongs to.

• ext remove <ext>

Removes an extremum from its extrema representation.

• extlistosig <ext> <signal>

Converts the extrema list pointed by <ext> into a <signal>

• extrema [<wtrans>=objCur] [<extrep>=<wtrans>] [-icC] [-e <threshold>]

Computes the extrema representation associated to the wavelet transform <wtrans> and
puts it in variable <extrep>. It returns the number of extrema found. Let us note that
this command leads to unstable results at large sacles (i.e., too many extrema). In order to
make the computation stable, by default, the ’extrema’ command chain the extrema (using
the ’chain’ command) and delete the extrema (using the ’chaindelete’ command) which have
not been chained. In most cases, it works perfectly. If you want to disable this behavior
you should use the ’-C’ option. Options are :
-i : The extremum positions are computed without using interpolation and thus always
correspond to a sample of the original signal
-c : Causal effects are taken into account (The extrema are computed only between the
’firstp’ and ’lastp’ indexes of each wavelet coefficient signal).
-C : Disable computation of chains and deletion of extrema which do not belong to the

30 CHAPTER 3. PACKAGE EXTREMA1D 2.0

chains.

• extrep closest [<extrep>] <x> <y>

Gets the extremum which is closest to <x> <y> (or returns null).

• setextrep OLD LASTWAVE COMMAND

NOT TO BE USED

3.3 Graphic class GraphExtrep (inherits from GObject)

Graphic Class that allows to display 1d extrema representation
• setg

• setg *GraphExtrep* -chained [<flagOnOff>]

Sets/Gets the chained flag. If 1 then it will link on the display the chained extrema.

• setg *GraphExtrep* -graph [<extrep>]

Gets/Sets the extrema representation to be displayed by the GraphExtrep with <extrep>.

Bindings

• Shift + Middle button = Display Wavelet transform along the maxima line

• Shift + Right button = Display log(|Wavelet transform|) along the maxima line

• Shift + Left button = Show maxima line

• Type ’c’ to change cursor mode

• ’z’ : changes the zoom mode just type ’z’

• Left/Right/Middle button : operate the zoom

3.4 Demos

Here is a list of all the Demo files and for each of them all the corresponding Demo com-
mands. To try a Demo command, you should first source the corresponding Demo file
then run the command. (When sourcing the Demo file, LastWave tells you about all the
commands included in this file).
The Demo files corresponding to this package are :

Demo file DemoExtrema1d

• DemoExtrema1dSing (in file scripts/extrema1d/DemoExtrema1d)

Demo command that computes the extrema of the wavelet transform of a signal
which has one singularity (holder = 0.5) in white noise. It displays the signal, its
wavelet transform and the extrema representation. You can use the mouse to follow
the wavelet transform values along a maxima line in order to measure the Holder
exponent.

Chapter 4

Package wtrans1d 2.0

Package allowing to perform 1d (continuous and (bi)orthogonal) wavelet transform.
** Authors and Copyright : B.Audit, E.Bacry, N.Decoster, S.Mallat and J.F.Muzy

4.1 Defined types

4.1.1 Type &wtrans

This type is the basic type for 1d wavelet transforms (both continuous, dyadic or orthogo-
nal). It is organized as two 2d arrays of signals referred to as A (the approximation signals)
and D (the detail signals). Both of them are indexed first by the octave number and then
by the voice number. The signal to be analyzed is in A[0,0].

• &wtrans.A [o,v]

Get the Approximation signal at octave ’o’ and voice ’v’

• &wtrans.D [o,v]

Get the Detail signals at octave ’o’ and voice ’v’

• &wtrans.name [= <name>]

Sets/Gets the name of a wtrans

• &wtrans.dx [= <dx>]

Sets/Gets the abscissa step of the original signal of the wavelet transform.

• &wtrans.x0 [= <x0>]

Sets/Gets the first abscissa of the original signal of the wavelet transform.

• &wtrans.nvoice [= <nvoice>]

Sets/Gets the number of voices per octave of a wavelet transform.

• &wtrans.noct [= <noct>]

Sets/Gets the number of octave of a wavelet transform.

• &wtrans.size [= <size>]

Sets/Gets the size of the original signal of the wavelet transform.

31

32 CHAPTER 4. PACKAGE WTRANS1D 2.0

• &wtrans.type [= (1 | 3)]

Gets/Sets the type of a wavelet transform (1 for orthogonal and 3 for continuous).

• &wtrans.amin [= <amin>]

Sets/Gets the smallest scale of a wavelet transform.

• &wtrans.wavelet [= <name>]

Gets/Sets the name of the analyzing wavelet used for the wavelet transform.

• &wtrans.extrep

Gets the extrema representation associated to the wavelet transform.

4.2 Commands for dealing with Wavelet transform struc-
tures

• setwtrans Old version procedure

Not to be used

• wread [<wtrans>=objCur] (<file> | <stream>)

Reads a wavelet transform from a <file> or a <stream>.

• wthresh [<wtrans>=objCur] <threshold> [-x <xMin> <xMax>] [-o <oMin> <oMax>]

[-e <alpha>] [-w <wtransOut>]

Thresholds the wavelet coefficients of a wavelet transform <wtrans>. All the coefficients
smaller than <threshold> are set to 0. The options are
-x : Only coefficients corresponding to abscissa between <xMin> and <xMax> are thresh-
olded
-o : Only coefficients corresponding to octave between <oMin> and <oMax> are thresh-
olded
-w : Specifies the wavelet transform the result should be stored in (by default, the initial
<wtrans> is used)

• wwrite [<wtrans>=objCur] (<file> | <stream>)

Writes a wavelet transform in a <file> or in a <stream> (in binary mode).

4.3 Wavelet transform commands

• cwtd [<wtrans>=objCur] <aMin> <nOct> <nVoice> [<wavelet>=g2] [-b <border>

= mir] [-c] [-m] [-e <expo> = -1]

Performs the continuous wavelet transform of the signal A[0][0] in <wtrans> from scale
<aMin> using <nOct> octaves, <nVoice> voices per octave, using the nth derivative of
the Gaussian function (<wavelet>=g<n> where n is in [0..4] are such that g0, -g1, g2,
-g3, g4 are the gaussian function and its successive derivatives) as analyzing wavelet or the
morlet wavelet (which is a complex wavelet). In the case of a complex analyzing wavelet,
the modulus of the wavelet transform is stored in the D signals (e.g., .10 .20 .33) and the
phase (between 0 and 2pi) in the A signals (e.g., 10 20 30). The command returns the

4.4. SCRIPT COMMANDS 33

elapsed time in seconds. The first scale <aMin> should not be smaller than 1. There are
4 ways to deal with border effects (’per’=periodic, ’mir’=mirror, ’pad0’=padding with 0
values, ’pad’=padding with constant extremity values so that the signal is continuous).
-c: causal mode, only used when -m is used. The extrema representation iscomputed using
the causal mode.

• cwtdoctmax <signalSize> <aMin> <nVoice> <wavelet>

It returns the largest octave number that can be used using the ’cwtd’ command with the
same arguments.

• owtd [<wtrans>=objCur] <nOct>

Performs (bi)orthogonal wavelet transform of the signal A[0][0] in <wtrans> using <nOct>
octaves.

• owtf [<wtrans>=objCur] <filterFilename>

Sets a filter for [bi]orthogonal decomposition. Filter files are in scripts/wtrans1d/filters
directory. Extension ’.o’ stands for orthogonal filters and ’.b’ for biorthogonal filters.

• owtr [<wtrans>=objCur] [<signalOut>=0]

Performs (bi)orthogonal wavelet reconstruction of the wavelet transform <wtrans> in signal
<signalOut>.

4.4 Script Commands

4.5 Graphic class GraphWtrans (inherits from GObject)

Graphic Class that allows to display 1d wavelet transform
• setg

• setg *GraphWtrans* -causal [<flagOnOff>]

Sets/Gets the causal flag. If 1 then it will not display all the values which were affected
by border effects.

• setg *GraphWtrans* -cm [<colormap>]

Sets/Gets the colormap that will be used to display the wavelet transform.

• setg *GraphWtrans* -graph [<wtrans>]

Gets/Sets the wavelet transform to be displayed by the GraphWtrans. (The ’-cgraph’
field is equivalent to that field).

• setg *GraphWtrans* -norm [<type>]

Sets/Gets the normalization used for displaying a wavelet transform. In any case, the
absolute value of the wavelet transform is coded. However, there are 4 choices :
- ’global’ : The colors are coded from the global minimum of the absolute value and
the global maximum
- ’local’ : The colors are coded from the local (among all the values displayed in the

34 CHAPTER 4. PACKAGE WTRANS1D 2.0

View) minimum of the absolute value and the local maximum. Let us note that this
mode is different from ’global’ only when the image is zoomed
- ’lglobal’ : The colors are coded separately at each scale from the global minimum of
the absolute value (at each scale) and the global maximum

Bindings

• Shift + Middle button = vertical (linear) section

• Shift + Right button = vertical (log) section

• Shift + Left button = horizontal section

• Type ’c’ to change cursor mode

• ’z’ : changes the zoom mode just type ’z’

• Left/Right/Middle button : operate the zoom

4.6 Demos

Here is a list of all the Demo files and for each of them all the corresponding Demo com-
mands. To try a Demo command, you should first source the corresponding Demo file
then run the command. (When sourcing the Demo file, LastWave tells you about all the
commands included in this file).
The Demo files corresponding to this package are :

Demo file DemoWtrans1d

• DemoWtrans1dFrac (in file scripts/wtrans1d/DemoWtrans1d)

Demo command that computes the continuous wavelet transform of a Devil Staircase
(with noise). It displays the signal and its wavelet transform. It teaches you how to
use the mouse.

Index

&ext, 27
&extrep, 28
&wtrans, 31

a, 33

b, 33

chain, 29
chaindelete, 29
chainmax, 29
cwtd, 32
cwtdoctmax, 33

DemoExtrema1dSing, 30
DemoWtrans1dFrac, 34

ecopy, 29
eread, 29
ewrite, 29
ext, 29
extlistosig, 29
extrema, 29
extrep, 30

GraphExtrep, 30
GraphWtrans, 33

owtd, 33
owtf, 33
owtr, 33

setextrep, 30
setwtrans, 32

wread, 32
wthresh, 32
wwrite, 32

35

