
LastWave 3.0 Reference
manual

Emmanuel Bacry
CMAP, Ecole polytechnique, 91128 Palaiseau Cedex,

France
email : lastwave@cmap.polytechnique.fr

web : http://www.cmap.polytechnique.fr/ ˜ bacry/LastWave

This is a reference manual of

• LastWave Kernel 3.0, Author: E.Bacry

• disp 2.1, misc 2.1 and terminal 2.1 packages, Author: E.Bacry

• Signal package 2.1, Authors: E.Bacry, N.Decoster and X.Surraud

• Image package 2.1, Authors: E.Bacry and J.Fraleu

The reference manual pages of the other packages are not included

in this manual, they should be downloaded separately.

3

Contents

1 Package kernel 3.0 7

1.1 Defined types . 7

1.1.1 Type &array . 7

1.1.2 Type &float . 7

1.1.3 Type &int . 7

1.1.4 Type &list . 7

1.1.5 Type &listv . 8

1.1.6 Type &null . 9

1.1.7 Type &num . 9

1.1.8 Type &proc . 9

1.1.9 Type &range . 10

1.1.10 Type &script . 11

1.1.11 Type &string . 11

1.1.12 Type &val . 12

1.1.13 Type &valobj . 12

1.1.14 Type &word . 12

1.1.15 Type &wordlist . 12

1.2 Basic interpreter commands 12

1.3 Basic graphic commands . 27

1.4 Script Commands . 39

1.5 Graphic class GList (inherits from GObject) 39

1.6 Graphic class GObject . 40

1.7 Graphic class Grid (inherits from GList) 45

1.8 Graphic class View (inherits from GList) 45

1.9 Graphic class Window (inherits from Grid) 46

2 Package disp 2.1 47

2.1 Script Commands . 47

2.2 Graphic class EView (inherits from View) 50

5

6

2.3 Graphic class FramedView (inherits from Grid) 51
2.4 Graphic class RectSelect (inherits from Box) 53
2.5 Graphic class WindowDisp (inherits from Window) 54

3 Package image 2.1 57

3.1 Defined types . 57
3.1.1 Type &image . 57
3.1.2 Type &imagei . 58

3.2 Commands related to images 59
3.3 Script Commands . 61
3.4 Graphic class GraphImage (inherits from GObject) 61
3.5 Demos . 62

4 Package misc 2.1 63

4.1 Script Commands . 63
4.2 Graphic class Box (inherits from GObject) 64
4.3 Graphic class Button (inherits from GObject) 64
4.4 Graphic class Colormap (inherits from GObject) 65
4.5 Graphic class Line (inherits from GObject) 66
4.6 Graphic class Numbox (inherits from Box) 66
4.7 Graphic class Shape (inherits from GObject) 66
4.8 Graphic class Text (inherits from GObject) 67

5 Package signal 2.1 69

5.1 Defined types . 69
5.1.1 Type &signal . 69
5.1.2 Type &signali . 72

5.2 Commands related to signals 72
5.3 Script Commands . 77
5.4 Graphic class GraphSignal (inherits from GObject) 77
5.5 Demos . 79

6 Package terminal 2.1 81

6.1 Script Commands . 81

Chapter 1

Package kernel 3.0

Lastwave kernel package
** Authors and Copyright : E.Bacry

1.1 Defined types

1.1.1 Type &array

This type is used to store an array. The syntax is array.field

1.1.2 Type &float

Extended type : same as ’&num’

1.1.3 Type &int

Extended type which corresponds to ’&num’ which are integers

1.1.4 Type &list

This type corresponds to a string that can be interpreted as a list.

• &list [*opt,...] [:]= (<string> | <listv>)

Get/Set characters
Options are : *list,*nolimit,*bconst,*bmirror,*bmirror1,*bperiodic

7

8 CHAPTER 1. PACKAGE KERNEL 3.0

• *list : the string is considered as a list and all the extractions are
performed using the list representation

• *nolimit : indexes can be out of range

• *bconst : border effect with same characters (last character for
right handside and first character for left handside)

• *bperiodic : periodic border effect)

• *bmirror1 : mirror+periodic border effect (first and last points
are repeated)

• *bmirror : mirror+periodic border effect (first and last points are
NOT repeated)

• &list.length

Get the number of characters of the string

• &list.llength

Get the number of elements of the string considered as a list

• &list.tonum

Performs a conversion to a number if possible. Otherwise it returns
’null’

1.1.5 Type &listv

This type corresponds to list of values.
- ==,!= : test equality of all the elements
- Operator * : listv*n, repetition of the listv n times
- Operator + : listv+listv, Appending 2 listv
- Operator + : listv+value, (where value is not a listv), adding the value at
the end of the listv
- Constructor : syntax {value1 ... valueN}.

• &listv [*opt,...] [:]= (<value> | <listv>)

Get/Set the element of a listv
Options are : *nolimit,*bmirror,*bmirror1,*bperiodic

• *nolimit : indexes can be out of range

• *bperiodic : periodic border effect)

• *bmirror : mirror+periodic border effect (first and last elements
are repeated)

1.1. DEFINED TYPES 9

• *bmirror1 : mirror+periodic border effect (first and last elements
are NOT repeated)

• &listv.length [= <length>]

Sets/Gets the length/size of a listv

• &listv.size [= <length>]

Sets/Gets the length/size of a listv

• &listv.nAlloc

Gets the allocation size of a listv

• &listv.tosignal

Gets a signal made from a listv of numbers only

1.1.6 Type &null

This is the type of the element ’null’

1.1.7 Type &num

This type corresponds to numbers.
- +,-,*,/,ˆ , *ˆ (and +=,-=,*=,/=,ˆ =) : regular operators
- //,% : integer division and remainder
- ==,!=,<=,>=,<,> : regular tests
- &&,|| : and,or
- sinh,sin,cosh,cos,tanh,tan,acos,asin,atan : trigonometric operators
- log2,log,ln,sqrt,abs,exp,ceil,floor,round,frac,int : other math functions
- Constants : pi,grand,urand

1.1.8 Type &proc

Corresponds to procedures. The object corresponding to a defined proce-
dure anmed ’name’ can be obtained using the syntax %name. One can build
anonymous procedure usinng the syntax %{arg1 ... argN}‘my script‘

• &proc.help

Gets the help of a proc as a listv

10 CHAPTER 1. PACKAGE KERNEL 3.0

• &proc.shelp [= <helpString>]

Sets/Gets the help of a proc as a string

• &proc.file

Gets the filename of a proc

• &proc.package

Gets the package name of a proc

• &proc.script

Gets the script of a proc

• &proc.name [= <name>]

Gets/Sets the name of a proc

1.1.9 Type &range

This type corresponds to ranges.
- Constructors : syntax is first:step:last or first:#size:last. One can use
first!:... to except the first point or ...:!last to except the last one. If implicit
the first, last, size or step can be ommitted. Moreover @> (resp. @< or
@+) refers to the ’implicit’ last (resp. first or step) point.
- Most of the operators valid for signals are valid for ranges.

• &range [*opt,...]

Get range values
Options are : *nolimit,*b0,*bconst,*bmirror,*bmirror1,*bperiodic,*x,*xlin

• *nolimit : indexes can be out of range

• *b0 : border effect with 0 value

• *bconst : border effect with constant values (last range value for
right handside and first range value for left handside)

• *bperiodic : periodic border effect)

• *bmirror1 : mirror+periodic border effect (first and last points
are repeated)

• *bmirror : mirror+periodic border effect (first and last points are
NOT repeated)

• &range.size [= <size>]

Sets/Gets the size of a range

1.1. DEFINED TYPES 11

• &range.first [= <first>]

Sets/Gets the first value of a range

• &range.step [= <step>]

Sets/Gets the step of a range

• &range.last [= <last>]

Sets/Gets the last value of a range

1.1.10 Type &script

This corresponds to a script. It can be obtained from a procedure using the
’script’ field of a ’&proc’ variable. A script can be directly built using the
%%‘a script‘ syntax.

1.1.11 Type &string

This type corresponds to strings.
- Constructors : You can use the syntax ”string” or ’string’.
- Operator + (and +=) : string1+string2, concatenation
- Operator * (and *=) : string*n, repetition of the string n times.

• &string [*opt,...] [:]= (<string> | <listv>)

Get/Set characters
Options are : *list,*nolimit,*bconst,*bmirror,*bmirror1,*bperiodic

• *list : the string is considered as a list and all the extractions are
performed using the list representation

• *nolimit : indexes can be out of range

• *bconst : border effect with same characters (last character for
right handside and first character for left handside)

• *bperiodic : periodic border effect)

• *bmirror1 : mirror+periodic border effect (first and last points
are repeated)

• *bmirror : mirror+periodic border effect (first and last points are
NOT repeated)

• &string.length

Get the number of characters of the string

12 CHAPTER 1. PACKAGE KERNEL 3.0

• &string.llength

Get the number of elements of the string considered as a list

• &string.tonum

Performs a conversion to a number if possible. Otherwise it returns
’null’

1.1.12 Type &val

This type does not correspond to a C type structure. It must be used to
type an argument of a procedure.

1.1.13 Type &valobj

This type does not correspond to a C type structure. It must be used to
type an argument of a procedure.
Extended type that indicates that the argument of a procedure is evaluated
but must not correspond to a litteral number.

1.1.14 Type &word

This type does not correspond to a C type structure. It must be used to
type an argument of a procedure.
Extended type that indicates that the argument of a procedure is not eval-
uated.

1.1.15 Type &wordlist

This type does not correspond to a C type structure. It must be used to
type an argument of a procedure.
Extended type that indicates that the argument of a procedure is not eval-
uated and should correspond to a list.

1.2 Basic interpreter commands

• apply

• apply args [<level>=0] <proc> <arg1> ... <argN>

Apply the procedure <proc> with the specified arguments. If <level>
is specified (and not 0) then the commands is executed in a different
level (not in the current level.

1.2. BASIC INTERPRETER COMMANDS 13

• apply listv [<level>=0] <proc> <listv>

Apply the procedure <proc> with the argument list being the succes-
sive values of the <listv> . If <level> is specified (and not 0) then
the procedure is executed in a different level (not in the current level.

• array

• array list <array> [<regexp>=’*’]

Gets the listv of indexes of <array> that matches <regexp>.

• array new [<hashSize>=8]

Creates a new &array variable using a hash table of size <hashSize>.

• break

Gets immediately out of any ’do’, ’while’, ’for’ or ’foreach’ loop.

• choosefile

Pops up a file dialog to pick up a file that exists. Returns the filename.

• choosestartupscriptdir

Picks up a script directory to use at startup.

• clear <val>

Clears the content of a value.

• continue

Skips directly to the next loop of a ’for’, ’foreach’, ’while’ or ’do’ loop.

• copy <val> [<val1>]

Copy of the value <val> in <val1> if specified otherwise returns a copy.

• date

• date 2index <yyyymmdd>

Gets the ’index’ of the date <yyyymmdd>, i.e., number of days be-
tween 01/01/1900 and <yyyymmdd>

• date current [-l]

Get local current date in the form yyyymmdd or if -l as a listv {dd
mm yyyy}. If -g then gmt date is given.

• date day <index>

Gets the day (i.e., an integer from 0-sunday to 6-saturday) correspond-
ing to the date of index <index>.

14 CHAPTER 1. PACKAGE KERNEL 3.0

• date index2 <index>

Gets the date corresponding to index <index>.

• delete [<level>=0] *varName*

Deletes a variable.

• do <bodyScript> <continueTest>

The standard ’do’ control loop. At the end of each loop, <continueTest> is
evaluated using ’=’, if it returns 0 then the loop stops otherwise <bodyscript>
is executed and the loop goes on (thus <bodysScript> is always executed
at least once).

• echo *arg1* ... *argN*

Just echoes each of its arguments (no evaluation) on standard output.

• errorf <format> [<val1> ... <valN>]

Same as ’printf’ but prints on stderr instead of stdout and generates an error
right after printing.

• eval [<level>=0] <script>

It evals the script in the current level. If <level> is specified (and not 0)
then the script is evaluated in a different level (not in the current level).

• file

• file cd [<directory>]

Changes/gets the working directory.

• file close <stream>

Closes a stream.

• file createdir <path> <dirName>

Creates a directory named <dirName> in directory <path>.

• file eof [<stream>=stdin]

Returns 1 if <stream> has reached an end of file.

• file exist <filename> [<mode>=’r’]

Tests whether a file named <filename> could be opened using mode
<mode>.

• file info <file>

1.2. BASIC INTERPRETER COMMANDS 15

Returns a 2 element listv. The first element is the type of the file
(either ’directory’, ’file’ or ’unknown’) and the second is its size. If the
file does not exist it returns null. (WARNING : the size is wrong on
Macintoshes.)

• file list <regexp>

Returns the listv of filenames whose filename matches <regexp>.

• file listp <regexp>

Same as ’list’ but returns complete paths.

• file move <filenameSrc> <filenameTarget>

Changes the name of a file.

• file open <filename> (’r’ | ’w’ | ’a’)

Opens a file in a ’r’ead, ’w’rite or ’a’ppend mode and returns a stream
number associated to that file.

• file openstr <str>

Opens a stream associated to a string. It returns the stream number.

• file remove <filename>

Removes a file.

• file set (stdin | stdout | stderr) [<stream>]

Gets or Redirects ’stdin’, ’stdout’ or ’stderr’ streams.

• file tmp

Gets a filename that does not exist and that can be used for a tempo-
rary file.

• for <startScript> <continueValue> <nextScript> <bodyScript>

The ’for’ control loop. The <startScript> is executed just once at the begin-
ning of the loop. The loop is continued while <continueValue> is evaluated
to a number different from 0. The <nextScript> is executed at the end of
each loop (just before <continueTest> is evaluated) and <bodyScript> is
the core of the loop.

• foreach <var> (<list> | <listv> | <signal> | <range>) <bodyScript>

The variable <var> loops successively on each element of the <list>, <listv>

<signal> or <range> till its end is reached. After each assignation <bodyScript>
is executed.

16 CHAPTER 1. PACKAGE KERNEL 3.0

• getchar [*var*] [<delay>=-1]

Reads from stdin a character and returns it or sets it in variable *var*
if specified. If <delay> is non negative then the function returns after
<delay> seconds. If no character was typed ’0x0’ is returned.

• getline [*var*]

Reads from stdin a line (ended by a newline or an eof) and returns it or sets
it in variable *var* if specified.

• global [*&type*] ‘*varName1* [*newVarName1*]‘ ... ‘*varNameN*

[*newVarNameN*]‘

Same as the ’import args’ command except that it imports from the global
level.

• h

Short name for the command ’history’.

• history

• history index [<index>]

If <index> is specified, it returns the history command associated to
the <index> number in the history. If not, it returns the current index
number (of the next entry in the history).

• history match [<regexp>=’*’]

Gets all the history lines that matches <regexp>. The result is given
as a listv which goes from the most recent command to the eldest one.

• history size [<size>]

Gets/Sets the size of the history.

• history

Displays the history of the commands (i.e., the last commands that
were typed in the terminal along with their index number).

• if <test> <thenScript> [elseif <test1> <thenScript1>

elseif <testN> <thenScriptN> else <elseScript>]

The standard ’if then else’ control. WARNING: each memeber of the <test>
is evaluated (even if || or && clause).

• import

• import args [<level>=-1] [*&type*] ‘*varName1* [*newVarName1*]‘

... ‘*varNameN* [*newVarNameN*]‘

1.2. BASIC INTERPRETER COMMANDS 17

Imports N variables of type *&type* from level <level> whose names
are *varName1*...*varNameN* and eventually renames them in the
local environement with names *newVarName1*...*newVarNameN*.
If these new names are not specified then in the case of non array
variables, the same names are used. When the array syntax is involved
to refer to any variable *var1* to *varN* (e.g., ’people.john.adress’)
and if no new name is specified, then the last index name is used (in
our case the variable will be named ’adress’ in the local environment).
If the type is &var or &array and if any variable does not exist at
level <level> it will create it in both the level <level> and the local
environment. If it fails then an error occurs unless [?] is specified right
after the <level> in which case it returns 0 instead of 1.

• import list [<level>=-1] {{[*&type1*] *varName1* [<varDef1>]}
... {[*&typeN*] *varNameN* [<varDefN>]}} <list>

This action does exactly what happens when a script procedure is
called : the <list> of arguments (evaluated in the calling level) are
matched to the variable pattern list.

• import listv {{[*&type1*] *varName1* [<varDef1>]} ... {<*&typeN*>

varNameN [<varDefN>]}} <listv>

Same as the ’list’ action except that a list of values is passed instead
of a string list (which is evaluated).

• info <value>

Prints info on a value.

• list Old LastWave 1.7 command

Not to be used.

• listv

• listv cread (<filename> | <stream>) list of x|s|?|f|F -n <nLinesToRead>

-f <firstLine> -s <headerLinesSkipped> -S <separators> -c

<commentChar>

Read an ascii file organized in columns into a listv (column separators
are new lines, tabs or spaces). Each element of the so-obtained listv
corresponds to a read column. Each read column is stored either
into a listv (made of strings and/or floats) or into a signal. For each
column in the file one must specify either the letter ’x’ (for skipping
the column), the letter ’s’ (in case of a column made exclusively of

18 CHAPTER 1. PACKAGE KERNEL 3.0

strings), the letter ’f’ (for a column made exclusively of floats), the
letter ’F’ (for a column made exclusively of floats that will be stored
as a signal) or the sign ’?’ for the command to choose either ’f’ or ’s’
for each occurence. The option ’-n’ allows to specify the number of
lines to load into the listv. The option ’-f’ allows to specify the number
of valid lines to skip (that does not include the eventual header lines).
The option ’-s’ allows to specify the number of lines to skip at the
begining of the file (e.g., header). To change seprators characters use
the option -S (passing a string including all the separator characters
you want except new lines).

• listv cwrite <listv> (<filename> | <stream>) -s <separatorString>

-f <listvFormat>

Write the content of a listv that is made of signals or (float/string)
listv’s of the same length into a multicolumn file. By default the
column are separated using tabs. It can be change using the ’-s’
option. The option ’-f’ allows to specify a format for each column.
<listvFormat> must be a listv made of strings (one for each column).
The strings are standard printf formats (starting with a % sign). If
a string is empty default format (the one used when the option ’-f’ is
not used) will be used.

• listv map <listv> <proc>

Maps the procedure <proc> on each element of <listv> and returns
the listv of the results. The procedure <proc> should take one argu-
ment and return a value that will be inserted in the result listv. If it
does not return anything, nothing is insterted in the listv

• listv niceprint <listv> [<colSize>]

Prints each element of the listv using tabulated columns.

• listv read (<filename> | <stream>)

Read a listv (and return it) from file which has been created using the
’listv write’ command.

• listv sort <listv> [<proc>] [-i]

Returns the sorted listv. the flag ’-i’ just reverse the resulting listv.
If no <proc> are given, the <listv> must be composed either only
of numbers (the sorting is then performed in the increasing order) or
only by strings (the sorting is alphabetical). An error occurs in any

1.2. BASIC INTERPRETER COMMANDS 19

other case. If <proc> is specified, it is supposed to be the comparaison
procedure. It must take 2 arguments arg1 and arg2 and must return an
integer (negative if arg1<arg2, 0 if arg1==arg2 and positive otherwise

• listv write <listv> (<filename> | <stream>) -a

Write the content of a listv that is made exclusively of strings, floats,
signals, images or listv’s into a file so that it can be read by the ’listv
read’ command. By default, the numbers are stored in binary format.
If ’-a’ is specified, ascii coding is used for all the numbers.

• new *&type*

Returns a new variable of type <type>.

• package

• package dir [<directory>]

Sets/Gets the directory where all the package script files are to be
searched. Whenever a package named ’name’ is loaded, the source di-
rectory ’<directory>/name’ will be added and the script file <directory>/name.pkg
is sourced if it exists.

• package list [<regexp>=’*’]

Gets the listv of all the available packages. Each element of the listv
is a listv with the name of the package, a flag indicating whether the
corresponding package is loaded (flag==1) or not (flag==0), the year
the package has been written, the version number, a list of authors
and a one-line help.

• package load [<regexp>=’*’]

Load the packages whose name matches <regexp>.

• package name [<regexp>=’*’]

Gets the list of all the package whose name matches <regexp>.

• package new <name> <year> <version> <authors> <info>

Creates a new package named <name> that is copyrighted by <authors>
and which was written in year <year> and whose version number is
<version>. <info> is a text decribing the package.

• prand <size> <mean>

Returns a signal of size <size> made of i.i.d. Poisson variables of mean
<mean>.

20 CHAPTER 1. PACKAGE KERNEL 3.0

• prec [<ndigits>]

All the numbers in LastWave will be displayed using a maximum of <ndigits>

• print <value1> [-s | <value2> ... <valueN>]

Prints one or seveal values. Option ’-s’, prints it the ’short’ way.

• printf <format> [<val1> ... <valN>]

Same syntax as ’printf’ in C-Language : prints on stdout the values <val1>...<valN>

according to <format>. Warning : Most of the ’%’ C-format can be used
(but not to complex ones !). Moreover two other formats ’%V’ (resp. ’%v’)
can be used to print the long (resp. short) string representation of a value.

• proc

• proc Old Lastwave command

Not to be used.

• proc clist [<nameRegexp>=’[^]*’] [<tableNameRegexp>=’*’]

[<packageNameRegexp>=’*’] [-m]

Same as ’list’ action but looks for C-commands only.

• proc ctable [<tableNameRegexp>=’*’] [<packageNameRegexp>=’*’]

Gets the listv of all the C-procedure tables that belongs to a package
whose name matches <packageNameRegexp>.

• proc get <proc name>

returns the script procedure or the C-procedure whose name is <proc name>.
The type of the result is ’&proc’.

• proc list [<nameRegexp>=’[^]*’] [<tableNameRegexp>=’*’]

[<packageNameRegexp>=’*’] [-m]

Gets the listv of all the procedure names which match <nameRegexp>

and (in the case of C-commands) which belongs to a procedure ta-
ble whose name matches <tableNameRegexp>. If ’-m’ is on then
it looks for a command named <nameRegexp> (exact string). The
listv is organized as 2 sublistv, one for script commands and one for
C-commands

• proc slist [<nameRegexp>=’[^]*’] [<tableNameRegexp>=’*’]

[<packageNameRegexp>=’*’] [-m]

Same as ’list’ action but looks for script commands only.

1.2. BASIC INTERPRETER COMMANDS 21

• proc undef <name1> [<name2> ... <nameN>]

Removes N script procedures from the procedure table. If any vari-
able still points to the procedure, the procedure becomes ’anonymous’,
consequently its name name is changed to an anonymous name.

• proc var <sc name>

Gets the variable list of a script command.

• randinit [<init>]

Initializes the random generator. If <init> is not specified it initializes it
using the computer time. If not, it must be a positive integer.

• return [<value>] [-e]

Exits right away from a script procedure and returns <value> if specified
otherwise it returns the null pointer. If option ’-e’ is on, <value> is not
evaluated.

• scanf <format> [*var1* ... *varN*]

Same syntax as ’scanf’ in C-Language : reads arguments from stdin accord-
ing to <format> and puts them in the variables *var1*...*varN*. Warning
: Most of the ’%’ C-format can be used (but not too complex ones !).

• set Old Lastwave 1.7 command

Not to be used.

• setproc (*name* | -) {{[*&varType1*] *varName1* [<varDef1>]} ...

{[*&varTypeN*] *varNameN* [<varDefN>]}} ["{{{*usageAction1*} {*helpAction1*}}
... {{*usageActionN*} {*helpActionN*}}}"] <bodyScript>

Defines a new script procedure whose name is *name* (a non evaluated
string) and returns it. If the name is ’-’ then the created procedure is
anonymous (you can create anonymous procedure using the syntax ’%{a
b}‘script‘’ too). The variables of the procedure are defined as a list where
the type of each variable *&varTypeN* can be specified along with a default
value <varDefN> if the argument is optional. When no type is specified the
’&val’ type is used (i.e., evaluation will take place with no apriori on the
type of the result). The last variable can be of the dotted form (e.g., .l) in
which case all the remaining arguments will be affected to this argument.
There are 2 cases : if the type ’&wordlist’ is specified for the dotted variable,
the remaining arguments are not evaluated and the dotted variable will be
a string list made of the argument names. If no type is specified each
remaining argument is evaluated and the so-obtained values are stored in
the dotted variable as a ’&listv’. One can specify usage form and a one

22 CHAPTER 1. PACKAGE KERNEL 3.0

line help. A simple form is for instance ”{{{<arg1> <arg2>} {The one line
help}}}”. If the procedure admits several ’actions’ (as the ’var’ C-procedure
for instance), a simple form is for instance ”{{{action1<arg1> <arg2>}
{The one line help for action1}} {{action2 <arg1> <arg2>} {The one line
help for action2}}}”.

• setsourcedirs [<listv of directories>]

Sets/Gets the list of directories the ’source’ command looks a file in.

• setv [*var* | *list of var*] [[:*+/-^]=] <value> [-l <level>]

This is the main evaluator command. The command ’a+=b’ is equivalent
to ’setv a += b’ and ’a=b’ is equivalent to ’setv a = b’ or also ’setv a b’.
The only advantage of the ’setv’ syntax is that it lets you specify a <level>
in which the evaluation takes place (not the assignement !!).

• setvar Old Lastwave 1.7 command

Not to be used.

• shell *unixCommand*

Executes an unix shell command (for Unix computers only). You can also
use the syntax ’ ! *unixCommand*’. Warning : Do not use any interactive
unix command (such as ’more’), it will core dump lastwave !

• source *filename1*...*filenameN*

Source each file *filename1*...*filenameN*.

• sprintf *var* <format> [<val1> ... <valN>]

Same syntax as ’sprintf’ in C-Language : sets variable *var* according to
<format> with string variables <val1>...<valN>. Warning : Most of the
’%’ C-format can be used (but not to complex ones !). Moreover two other
formats ’%V’ (resp. ’%v’) can be used to print the long (resp. short) string
representation of a value. It returns the formatted string.

• sscanf <string> <format> [*var1* ... *varN*]

Same syntax as ’sscanf’ in C-Language : reads arguments from <string>
according to <format> and puts them in the variables *var1*...*varN*.
Warning : Most of the ’%’ C-format can be used (but not to complex ones
!).

• str

• str 2ascii <str>

Gets a listv made of the ascii codes corresponding to the characters of
the string <str>.

1.2. BASIC INTERPRETER COMMANDS 23

• str ascii2 <listv of codes>

Gets the string associated to a listv of ascii codes (this action is the
reverse action of the ’ascii’ action).

• str inter <str> <str1>

Get the common substring which starts both strings

• str match <str> <regexp> [<nOcc>=-1]

Tests whether some substrings of <str> match the <regexp>. It re-
turns a listv of ranges which correspond to non overlapping maximal
substrings which match the <regexp>. <nOcc> is the maximum num-
ber of occurence it should return (if negative then all are returned).
The wild cards characters for regexp are
ˆ : beginning of string
$: end of string
?: a single character
+: one character or more
: zero character or more
[+...]: one character (or more) that follows
[+ˆ ...]: one character(or more) that is different from the characters
that follow
[#...]: zero or one character that follows
[#ˆ ...]: zero or one that is different from the characters that follow
[*...]: zero character (or more) that follows
[*ˆ ...]: zero character(or more) that is different from the characters
that follow
|...|: range delimiters

• str substr <str> <substr> [<nOcc>=-1]

Same as action ’match’ but optimized in the case the <regexp> is a
simple string with no wild card.

• terminal

• terminal beep

Just makes the terminal beep.

• terminal clear

Clears the terminal.

24 CHAPTER 1. PACKAGE KERNEL 3.0

• terminal cursor <position>

Sets the cursor to an absolute position on the current terminal line.

• terminal eof

Sends an ’eof’ character to the terminal.

• terminal erasechars [<nChars>=1]

Erases <nChars> characters from cursor position on current terminal
line.

• terminal eraseline

Erases current terminal line.

• terminal getsize

Get the width and height of the terminal window.

• terminal insert <string>

Inserts a string on current terminal line from cursor position.

• terminal line [<str>]

Gets/Sets the current terminal line.

• terminal mode

Gets the current mode of the terminal. It is either : ’getchar’ (while
the terminal waits for a single character), ’scanline’ (while the terminal
waits for a whole line to be typed in but not for a command line),
’command’ (when the terminal waits for a command line to be typed
in, in front of the prompt).

• terminal movecursor <nSpaces>

Moves cursor <nSpaces> forward (>0) or backward (<0) from cursor
position.

• terminal movewindow <x> <y>

Moves terminal window to position <x> <y> (Warning : only on
Macintosh computers).

• terminal prompt [<promptProc>]

If no argument it gets the current prompt otherwise it sets the proce-
dure that is supposed to return the prompt string.

1.2. BASIC INTERPRETER COMMANDS 25

• terminal resizewindow <w> <h>

Resizes terminal window using <w> <h> (Warning : only on Macin-
tosh computers).

• terminal setfont <fontName>

Set the font of the terminal).

• time

• time 2sec {yyyymmdd hhmmss}

Converts a time to a number of seconds since 1970/01/01, 00h00.

• time current [-l] [-d] [-g]

Gets local time in the form hhmmss or if -l as a listv {h m s}. If -d
then the date is included as {yyyymmdd hhmmss} (if not -l) and {d
m y h m s} if -l. If -g then gmt time is given.

• time s2sec <sec>

Converts a (real) number of seconds into the listv {h mn s}.

• time sec2 <nsecs>

Converts a number of seconds since 1970/01/01, 00h00 to a time of
format {yyyymmdd hhmmss}.

• time sec

Gets number of seconds since 1970/01/01, 00h00. This is the only
action that takes into account milliseconds.

• type

• type exist <&type> [-s]

Returns 0 if type <&type> does not exist and 1 otherwise. If ’-s’ is
on, it tests wether this type is associated to a type structure (which is
not the case, for instance, of the type ’&val’).

• type field <&type> [<regexp>=’*’] [-sge]

Returns the listv of the field names associated to the type <&type>.
The names must match <regexp>. If ’-s’ is on, only write-enabled
fields are returned. If ’-g’ is on, only read-enabled fields are returned.
If ’-e’ is on, only extract-enabled fields are returned.

26 CHAPTER 1. PACKAGE KERNEL 3.0

• type help <&type> [<field> | -n]

If no argument, it returns the documentation about the type <&type>.
If argument <field>, it returns the listv of documentation on the field
<field> of the type <&type>. The first element is the Get docu-
mentation, the second is the Set documentation, and the third one is
the extract option documentation. If the corresponding method does
not exist ’null’ is put in the listv. In the case <field> is replaced
by ’-n’, this command returns the documentation concerning number
extraction (e.g., 10a) if number extraction is permitted or null if not.

• type list [<packageName>]

Returns the listv of all the names of the available types. If <packageName>
is specified, only types of the package are returned.

• val

• val eval <val> [-l <level>]

Evals the value <val> and returns it.

• val test *exprString* [<&type>] [-l <level>] [-E]

Returns the listv ’{<type> <result>}’ if the *exprString* evaluates
successfully to <result> (which must be of type <&type> if argument
<&type> is specified). If evaluation is not successfull it returns ’null’
unless ’-E’ is set in which case it generates an error. Option ’-l’ lets
you specify a level in which evaluation takes place.

• val type <val> [-b] [-l <level>]

Returns the type of <val>. If ’-b’ then the ’basic’ type is returned,
e.g., &signal is returned instead of &signali. Option ’-l’ lets you specify
a level in which evaluation takes place.

• var

• var delete [<level>=0] <var1> [<var2>...<varN>]

Deletes N variables from level <level>.

• var env [<level>=0] [<regexp>=[^]*] [<&type>]

Gets a list made of 3 or 2 element lists corresponding to each variable
of level <level> and type <&type> whose name matches <regexp>.
Each of this list is made of the name of the variable, its type and in
the case it is a number or a string its value.

1.3. BASIC GRAPHIC COMMANDS 27

• var exist [<level>=0] *[@]varName* [<&type>]

Tests whether a variable (it can ONLY be a simple variable like ’me’ or
a variable stored in an array like ’me.house.kitchen’) of type <&type>
exists in level <level>. It returns 1 if it does not exist and 0 otherwise.
It works with @variables too (in that case <level> is not used).

• var list [<level>=0] [<regexp>=[^]*] [<&type>]

Gets the list (not a listv -> this will be changed soon) of variable names
of level <level> and type <&type> whose name matches <regexp>.

• var type [<level>=0] <var> [<&type>]

Gets the type of a variable from level <level>. It can ONLY be a sim-
ple variable like ’me’ or a variable stored in an array like ’me.house.kitchen’.
If it does not exist then it returns the empty string. Otherwise it re-
turns its type.

• var unix <unixVariable>

Gets the string value of a unix shell variable (on unix computers only).

• wait <delay>

Waits for <delay> seconds

• while <continueTest> <bodyScript>

The standard ’while’ control loop. At the begining of each loop, <continueTest>
is evaluated using ’=’, if it returns 0 then the loop stops otherwise <bodyscript>
is executed and the loop goes on.

1.3 Basic graphic commands

• binding

• binding activate <groupNameRegexp> [*class*]

Activates all the bindings that correspond to all binding groups whose
name matches <groupNameRegexp>.

• binding deactivate <groupNameRegexp> [*class*]

Deactivates all the bindings that correspond to all binding groups
whose name matches <groupNameRegexp>.

28 CHAPTER 1. PACKAGE KERNEL 3.0

• binding delete <groupNameRegexp> [*class*]

Deletes all the bindings that correspond to all binding groups whose
name matches <groupNameRegexp>.

• binding info <groupNameRegexp> [*class*]

Get info on the bindings that correspond to a binding group which
matches <groupNameRegexp>.

• color

• color animate <color> (rgb <r> <g> | hsv <h> <s> <v>)

Changes interactively the definition of the color <color> using RGB
or HSV convention (Warning : It only works on Unix computers).

• color ilist [<colormap>=<currentColorMap>] [<index>]

Gets a rgb definition listv ’{r g b}’ of the color <index> in <colormap>

or (if <index> is not specified) a listv of all the colors {r g b}.

• color inew [<colorMap>=<currentColorMap>] <index> (rgb <r>

<g> | hsv <h> <s> <v>)

Creates a new indexed color of a colormap using either RGB or HSV
convention.

• color install

Install all the colors that were defined with the ’color’ command.

• color nb

Returns the total number of available colors for lastWave.

• color nlist [<nameRegexp>=’*’]

Gets a listv of the rgb definition ’{name r g b}’ of colors whose name
matches <nameRegexp>.

• color nnew <name> (rgb <r> <g> | hsv <h> <s> <v>)

Creates a new named color using either RGB or HSV convention.

• colormap

• colormap current [<colorMap>]

Gets/Sets the current color map.

1.3. BASIC GRAPHIC COMMANDS 29

• colormap delete [<colorMap>=<currentColorMap>]

Deletes the <colorMap>.

• colormap list [<nameRegexp>=’*’]

Gets a list of all the matching color map names.

• colormap new [<colorMap>=<currentColorMap>] <nbOfColors>

Creates/Modifies the <colorMap> so that it can store <nbOfColors>
colors.

• colormap size [<colorMap>=<currentColorMap>]

Gets the size of <colorMap>.

• draw

• draw axis *gobject* <x> <y> <w> <h> <xMin> <xMax> <yMin>

<yMax> [-title <title>] [-xlabel <label>] [-ylabel <label>]

[-margin <nbOfPixels>] [-font] [-clip] [-pen <penSize>] [-color

<color>] [-line (’dash’ | ’solid’)] [-mode (’normal’ | ’inverse’)]

[-reverse (x | y | xy | none)]

Draws x and y-axis around the rectangle <x>, <y>, <w>, <h>.
These axes correspond to abscissa ranging from <xMin> to <xMax>

and ordinate ranging from <yMin> to <yMax>

-reverse : The state that indicates which axis are reversed compared
to the regular window coordinate system (y-axis going from top to
bottom and x-axis going from left to right). Let us note that the same
field exists for Views, so that they can be used along with axis. If it is
equal to ’y’ (the default value at initialization) then the y-axis will be
going from bottom of the window to the top, if it is equal to ’x’ the
x-axis will be going from right to left, if it is equal to ’xy’ both will be
combined and if it is equal to ’none’ the y-axis will be top to bottom
and the x-axis left to right (as for windows and regular glists).
-frame : If not set then only two axis are drawn. If set then the whole
rectangle <x>,<y>, <w>, <h> is surrounded by axes (i.e., 4 axes
are drawn).
-ticksIn : The ticks on the axis are inside the rectangle instead of out-
side.
-margin : A margin of size <nbOfPixels> is used around the rectangle
<x>, <y>, <w>, <h> to draw each axis.
-clip : The clip rectangle is set to be the *gobject* rectangle.

30 CHAPTER 1. PACKAGE KERNEL 3.0

-color : The color <color> is used for drawing the axis.
-pen : The size of the pen <penSize> is used for drawing the axis.

• draw cross *gobject* <x> <y> <r> [-clip] [-pen <penSize>]

[-color <color>] [-line (’dash’ | ’solid’)] [-mode (’normal’

| ’inverse’)]

Draws in the *gobject* a cross centered at <x> <y> and with a pixel
radius of <r>
-clip : The clip rectangle is set to be the *gobject* rectangle.
-color : The color <color> is used for drawing the cross.
-line : If ’dash’ then the cross will be dashed.
-mode : If ’inverse’ then the drawing uses the inverse color mode so
that if the same drawing command is executed a second time, the cross
will disappear.

• draw ellipse *gobject* <x> <y> <w> <h> [-clip] [-pen <penSize>]

[-color <color>] [-line (’dash’ | ’solid’)] [-mode (’normal’

| ’inverse’)] [-pixel] [-rectType <rectType>] [-centered] [-fill]

Draws in the *gobject* an ellipse in the rectangle <x> <y> <w>

<h>.
-centered : The ellipse is centered at <x>,<y> and the respective
radii are <w> and <h>.
-clip : The clip rectangle is set to be the *gobject* rectangle.
-color : The color <color> is used for drawing (and filling) the ellipse.
-fill : The ellipse is filled with the current color.
-rectType : Changes the rectangle type that is used. Read the manual
pages about the ’rectType’ field of the gobjects.
-line : If ’dash’ then the contour of the ellipse will be drawn using
dashed lines
-mode : If ’inverse’ then the drawing uses the inverse color mode so
that if the same drawing command is executed a second time, the el-
lipse will disappear.
-pen : The size of the pen <penSize> is used for drawing the ellipse.

• draw gobject *glist* *gclass* [-clip] [list of -<fieldN> [<val1>...<valP

Draws (without creating it) a gobject of class *gclass* in the <glist>
and whose fields are specified by the -<fieldN> [<val1>...<valP>]

1.3. BASIC GRAPHIC COMMANDS 31

list. If ’-clip’ then the current clip rectangle is not used and the entire
object is drawn otherwise the current clip rectangle is used.

• draw line *gobject* <x1> <y1> <x2> <y2> [-clip] [-pen <penSize>]

[-color <color>] [-line (’dash’ | ’solid’)] [-mode (’normal’

| ’inverse’)]

Draws in the *gobject* a line from the point <x1>,<y1> to <x2>,<y2>
-clip : The clip rectangle is set to be the *gobject* rectangle.
-color : The color <color> is used for drawing the line.
-line : If ’dash’ then the line will be dashed
-mode : If ’inverse’ then the drawing uses the inverse color mode so
that if the same drawing command is executed a second time, the line
will disappear.

• draw lineto *gobject* <x> <y> [-clip] [-pen <penSize>] [-color

<color>] [-line (’dash’ | ’solid’)] [-mode (’normal’ | ’inverse’)]

Draws in the *gobject* a line from the last point that has been drawn
to <x> <y>

-clip : The clip rectangle is set to be the *gobject* rectangle.
-color : The color <color> is used for drawing the line.
-line : If ’dash’ then the line will be dashed
-mode : If ’inverse’ then the drawing uses the inverse color mode so
that if the same drawing command is executed a second time, the line
will disappear.

• draw point *gobject* <x> <y> [-clip] [-color <color>] [-pen

<pensize>] [-mode (’normal’ | ’inverse’)]

Draws in the *gobject* the point <x> <y>

-clip : The clip rectangle is set to be the *gobject* rectangle.
-color : The color <color> is used for drawing the point.
-mode : If ’inverse’ then the drawing uses the inverse color mode so
that if the same drawing command is executed a second time, the point
will disappear.

• draw rect *gobject* <x> <y> <w> <h> [-clip] [-pen <penSize>]

[-color <color>] [-line (’dash’ | ’solid’)] [-mode (’normal’

| ’inverse’)] [-pixel] [-rectType <rectType>] [-centered] [-fill]

32 CHAPTER 1. PACKAGE KERNEL 3.0

Draws in the *gobject* the rectangle <x> <y> <w> <h>.
-centered : The rectangle is centered at <x>,<y> and the respective
radii are <w> and <h>.
-clip : The clip rectangle is set to be the *gobject* rectangle.
-color : The color <color> is used for drawing (and filling) the rect-
angle.
-fill : The rectangle is filled with the current color.
-rectType : Changes the rectangle type that is used. Read the manual
pages about the ’rectType’ field of the gobjects.
-line : If ’dash’ then the contour of the rectangle will be drawn using
dashed lines
-mode : If ’inverse’ then the drawing uses the inverse color mode so
that if the same drawing command is executed a second time, the rect-
angle will disappear.
-pen : The size of the pen <penSize> is used for drawing the rectangle.

• draw string *gobject* <str> [*hPositionMode*=left] <x> [*vPositionMode*=base]

<y> [<angle>=0] [-clip] [-color <color>] [-mode (’normal’

| ’inverse’)] [-font <fontName>]

Draws the (eventually multiple line) string <str> at the position <x>

<y> and angle <angle> using the gobject font. The two parameters
<hPositionMode> and <vPositionMode> fix how these coordinates
are used.
if <hPositionMode>==’left’ then the string is justified to the left and
<x> corresponds to its left position.
if <hPositionMode>==’rightN’ then each individual line of the string
is justified to the right and <x> corresponds to their right positions.
if <hPositionMode>==’right1’ then all the lines (as a group) of the
string are justified to the right and <x> corresponds to its right posi-
tion.
if <hPositionMode>==’middleN’ then each individual line of the string
is justified to its middle point and <x> corresponds to their middle
positions.
if <hPositionMode>==’middle1’ then all the lines (as a group) of the
string is justified to its middle point and <x> corresponds to its mid-
dle position.
if <vPositionMode>==’base’ then <y> corresponds to the position
of the baseline of the first line.
if <vPositionMode>==’down’ then <y> corresponds to the position

1.3. BASIC GRAPHIC COMMANDS 33

of the bottom of the last line.
if <vPositionMode>==’up’ then <y> corresponds to the position of
the top of the first line.
if <vPositionMode>==’middle’ then <y> corresponds to the position
of the middle of the whole string
if <vPositionMode>==’middleup’ in case <str> has just one line,
<y> corresponds to the position of the middle of the characters above
the baseline (such as ’1’)
-clip : The clip rectangle is set to be the *gobject* rectangle.
-color : The color <color> is used for drawing the string.
-mode : If ’inverse’ then the drawing uses the inverse color mode so
that if the same drawing command is executed a second time, the
string will disappear.

• event process [<time>=0]

Waits for <time> seconds while processing to events. If <time>==0 then
it processes all the events in the queue and then returns

• font

• font default [<fontName>]

Gets/Sets the font that is used by default by all the gobjects.

• font exist <fontName>

Returns 1 if the font named <fontName> exists and 0 if not. The
name of the font is of the form <name>-<size>-<style> (e.g., Geneva-
9-plain) where <style> is either ’plain’, ’bold’, ’italic’, ’boldItalic’.

• font info

Gets an information list about the font. The list is made of 3 numbers
: <ascent> <descent> and <interline>. <ascent> is the maximum of
points (for all characters of the font) above the base line (excluding the
base line), <descent> is the maximum of points (for all characters of
the font) below the base line (including the base line) and <interline>
is such that 2 base lines of 2 successive lines are vertically spaced by
the number of points : <ascent>+<descent>+<interline>.

• font list [<nameRegexp>=’*’] [-f]

Gets a listv of the available fonts matching the name <nameRegexp>.
If ’-f’, the fonts must be fixed width fonts.

34 CHAPTER 1. PACKAGE KERNEL 3.0

• font name

Gets the basic name (e.g. Geneva, Times...) of the

• font rect <string> <hPositionMode> <x> <vPositionMode>

<y> [<angle> = 0] [*gobject*]

Gets a listv representing the bounding rectangle of the string <string>
if it were drawn using and using the ’draw string’ command in
the *gobject* (or any window if *gobject* is not specified) along with
the arguments <hPositionMode>, <x>, <vPositionMode> and <y>.
Read the ’draw string’ manual pages to learn about these arguments.

• font size

Gets the size of the

• font style

Gets the style of the

• gclass

• gclass father <class> [<fatherClass>]

Gets the name of the father class of the class <class> if <fatherClass>
is not specified. Otherwise it tests whether <class> inherits from
<fatherClass> and returns 1 (if it is) or 0 (if not)

• gclass help <class> (setg | msge)

Gets the help listv on the ’setg’ or ’msge’ class procedure. It is a
listv made of several listv (one for each field or each message) with 2
elements : a usage and a one-line help.

• gclass list [<nameRegexp>=’*’] [<packageNameRegexp>=’*’] [<&type>]

Gets all the names of gclasses which name matches the <nameRegexp>,
who belongs to a package whose name matches <packageNameRegexp>

and who can display the content of <&type> variables (or of any type
if <&type> is not specified).

• gclass new *name* *fatherClass* (<setSCommand> | null) (<messageSCommand>

| null) (<drawSCommand> | null) <info> [<isinSCommand>] [-t

<&type>] [-lm]

Creating a new gclass of name *name* based on the class *father-
Class*. The arguments are :

1.3. BASIC GRAPHIC COMMANDS 35

- <setSCommand> : A procedure that will be used to set/get the
fields of the newly defined gobjects. Its argument must be ’obj field
.l’ where ’obj’ is the gobject name, ’field’ is the name of the field (ex-
cluding ’-’, e.g., ’pos’ or ’size’) and ’l’ is a listv that groups whatever is
left. If it is empty, it means that the procedure must return the value
of the field (i.e., this corresponds to a ’get’), otherwise the procedure
must set the field using the arguments in ’l’. If the field ’field’ is not
taken care by the procedure <setSCommand>, the procedure MUST
not return any value. Let us note that in the case of a ’set’, it must
return either ’1’ if the gobject must be added to the current update
list or ’-1’ if not. If the field name starts with ’-?’ (e.g., ’-?bound’ for
Views or ’-?wtrans’ for GraphWtrans), then it means that this field is
a ’read-only’ field that can use the arguments in ’l’. Thus, the proce-
dure should just return the field value.
- <messageSCommand> : A procedure name that will be used to per-
form messages sent to the newly defined gobjects. Its argument must
be ’obj msge .l’ where ’obj’ is the gobject name, ’msge’ is the name of
the msge and ’l’ the listv of all the remaining arguments. If the mes-
sage is accepted, the procedure <messageSCommand> should return
something (1 for instance) and it should return nothing if not. Let
us note that there are 3 special messages that you can redirect : the
’init’ message that is sent right after a new gobject of class *name*
is created (’l’ is empty and this message is first sent to the gobject as
an object of the class ’GObject’ and so on to all the classes it inherits
from, from top to bottom), the ’delete’ message that is sent right be-
fore a gobject of class *name* is deleted, (’l’ is empty, and it is sent
to the gobject as an object of all the gclasses it inherits from, from
bottom to top) and the ’deleteNotify’ message that is sent to a ’GList’
(and all the classes that inherit from GList) whenever one of its gob-
ject is asked to be deleted, the name of the gobject is ’l’ and it must
return 1 if it accepts that the object is deleted or 0 to forbid deletion.
- <drawSCommand> : A procedure name that will be used to draw
the newly defined gobjects. Its argument must be ’obj .l’ where ’obj’ is
the gobject name and ’l’ is a listv of 4 floats representing the rectangle
{x y w h} that must be redrawn (using local coordinates). The clip
rectangle is automatically set to this rectangle before the procedure is
called, thus you should not worry redrawing more than what is asked
if it is easier to manage.
- <isinSCommand> : An optional procedure name that will be used to
check whether the mouse is in one of the newly defined gobjects (if it

36 CHAPTER 1. PACKAGE KERNEL 3.0

is not specified then the mouse will be considered to be in the gobject
if it is in the rectangle given by ’-pos’ and ’-size’). Its argument must
be ’obj x y’ where ’obj’ is the gobject name and ’x’ and ’y’ the local
coordinates of the mouse. It must return a strictly negative number if
the mouse is not in the gobject and otherwise a positive number which
quantifies the distance between the mouse and the gobject. Lastwave
always sends mouse events to the ’closest’ gobject. If it returns 0, then
lastwave will not try any other gobject and will consider this gobject
to be the closest.
- <info> : This is just a one-line help to describe what the class is
meant for
-m : If set then the gobjects of the newly defined class cannot be
moved or resized.
-l : If set then the system of local coordinate system of the gobjects
of the newly defined class will be the same one as the father’s system
(this is the case of GraphSignal for instance).

• gclass objlist (<class> | ’*’) *objlist*

Gets a listv of the complete names of all the gobjects of class <class>
(or of any class if ’*’ is used) which matches the pattern *objlist*.

• gclass package <class>

Gets the package name the class is defined in.

• gclass type <class>

Gets the eventual variable type associated to the class ’class’ (returns
it or returns ”).

• gupdate

• gupdate add <gobjectlist>

Adds a list of gobjects to the current update table so that these gob-
jects will be redrawn when ’gupdate do’ is called.

• gupdate do

Performs the current update. It redraws all the gobjects that needs to
be updated since ’gupdate start’ was called.

• gupdate start

1.3. BASIC GRAPHIC COMMANDS 37

When called, it creates a new ’update’ table and makes it current (the
old current update table will become active as soon as this new one is
closed). Any gobjects whose fields change and who are not explicitely
redrawn are saved in the current ’update’ table. The current table is
emptied when ’gupdate do’ is called. At that time all the gobjects
of this table are redrawn as well as all the gobjects in front of them
and the ones in the back (if the background color is invisible). These
commands must be used inside a script command (all the update tables
are deleted when terminal is waiting for a command line to be typed
in). Let us note that whenever a ’setgu’ command is executed, a
’gupdate start’ is executed before changing any field and a ’gupdate
do’ is executed at the end of the ’setgu’ command. Warning : only
gobjects belonging to the same window can be put in an update table.

• msge *gobjectRegexp* *msge* <arg1>...<argN>

Sends a message to all the gobjects whose name matches *gobjectRegexp*.
The message is *msge* and <arg1>...<argN> are the arguments to the
message. If the message is unknown it returns ” otherwise it returns a value
different from ”.

• ps

• ps cpos [<cmXPos> <cmYPos>]

Sets/Gets the x and y distances (in centimeters) of the postscript
drawing from the top-left corner of the paper. Warning : This is not
quite working yet.

• ps csize [<cmXSize> [<cmYSize>=-1]]

If no argument, it returns a listv made of the x and y sizes of the
postscript drawing in centimeters. If both arguments are specified, it
sets the x and y sizes (centimeters). And if only the first argument
is specified (second is -1), it sets the x-size and the y-size will be
automatically computed using the x/y size proportion of the window
to draw.

• ps ipos [<inchXPos> <inchYPos>]

Sets/Gets the x and y distances (in inches) of the postscript drawing
from the top-left corner of the paper. Warning : This is not quite
working yet.

• ps isize [<inchXSize> [<inchYSize>=-1]]

38 CHAPTER 1. PACKAGE KERNEL 3.0

If no argument, it returns a listv made of the x and y sizes of the
postscript drawing in inches. If both arguments are specified, it sets
the x and y sizes (inches). And if only the first argument is specified
(second is -1), it sets the x-size and the y-size will be automatically
computed using the x/y size proportion of the window to draw.

• ps linewidth [<linewidth>]

Sets/Gets the linewidth used for postscript. A width of 1 is an average
linewidth.

• setbinding <bindingGroupName> *gclass* ((left | middle | right)Button(’’

| Up | Down | Motion) | motion | leave | enter | enterLeave | key |
keyUp | keyDown | draw | delete | error) [’key1 .. keyN’] [<modifiers>]

<script>

Defines event bindings associated to gobjects of class *gclass*. Read the
manual pages for examples of bindings.

• setcolor [-bg <color>] [-fg <color>] [-mouse [<color>]]

Sets any (or all) of the background (-bg), foreground (-fg) or mouse (used
for inverse mode on Unix computers only) color.

• setg [-] *gobjectRegexp* -*field1* [..<val>..] ... -*fieldN*

[..<val>..>]

Sets/Gets the fields *field1*...*fieldN* of all the gobjects whose name matches
gobjectRegexp. If no <val> are specified then just one field should be
used and its value is returned. Otherwise, it sets the fields *field1*...*fieldN*
with the respective values specified by the <val>s (a single field might need
several <val> to be set). In any case ’setg’ returns 0 if the field does not
exist. If a field is changed then it can return either 1 or -1. If it returns 1,
it means that the object should be redrawn, thus, consequently, the corre-
sponding gobject is stored in the current update table if any. If it returns
-1, it means that the gobject should not be redrawn and thus it it is not
stored in the current update table. In any case, if one wants to keep lastwave
from storing the gobject in the current update table (i.e., from redrawing
it later), one must insert a ’-’ before the object name. Let us note that
one can send messages to the sons of any gobject that matches *gobjec-
tRegexp* on the same command line by inserting in the command line the
string ’-*gobjectRegexp*’ followed by a regular ’setg’ list of argument. For
instance, if you want to set the background color of any gobject inside the
window ’win’ to black and at the same time change the foreground color of
the object ’win.view’ to red, you would type ”setg win -..* -bg ’black’ -.view
-fg ’red’”

1.4. SCRIPT COMMANDS 39

• setgu *gobjectRegexp* -*field1* [..<val>..] ... -*fieldN* [..<val>..>]

Same as the ’setg’ command but it updates the display of the corresponding
gobjects. It is basically equivalent to perform successively : 1- ’gupdate
start’ 2- a ’setg’ and 3- a ’gupdate do’. Thus any gobject which has changed
will be redrawn.

• system

• system mouse <nbOfButtons> ’(left | middle | right) [(opt |
meta)] (left | middle | right)’ ...

LastWave has been designed for an operating system that deals with a
3 button mouse. If the mouse you are using is a ’real’ 3 button mouse
(i.e., sending left, middle and middle messages) then you do not need
to use this command. Everything should work properly. If it has only
1 ’real’ button, LastWave considers it is a ’left’ button. You then have
to assign the two other ’virtual’ buttons to the ’left’ button modified
by a modifier key (either ’opt’ which corresponds to ’alt’ on Windows
or ’meta’). The command thus expects 3 arguments, i.e., 1 ’middle
[(opt | meta)] left’ ’right [(opt | meta)] left’. If it has only 2 ’real’
buttons, the command thus expects 2 arguments, i.e., 2 ’(left | middle
| right) [(opt | meta)] (left | middle | right)’.

• system nEvents

Gets the total number of events that were managed up to the current
time.

• window

• window list [<regexp>=’*’]

Gets the list of all the windows whose name matches <regexp>

• window new [<class> = ’Window’] <name> [list of fields...]

Creates a window of class <class> named <name> and sends all the
[list of fields...] to the ’setg’ command.

1.4 Script Commands

1.5 Graphic class GList (inherits from GObject)

Graphic Class which allows to group a list of gobjects
• setg *GList* -add <name> <class> [-<fields>...]

40 CHAPTER 1. PACKAGE KERNEL 3.0

Adds a gobject named <name> of class <class> to the glist. After creating
it, it sets its field according to [-<fields>...].

• msge

• msge *GList* add <name> <class> [<list of field initializations>]

Adds to the glist a gobject of class <class> and name <name>. After
creating it, it sets its field according to [-<fields>...].

• msge *GList* list [<filterName>=*]

Gets all the gobject names of the glist that matches <filterName> and
puts it in a listv.

• msge *GList* object <x> <y>

Gets the gobject name of the glist that is the closest to the (local
coordinate) point <x> <y> (if none it returns the empty string ”).

• msge *GList* remove [<filterName>=*]

Removes all the gobjects of the glist whose name matches <filterName>.

1.6 Graphic class GObject

Basic Graphic Class which any other class inherits from
• setg

• setg *GObject* -apos [<x> <y>]

Sets/Gets the position of the gobject using absolute coordinates.

• setg *GObject* -arect

Gets the bounding rectangle (x,y,w,h) of the gobject using absolute
coordinates (this is equivalent to calling ’-apos’ and ’-asize’).

• setg *GObject* -asize [<w> <h>]

Sets/Gets the size of the gobject using absolute coordinates.

• setg *GObject* -bg [<color>]

Sets/Gets the background color of the gobject.

• setg *GObject* -class

Gets the gclass name of the gobject.

1.6. GRAPHIC CLASS GOBJECT 41

• setg *GObject* -clip [no | yes | screen]

Sets/Gets the field which specifies whether the gobject should be
clipped (using its bounding rectangle) or not. If it is ’no’ (or 0) it
means that the gobject is never clipped. if it is ’yes’ (or 1) then it is
always clipped. If it is ’screen’ it means that it is clipped only when
displayed on the screen (not in postscript files). This last mode is used
for Text gobjects (since the postscript fonts and screen fonts do not
really correspond, the screen clipping rectangle is not appropriate for
being used in postscript).

• setg *GObject* -depth [<depth>]

Sets/Gets the ’depth’ of the gobject. The possible values of this field
are either ’back’ (gobject is in the back) or ’front’ (gobject is in the
front) or any number between 1 (which is the same position as ’back’)
up to the number of gobjects in the father glist.

• setg *GObject* -fg [<color>]

Sets/Gets the foreground color of the gobject.

• setg *GObject* -font [<fontName>]

Sets/Gets the name of the font used for drawing the gobject.

• setg *GObject* -frame [<flagOnOff>]

Sets/Gets the frame flag which allows (if <flagOnOff> =1) to draw a
frame around the gobject.

• setg *GObject* -grid [<xGrid> <yGrid> <wGrid> <hGrid>]

If used with no argument, it gets the grid coordinates of the gobject
(if they are activated) or it returns the empty string ”. If used with
the four arguments <xGrid> <yGrid> <wGrid> <hGrid>, it sets
the gobject on the corresponding grid coordinates and activate auto-
matically the -grid? flag.

• setg *GObject* -grid? [<flagOnOff>]

Activates (<flagOnOff>=1) or deactivates (<flagOnOff>=0) the grid
coordinates of the gobject.

• setg *GObject* -hide [<flagOnOff>]

Sets/Gets the flag which specifies whether the gobject is visible or not.

42 CHAPTER 1. PACKAGE KERNEL 3.0

• setg *GObject* -line [{dash plain}]

Sets/Gets the type of line that will be used for drawing the gobject
(for now only one type of dash is available).

• setg *GObject* -name

Gets the full name of the gobject.

• setg *GObject* -pen [<penSize>]

Sets/Gets the pen size used for drawing the gobject.

• setg *GObject* -pos [<x> <y>]

Sets/Gets the position of the gobject using local coordinates.

• setg *GObject* -rectType [<rectType>]

This field specifies how the absolute coordinate boundary rectangle
of the gobject (i.e., ’-arect’) must be extended in each direction after
doing local to global change of coordinates on the local rectangle (i.e.,
’-rect’). This is particularly important if you want to control if the
boundaries of the local rectangle ’-rect’ belong or not to the gobject.
At initialization, the <rectType> of a gobject is ’normal’ in the sense
that boundary rectangle includes the point (x,y) but not the point
(x+w,y+h) (thus w and h do represent the width and height in pixels
of the gobject). A <rectType> corresponds to four numbers extending
the rectangle respectively to the left, the top, the right and the bot-
tom. There are 3 predefined rectangle types (which are associated to
names instead of 4 numbers) : LargeRect (=0,0,1,1) (both the points
(x,y) and (x+w,y+h) belong to the rectangle), SmallRect (= -1,-1,0,0)
(none of the points (x,y) and (x+w,y+h) belong to the rectangle) Nor-
malRect (=0,0,0,0) (the point (x,y) belongs to the rectangle whereas
the points (x+w,y+h) does not belong to the rectangle). Let us note
that, in a View, if the y-axis (resp. the x-axis) is reversed then the
top-bottom (resp. left-right) are reversed.

• setg *GObject* -rect

Gets the bounding rectangle (x,y,w,h) of the gobject using local coor-
dinates (this is equivalent to calling ’-pos’ and ’-size’).

• setg *GObject* -size [<w> <h>]

Sets/Gets the size of the gobject using local coordinates.

1.6. GRAPHIC CLASS GOBJECT 43

• msge

• msge *GObject* back

Sends the gobject to the back.

• msge *GObject* class <class>]

If <class> is not specified then it returns the class of the gobject. Oth-
erwise it returns 1 if the gobject is of class <class> (possibly inherited)
and 0 otherwise.

• msge *GObject* delete

Deletes the gobject.

• msge *GObject* draw [(-l | -g) <x> <y> <w> <h>] [-clip]

Draws the gobject. If ’-l’ (resp. ’-g’) is set , the gobject is drawn only
in the local (resp. global) rectangle <x> <y> <w> <h>. If ’-clip’ is
set the clip rectangle of the gobject is used otherwise the current clip
rectangle is used.

• msge *GObject* exist

Returns 1 if the gobject exists and 0 otherwise.

• msge *GObject* father

Gets the name of the father of the gobject or the empty string ” if
none.

• msge *GObject* front

Sends the gobject to the front.

• msge *GObject* g2l <x> <y>

Converts global position <x> <y> to local (gobject) position.

• msge *GObject* hide

Hides the gobject.

• msge *GObject* id

Returns a unique identificator string (alphanumeric string that can be
used as an index of an array) that corresponds to the gobject.

44 CHAPTER 1. PACKAGE KERNEL 3.0

• msge *GObject* isin <x> <y>

Returns 1 if the local point <x> <y> belongs to the gobject and
returns 0 otherwise.

• msge *GObject* l2g <x> <y>

Converts local (gobject) position <x> <y> to global position.

• msge *GObject* move <x> <y>

Moves the gobject to local position <x> <y>.

• msge *GObject* name

Returns the full name of the gobject.

• msge *GObject* pmove <dx> <dy>

Moves the gobject of <dx> <dy> pixels.

• msge *GObject* resize <w> <h>

Resizes the gobject to the new (local) size <w> <h>.

• msge *GObject* show

Shows the gobject.

Bindings

• f5 : creates a Text object in the gobject and just type in (try ’tab’,
’up’ and ’down’).

• f1 = Delete the window the mouse is in

• delete = Delete the graphic object the mouse is in

• h = Display successively field values/Messages/binding help

• b = Display/hide binding help

• Shift + Ctrl + Middle Button = Move Gobject

1.7. GRAPHIC CLASS GRID (INHERITS FROM GLIST) 45

1.7 Graphic class Grid (inherits from GList)

GList Graphic Class which allows to display its gobjects using grid coor-
dinates. The glist is divided into ’m’ columns and ’n’ lines. The gobjects
inside this glist can thus be placed and sized specifying column and row
numbers (using the ’-grid’ field). Everything will be automatically resized
and repositionned whenever the glist is resized or moved. Let us note that
one can specify margins to the grid using the ’-margin’ fields
• setg

• setg *Grid* -dxdy [<dx> <dy>]

Sets/Gets the horizontal (<dx>) and the vertical (<dy>) margins
between each cell of the grid.

• setg *Grid* -margin [<left> <top> <right> <bottom>]

Sets/Gets the margins for the Grid. All the gobjects that will use grid
coordinates will be placed inside the rectangle <left> <top> <right>
<botttom>. Thus, for instance, the grid coordinates 1,1 corresponds
to the point <left> <top>.

• setg *Grid* -mn [<m> <n>]

Sets/Gets the horizontal (<m>) and the vertical (<n>) size of the
Grid. These two numbers must be strictly positive integers

1.8 Graphic class View (inherits from GList)

GList Graphic Class which allows to display its gobjects using LWFLOAT
coordinates. The bounding rectangle of a view corresponds to LWFLOAT
bounds referred to as <xMin> <xMax> <yMin> and <yMax> that one
can set using the ’-bound’ field
• setg

• setg *View* -?bound [<xMin> <xMax> <yMin> <yMax>]

Read only field that works exactly like ’-bound’ except that it does
not change the fields <xMin> <xMax> <yMin> and <yMax> (even
when arguments are specified). This allows, for instance, to ques-
tion the view about the <yMin> and <yMax> within a given range
<xMin> <xMax> without changing the view.

46 CHAPTER 1. PACKAGE KERNEL 3.0

• setg *View* -bound [<xMin> <xMax> <yMin> <yMax>]

Sets/Gets the boundaries of the View. When setting the rectangle you
can use the special values ’*’ or ’?’ for any of the 4 arguments. The
value ’*’ means that the corresponding value should not be changed.
The value ’?’ means that the corresponding value should be set in
order to frame exactly all the gobjects in the View. Thus for instance,
if signals are displayed in the View, ’-bound 0 1 ? ?’ will display all
the signals between abscissa <xMin>=0 and <xMax>=1 using their
minimum and maximum values (between 0 and 1) to set the y-scale.
Let us note that when you call ’-bound’ with arguments it changes
the boundary rectangle of the View. If you just want to know what
the boundary rectangle would be set to if ’-bound’ (with some specific
arguments) was called (without changing the boundaries of the View),
you must uset the ’-?bound’ field (e.g., ’-?bound 0 1 ? ?’)

• setg *View* -reverse [x | y | xy | none]

Gets/Sets the state that indicates which axis are reversed compared to
the regular axis of GLists. If it is ’y’ (the default value at initialization)
then the y-axis will be going from bottom of the window to top, if ’x’
the x-axis will be going from right to left, if ’xy’ both will be combined
and if ’none’ the y-axis will be top to bottom and the x-axis left to
right (as for GLists)

Bindings

• Type ’c’ to change cursor mode

• ’z’ : changes the zoom mode just type ’z’

• Left/Right/Middle button : operate the zoom

1.9 Graphic class Window (inherits from Grid)

Basic Window Class
• setg *Window* -title [<title>]

Sets/Gets the title of the Window. At initialization the title is the name of
the gobject.

• msge *Window* drawps <file.ps>

Creates a (color) postscript file of the window. See command ’ps’ to control
the postscript output.

Chapter 2

Package disp 2.1

Package that allows high level displays of any gobject which is associated to
a variable’s content (such as signals, wtrans1d, books...).
** Authors and Copyright : E. Bacry

2.1 Script Commands

• SetCursorBindings (in file LastWave 3 0/scripts/disp/cursor)*className*
<listv of procedures>

class must be a valid classname of a class which corresponds to objects
that can be displayed in Views. When called this function allows to manage
cursor display when the mouse points on an object of class *className*.
The <listv of procedures> is a listv of different display procedures. You can
switch from one to the next using the ’c’ key. A valid disply procedure must
have one argument ’cursor’. This argument corresponds to an array which
has 2 fields, one is an input field :
- view : the name of the view gobject
and the other one is an output field (you are supposed to set it)
- erase : the script that should be called to erase the cursor you displayed
The procedure should
- manage drawing the cursor (generally using the variables @x and @y) (You
can use the ViewDrawCrossHair procedure for that purpose (see examples
in signal.pkg)
- set the cursor.erase variable to a valid script that will erase the drawing

• SetSuperposeBindings (in file LastWave 3 0/scripts/disp/superpose)
gclass

47

48 CHAPTER 2. PACKAGE DISP 2.1

Allows superposing drawing to graphic class *gclass*. If you call this pro-
cedure then each time a gobject of class *gclass* will be drawn, you can ask
that a script is called (e.g., to draw something on top of it). The scripts
are specific to the *gobject* themselves. However, you can group them into
groups to delete them at once. You can use the procedure ’SuperposeAdd1’
to trigger a script for a specific gobject and ’SuperposeDelete’ to delete a
group of scripts

• SetZoomBindings (in file LastWave 3 0/scripts/disp/zoom) *class*
<listv of modes>

class must be a valid classname of a class which corresponds to objects
that can be displayed in Views. <listv of modes> is a listv that combines
the 4 strings ’rect’, ’xrect’, ’yrect’ or ’normal’. Calling this function enables
some mouse bindings so that zoom can be performed when the mouse points
to this object. The ’z’ key will switch between the different zoom modes.
- ’normal’ : uses the left/right/middle button (as default for signals)
- ’rect’ : uses the left/middle button (as default for images)
- ’xrect’ : same as ’rect’ but constraint the x-direction

• SuperposeAdd1 (in file LastWave 3 0/scripts/disp/superpose) *gobject*
<group> <script>

Adds a script to be executed whenever the gobject *gobject* is drawn. The
<group> is the name of the group the scripts belongs to.

• SuperposeDelete (in file LastWave 3 0/scripts/disp/superpose)*gobject*
<group>

Deletes all the scripts associated to the group <group>.

• disp (in file LastWave 3 0/scripts/disp/disp.pkg) [<window>] [<theVariables>]

[<setg fields>]

This function is a high level functions for displaying all sorts of objects such
as signals, wavelet transforms, extrema representation in the same window
using (almost) any layout. The display takes place in a <window> of class
WindowDisp. Each WindowDisp has a ’type’ which corresponds to the type
of objects it currently displays. A WindowDisp with only signals in it will be
of type ’&signali’, one with only 1d extrema representation will be of type
’&extrep’... A WindowDisp that mixes objects of different types is of type
’&mixed’. The type of a WindowDisp is indicated in its title which is of the
form ’<windowName> (<type>)’. A WindowDisp is a window that con-
tains one ’FramedView’ for each graph to be displayed. These FramedViews
are named fv1,..,fvN. A FramedView consists basically in a View (named

2.1. SCRIPT COMMANDS 49

’view’) in the middle and a one line text-box of type Box (named ’box’) at
the bottom. Moreover it automatically draws axis around the ’view’. This
’view’ is actually not directly of type ’View’ but it is of type ’EView’ (for
Extended View) which directly inherits from the class ’View’. It extends the
View class in order to take care of eventual x and y-scale synchronizations
between different EViews (c.f. the ’synchro’ command). Let us note that if
’disp’ is sent with no argument (or just <window>) it just refreshes the cur-
rent window, i.e., the last window visited by the mouse or in which drawing
was performed. The arguments of the ’disp’ command are the following :
- <window> : The WindowDisp the display will take place in. If it is
not specified, then, the last WindowDisp of the right type that has been
used or that has been visited by the mouse will be used. If such a win-
dow does not exist, it will be automatically created. The position and size
of the newly created WindowDisp is the one specified in the global vari-
able ’disp.<type>.rect’ where <type> is the type of the WindowDisp to
be created (without the first ’&’ character). Thus, for instance, in the
’scripts/signal.pkg’ file, the first line is ’disp.signali.rect={20 55 330 330}’.
Let us note that, if you want ’disp’ to use a new type of window (that
inherits from WindowDisp, in which you would have added, for instance,
some buttons), you can specify it by changing the global variable (in the
’scripts/disp/disp.pkg’ file) :’disp.windowClass’. Actually you can also spec-
ify for each <type> (e.g., signali, wtrans,...) a disp.<type>.axis variable
which (dis)able axis drawing, a disp.<type>.reverse variable to set the ’re-
verse’ field of the corresponding framed views and in the same way the
disp.<type>.margin (which is used only if the type of the window disp is
not mixed).
- <theVariables> : The variables appearing here are ’extended’ variables
(such as the signal ’0a’ or the wavelet transform ’a’). The way it is or-
ganized controls the way it will appear on the screen. This argument can
be seen as a succession of lists. The window will be divided vertically in
as many sections as the number of lists. Each list ’represents’ one of this
’horizontal’ section (from top to bottom). Moreover, each of these lists are
themselves organized as lists of extended variables. Thus, each horizontal
section will be divided (vertically) in as many sections as the length of its
corresponding list. Thus, each of the so-obtained sections corresponds to a
variable list. The command ’disp’ displays all the objects corresponding to
each variable list superposed in a FramedView in its corresponding section.
For instance, if one wants to display 4 objects (three signals) ’0’,’1’,’2’ and
(a wavelet transform) ’a’ one on top of the other one, one would simply type
’disp 0 1 2 a’. Now if one wants the first 2 ones to be at the same horizontal

50 CHAPTER 2. PACKAGE DISP 2.1

level, one needs to type ’disp {0 1} 2 a’. Just play around with it.... you
will master it very easily. Let us note that if this argument is not specified
then it will just redraw the corresponding <window> using the fields of the
next argument. This allows to change the way some objects are currently
displayed on a window.

• dispadd (in file LastWave 3 0/scripts/disp/disp.pkg)<window> (<graph>

|| -) [<position>]

Adds a graph in a display. If ” is specified, it supresses a graph.

• synchro (in file LastWave 3 0/scripts/disp/eview)

• synchro add {x | xy} <gobject> <eviewList>

Adds a x or/and y-scale synchronisation between eviews of <eviewList>.
Each time the boundaries of an eview in <eviewList> is changed,
all the other ones will be changed accordingly. If ’x’ is the first ar-
gument then only the xMin and xMax boundaries are synchronized.
If it is ’xy’ then xMin, xMax, yMin and yMax are synchronized. If
<gobject> is not ”” then this synchronization is automatically deleted
when <gobject> is deleted. Let’s note that one can use wild card
characters in <eviewList>. This command returns a number that is
associated to this newly defined synchronization (This number can be
used with the delete action). ** Warning : Only one synchroniza-
tion definition (the first one found) will be used when changing the
boundaries of an eview. They are not called recursively.

• synchro delete <n>

Deletes the synchronization number <n>

• synchro get <eviewName>

Gets the synchronization definition that must satisfy the eview <eviewName>.
The first one found is returned.

• synchro list

Displays all the currrently active synchronization

2.2 Graphic class EView (inherits from View)

Graphic Class that extends the View class so that one can synchronize the
x or/and y-scales between different EViews. This class is used in Framed-

2.3. GRAPHIC CLASS FRAMEDVIEW (INHERITS FROM GRID) 51

Views.
• setg

• setg *EView* -bound <xMin> <xMax> <yMin> <yMax>

Changes the boundaries of the eview and synchronizes eventual other
EViews.

• setg *EView* -boundNoSync <xMin> <xMax> <yMin> <yMax>

Changes the boundaries without synchronization of eventual other
EViews

• setg *EView* -string [<string>]

Works exactly the same way as ’-string’ field for the Box inside the
FramedView which contains the EView.

2.3 Graphic class FramedView (inherits from Grid)

Graphic Class to display a View (actually it uses EViews) with axis and a
text box at the bottom. It is used in WindowDisp and thus by the ’disp’
function.
• setg

• setg *FramedView* -axis [<flagOn>]

Sets/Gets the flag that allows the axis to be displayed or not.

• setg *FramedView* -axisFont []

Sets/Gets the font used for axis.

• setg *FramedView* -axisFrame [<flagOn>]

Sets/Gets the flag that allows that four axis (instead of 2) are displayed
around the view.

• setg *FramedView* -bound [<xMin> <xMax> <yMin> <yMax>]

Just send the message to the ’-bound’ field of the EView inside the
FramedView.

• setg *FramedView* -boundNoSync <xMin> <xMax> <yMin> <yMax>

Just send the message to the ’-bound’ field of the View class of the
EView inside the FramedView. It thus changes the boundaries without
synchronization of other views.

52 CHAPTER 2. PACKAGE DISP 2.1

• setg *FramedView* -graph <exprString>

Sets the graph corresponding to <exprString> that will be displayed
in the FramedView.

• setg *FramedView* -graph+ <exprString>

Adds the graph corresponding to expression <exprString> to be dis-
played in the FramedView on top of the other ones.

• setg *FramedView* -graph1 <exprString>

Same as graph but do not update the boundaries of the FramedView.

• setg *FramedView* -graph1+ <exprString>

Same as graph+ but do not update the boundaries of the FramedView.

• setg *FramedView* -reverse [x | y | xy | none]

Gets/Sets the state that indicates which axis are reversed compared
to the regular global axis. If it is ’y’ (the default FramedView value at
initialization) then the y-axis will be going from bottom of the window
to top, if ’x’ the x-axis will be going from right to left, if ’xy’ both will
be combined and if ’none’ the y-axis will be top to bottom and the
x-axis left to right (as for GLists).

• setg *FramedView* -string [<string>]

Works exactly the same way as ’-string’ field for the Box inside the
FramedView.

• setg *FramedView* -ticksIn [<flagOn>]

Sets/Gets the flag that allows the ticks on the axis to be inside the
view instead of outside.

• setg *FramedView* -title [<string>]

Sets/Gets the title string. Let us note that it creates a Text object
named ’title’ that you can adress/move direcly.

• setg *FramedView* -xLabel [<string>]

Sets/Gets the label string for the x-axis. Let us note that it creates a
Text object named ’xlabel’ that you can adress/move direcly.

• setg *FramedView* -yLabel [<string>]

Sets/Gets the label string for the y-axis. Let us note that it creates a
Text object named ’ylabel’ that you can adress/move direcly.

2.4. GRAPHIC CLASS RECTSELECT (INHERITS FROM BOX) 53

• msge *FramedView* clear

Clears the FramedView.

2.4 Graphic class RectSelect (inherits from Box)

Graphic Class to display a rectangular selection of a view that can be ed-
itable using the mouse. Some graphic objects allow the user to create a
RectSelect performing a drag and drop with the left mouse button along
with the ctrl key. For instance, if the sound package has been loaded, one
should be able to create, in this way, a selection of a signal displayed in a
window. This means that the sound package allowed the GraphSignal ob-
jects to manage these creation events. In order to make a graphic class allow
these events, use the ’ SetRectSelectBindings’ procedure. Once a RectSelect
has been created, it can be edited using the mouse : if you drag and drop a
corner of the rectangle you move the selection, otherwise, you can drag and
drop any border of the selection that is editable (the sound package makes
only the vertical borders editable). When the mouse is ’close’ to any border
of the selection, it will become active, the active zone is lit up.
• setg

• setg *RectSelect* -edit [x | xy]

Sets/Gets the ’edit’ mode of the SelectRect. If it is ’x’ then just the
vertical borders can be moved, otherwise any border can be moved

• setg *RectSelect* -thickness [<thickness>]

Sets/Gets the thickness of the object. It corresponds to how close (in
points) the mouse should be from the borders to be able to edit it.
The mouse is considered in the object only if it is close enough to the
borders.

• setg *RectSelect* -type [image | signal]

Sets/Gets the type of the SelectRect. If it is ’signal’ it means that the
rectangle will be displayed below the objects which are in the view
using a grey background. If it is ’image’ it will be displayed above the
other objects. This is meant so that the SelectRect can be seen on the
screen. Do not change this value after creating the SelectRect.

• setg *RectSelect* -yRescaled

54 CHAPTER 2. PACKAGE DISP 2.1

Gets an internal flag used by the EView objects (it is read only). When
the flag is 1 it means that the object must be automatically rescaled
in y in order to reach the min/max y-values when the view is zoomed.

Bindings

• Ctrl + Left button = Allows to edit the RectSelect by drag/drop on
any border.)

2.5 Graphic class WindowDisp (inherits from Window)

Graphic Class to manage windows used by the ’disp’ function. It imple-
ments a whole system for remembering which window was the last used for
displaying a type of variables.
• setg

• setg *WindowDisp* -S [<flagOnOff>]

Same as ’-superpose’.

• setg *WindowDisp* -s [{x xy none}]

Same as ’-synchro’.

• setg *WindowDisp* -superpose [<flagOnOff>]

Sets/Gets superposition flag. If 1 then all the eviews are superposed.

• setg *WindowDisp* -synchro [{x xy none}]

Sets/Gets the synchronization mode for the WindowDisp.
- ’x’ means that the abscissa scale of all the EViews will be synchro-
nized
- ’xy’ means that the abscissa and the ordinate scales of all the EViews
will be synchronized

• setg *WindowDisp* -type [<type>]

Sets/Gets the type of the WindowDisp. It is defined as the type of
variables it displays or ’&mixed’ if it displays variables of different
types.

• setg *WindowDisp* -x [<xMin> <xMax>]

Sets/Gets the xMin and xMax used in the WindowDisp. You can use
’*’ and ’?’ characters in the same way as for ’-bound’ fields of views.

2.5. GRAPHIC CLASS WINDOWDISP (INHERITS FROM WINDOW) 55

• setg *WindowDisp* -y [<yMin> <yMax>]

Sets/Gets the yMin and yMax used in the WindowDisp. You can use
’*’ and ’?’ characters in the same way as for ’-bound’ fields of views.

• msge *WindowDisp* clear

Clears the WindowDisp.

56 CHAPTER 2. PACKAGE DISP 2.1

Chapter 3

Package image 2.1

Package allowing to deal with images/matrices.
** Authors and Copyright : E.Bacry and J.Fraleu

3.1 Defined types

3.1.1 Type &image

This type is the basic type for images/matrices. Images can be built using
the <value11,...,value1M;value21,...,value2M;...;valueN1,...,valueNM> syn-
tax. The values can be either a LWFLOAT, a signal, a range, or an image,
signals, ranges and images. The different operators are
- +,-,*,/ (and +=,-=,*=,/=) : regular operators
- //,% : integer division and remainder
- ==,!=,<=,>=,<,> : regular tests
- xˆ f (and ˆ =) : each value of |x| is taken to the popwer f
- x*ˆ n : each value of x to the power n where n is a positive integer
- : transposition operator
- ** : matrix multiplication
- xˆ ˆ n : take the square matrix m to the power n where n is an integer
- is,isnot : test if 2 signals correspond or not to the same C object
- sinh,sin,cosh,cos,tanh,tan,acos,asin,atan : trigonometric operators
- min,max : if 1 argument, returns the min or max value of an image, if 2
arguments returns the image made of the min/max of each value.
- log2,log,ln,sqrt,abs,exp,ceil,floor,round,frac,int : other math functions
- sum : computes the sum of all image values
- mean : same as sum but divides by the total number of points

57

58 CHAPTER 3. PACKAGE IMAGE 2.1

- any : returns 1 if at least one of the values is different from 0
- all : returns 1 if all of the values are different from 0
- find : returns a 2xN image made of index couples corresponding to non 0
values
- Image Constructors : <...;...;...>,Id,Zero,One,I,J,Grand,Urand and diag
(for building diagonal matrices from a range/signal).

• &image [*opt,rowIndexes;colIndexes] [:]= (<LWFLOAT> | <range>

| <signal> | <image>)

Get/Set the images values
Options are : *nolimit,*b0,*bconst,*bmirror,*bmirror1,*bperiodic

• *nolimit : indexes can be out of range

• *b0 : border effect with 0 value

• *bperiodic : periodic border effect)

• *bmirror1 : mirror+periodic border effect (first and last points
are repeated)

• *bmirror : mirror+periodic border effect (first and last points are
NOT repeated)

• &image.ncol [= <ncol>]

Sets/Gets the number of columns of an image. If allocation is changed
then all the values are initialized to 0.

• &image.nrow [= <nrow>]

Sets/Gets the number of rows of an image. If allocation is changed
then all the values are initialized to 0.

• &image.name [= <name>]

Sets/Gets the name of an image

• &image.tosignal

Converts the image to a signal (it just puts the rows one after the
other)

3.1.2 Type &imagei

This type corresponds to non empty images.

3.2. COMMANDS RELATED TO IMAGES 59

• &imagei [*opt,rowIndexes;colIndexes] [:]= (<LWFLOAT> | <range>

| <signal> | <image>)

Get/Set the images values
Options are : *nolimit,*b0,*bconst,*bmirror,*bmirror1,*bperiodic

• *nolimit : indexes can be out of range

• *b0 : border effect with 0 value

• *bperiodic : periodic border effect)

• *bmirror1 : mirror+periodic border effect (first and last points
are repeated)

• *bmirror : mirror+periodic border effect (first and last points are
NOT repeated)

• &imagei.ncol [= <ncol>]

Sets/Gets the number of columns of an image. If allocation is changed
then all the values are initialized to 0.

• &imagei.nrow [= <nrow>]

Sets/Gets the number of rows of an image. If allocation is changed
then all the values are initialized to 0.

• &imagei.name [= <name>]

Sets/Gets the name of an image

• &imagei.tosignal

Converts the image to a signal (it just puts the rows one after the
other)

3.2 Commands related to images

• image invert <image>

Inverts the values of all the pixels of an image (i.e., the min becomes the
max and vice versa).

• iread <image> (<filename> | <stream>) [-a <nrow> <ncol>] [-c

<nrow> <ncol>] [-r [(’little’ | ’big’)] [<floatSize>]]

Reads an image from disk. By default, the file should have a LastWave or
PGM P5 header. If ’-a’ (resp. -c) thenthere is no header and the image
is supposed to have the size <nrow> <ncol> and values are stored using
ascii (resp. characters between 0 and 255). If -r, the data are in raw format
(binary floats) with no header. In that case you can specify whether you

60 CHAPTER 3. PACKAGE IMAGE 2.1

want to read them as little endian data or big endian data. If nothing is
specified the endianness of the computer is used. One can specify also the
<floatSize>, i.e., the number of bytes for each float.

• istats

• istats kurt <imageIn>

Computes the kurtosis of an image.

• istats lp <imageIn> <p> [-c]

Computes the Lp norm of an image.

• istats mean <imageIn>

Computes the mean of an image.

• istats minmax <imageIn> [-c]

Computes the minimum and the maximum values of an image and
returns, in a listv, the corresponding indexes <iMin> <jMin> and
<iMax> <jMax>.

• istats nth <imageIn> <n> [-Ca]

Computes the (NON centered) <n>th moment of an image. If ’-C’
then the moment is centered. If ’-a’ the absolute moment is computed
(<n> can be a float).

• istats print <imageIn>

Prints some statistical information about an image.

• istats skew <imageIn>

Computes the skewness of an image.

• istats var <imageIn>

Computes the variance of an image.

• ithresh Not to be used

Old LastWave Command

• iwrite <image> (<filename> | <stream>) [-h] [-c [<min> <max>]]

[-a] [-f [<%format> <separator>]] [-p]

Write an image on the disk. By default, it will write a LastWave header
and binary coded floats (option -a is for ascii multicolumn coding). If ’-
c’ then characters are written (each value is in between 0 and 255) and if

3.3. SCRIPT COMMANDS 61

<min> and <max> are specified rescaling is performed before writing. If
’-h’ then no header is written (i.e., raw format). If ’-p’ then P5 pgm format
is used. In this case by default the image is rescaled between 0 and 255 and
characters are written. If -f then ascii numbers are written using formlat
<%format> (which can be ” fir default format) and column separator string
<separator> (default is tab character ’ ’).

• matrix

• matrix det <imageIn>

Computes the determinat of a matrix.

• matrix diagsym <imageIn>

Diagonalizes a symetric matrix. Returns a listv made of a matrix
(corresponding to the eigen vectors) and a signal (corresponding to
the eigen values).

• matrix trace <imageIn>

Computes the trace of a matrix.

3.3 Script Commands

3.4 Graphic class GraphImage (inherits from GObject)

Graphic Class that allows to display image
• setg

• setg *GraphImage* -cm [<colormap>]

Sets/Gets the colormap that will be used to display the image.

• setg *GraphImage* -graph [<image>]

Gets/Sets the image to be displayed by the GraphImage. (The ’-
cgraph’ field is equivalent to that field).

• setg *GraphImage* -norm ’[+][none’ | ’max’ | <number>]

Sets/Gets the normalization mode. The ’+’ sign indicates whether the
absolute values are coded (if ’+’ is specified) or the signed values. If
the mode is ’none’, then no normalization is done, i.e., the values of
the image are taken as color indexes in the colormap. Whatever index
is out of range is replaced by either the first color of the colormap (for

62 CHAPTER 3. PACKAGE IMAGE 2.1

negative indexes) or the last one. If it is ’max’ then the values (resp.
absolute values) are normalized between -<max> (resp. 0) (first color
of the colormap) and <max> (last color), where <max> stands for the
maximum absolute value. If it is a positive number <number> then
the values (resp. absolute values) are normalized between -<number>
(resp. 0) (first color) and <number> (last color). Default value is
’max’.

Bindings

• Type ’c’ to change cursor mode

• ’z’ : changes the zoom mode just type ’z’

• Left/Right/Middle button : operate the zoom

3.5 Demos

Here is a list of all the Demo files and for each of them all the corresponding
Demo commands. To try a Demo command, you should first source the
corresponding Demo file then run the command. (When sourcing the Demo
file, LastWave tells you about all the commands included in this file).
The Demo files corresponding to this package are :

Demo file DemoImage

• DemoImageDisp (in file LastWave 3 0/scripts/image/DemoImage)

Demo that displays different images and teaches you what you can do
with the mouse

Chapter 4

Package misc 2.1

Package that regroups very useful miscellenaous script commands and graphic
classes
** Authors and Copyright : E. Bacry

4.1 Script Commands

• StartDemo (in file LastWave 3 0/scripts/misc/miscScripts) *baseProcName*

When calling this function it will print a one-line-help that tells you how
to navigate through the demo : ’N’ for next step ’R’ for repeat and ’P’
for previous step. At each step of the demo, the procedure which name is
the ’ ’ character followed by *baseProcName* followed by the step number
(starting from 0) is called until such a procedure does not exist in which
case the Demo is supposed to be over.

• cd (in file LastWave 3 0/scripts/misc/unix) [<dirName>=<homeDir>]

Change current directory

• cmdisp (in file LastWave 3 0/scripts/misc/color) [<colormapName>=<current>]

Displays the colormap in a window.

• cminit (in file LastWave 3 0/scripts/misc/color) [[-]<numOfColors>=100]

[<flagColor>=1] [<colorMapName>=color]

Sets the colormap <colormapName> with <numOfColors> colors from
black to red (going through blue) or (if <numOfColors> < 0) from red
to black. If <flagColor>==0 then grey levels are used from black to white
or white to black (if <numOfColors> < 0)

• ls (in file LastWave 3 0/scripts/misc/unix) [<dirName>=<curDir>]

63

64 CHAPTER 4. PACKAGE MISC 2.1

List the files of a directory

• nice (in file LastWave 3 0/scripts/misc/miscScripts) <val>

Recursive display of an array or a listv

• pwd (in file LastWave 3 0/scripts/misc/unix)

Get current directory

4.2 Graphic class Box (inherits from GObject)

Graphic Class to display (clipped) text in a box
• setg

• setg *Box* -centered [<flagOnOff>]

Sets/Gets the centered flag. If 1 then the string will be centered in
the box both vertically and horizontally. If 0 then it will be centered
vertically but justified at a distance of 5 to the left border.

• setg *Box* -string [<val>]

Sets/Gets the string that will be displayed in the box.

• msge *Box* set <val>

Changes the string that is displayed.

4.3 Graphic class Button (inherits from GObject)

Graphic Class to implement buttons
• setg

• setg *Button* -behavior [switch | simple]

Sets/Gets the type of button. It is either a ’switch’ that has 2 positions
(On and Off) or a ’simple’ button which behaves like a trigger.

• setg *Button* -colorOff [<color>]

Sets/Gets the color that will be used when button is Off.

• setg *Button* -colorOn [<color>]

Sets/Gets the color that will be used when button is On.

4.4. GRAPHIC CLASS COLORMAP (INHERITS FROM GOBJECT) 65

• setg *Button* -draw [<drawProcedure>]

Sets/Gets the procedure name that will be called to draw the button.
This procedure must have 1 argument which corresponds to the name
of the button to be drawn. There are two already defined procedure
: ’ GButtonDrawPlain’ for ’plain’ button and ’ GButtonDraw3d’ for
3d buttons (it assumes that the background is ’grey’

• setg *Button* -handle [<handleProcedure>]

Sets/Gets the procedure name that will be called whenever the button
is pushed. This procedure must have 2 arguments which corresponds
to the name of the button to be drawn and its state.

• setg *Button* -state [<flagOnOff>]

Sets/Gets the state flag (1 corresponds to the button pushed).

• setg *Button* -title [<title>]

Sets/Gets the label of the button.

• msge

• msge *Button* off

Turns the button off.

• msge *Button* on

Turns the button on.

• msge *Button* push

Pushes the button.

Bindings

• Click on the button using the left mouse button

4.4 Graphic class Colormap (inherits from GObject)

Graphic Class to draw colormaps
• setg *Colormap* -cm [<colorMap>]

Sets/Gets the colormap.

66 CHAPTER 4. PACKAGE MISC 2.1

4.5 Graphic class Line (inherits from GObject)

Graphic Class that corresponds to a simple line
• setg

• setg *Line* -point1 [<x1> <y1>]

Sets/Gets the coordinate of the first end point.

• setg *Line* -point2 [<x2> <y2>]

Sets/Gets the coordinate of the second end point.

• setg *Line* -slope

Gets the slope of the line.

4.6 Graphic class Numbox (inherits from Box)

Graphic Class to display a numerical value in a box
• msge *Numbox* set <val>

Changes the value that is displayed.

4.7 Graphic class Shape (inherits from GObject)

Graphic Class to draw a rectangle or an ellipse. The position can be set
using the ’-pos’ field which corresponds either to the center of the shape (if
the ’-center’ field is 1) or a corner of the framing rectangle (if the ’-center’
field is 0). In both cases, the ’-radius’ field allows to set the width and height
of the shape. These distances are expressed either using local coordinates
(if the ’-pixel’ field is 0) or as a number of pixels (if the ’-pixel’ field is 0)
• setg

• setg *Shape* -centered [(0 | 1)]

Sets/Gets the centered flag. If it is 1 (which is the default value), it
means that the shape will be centered at the point specified by the
’-pos’ field with radii specified by the ’-radius’ field. If it is 0 then it
means that the shape will be framed in a rectangle which one corner
is specified by the ’-pos’ field and the width and height are specified
by the ’-radius’ field.

4.8. GRAPHIC CLASS TEXT (INHERITS FROM GOBJECT) 67

• setg *Shape* -filled [(0 | 1)]

Sets/Gets the field which indicates whether the shape is filled or not.

• setg *Shape* -pixel [(0 | 1)]

Sets/Gets the pixel flag. If it is 0 (which is the default value), it means
that the radii are specified using local coordinate otherwise the radii
indicate a number of pixels in each directions.

• setg *Shape* -radius [<rx> <ry>]

Sets/Gets the radii. By default these are specified using local coordi-
nate. If you want to specify them using a number of pixels, you should
use ’-pixel’ field.

• setg *Shape* -shape [(rect | ellipse)]

Sets/Gets the name of the shape to be drawn.

4.8 Graphic class Text (inherits from GObject)

Graphic Class to draw text without any box around it. The position if the
text is precisely controlled.
• setg

• setg *Text* -angle [<angle>]

Allows to Set/Get the angle of the text (for now only 0,90,180,270).

• setg *Text* -dv [<right> <up>]

Allows to Set/Get a translation in pixels of the position.

• setg *Text* -flagMax [(0 | 1)]

Sets/Gets the ’flagMax’. It changes the way the bounding rectangle is
computed when the string to be displayed is changed. If it is 0, then
the bounding rectangle is recomputed each time. If it is 1 then the
union of the old bounding rectangle and the new one is used. It allows
to avoid full redrawing.

• setg *Text* -margin [<left> <top> <right> <bottom>]

Sets/Gets the margins (in pixels) around the string (at init they are
0).

68 CHAPTER 4. PACKAGE MISC 2.1

• setg *Text* -posMode [<hPosMode>] [<vPosMode>]

Sets/Gets the horizontal and vertical position modes that are used
to display the string. To learn about these modes, you should read
the help of the ’draw string’ command. Let us note that the ’-pos’
coordinates of the Text corresponds to the coordinates sent to the
’draw string’ command and thus does not correspond to the top left
corner of the bounding rectangle (you directly adress the position of
the text).

• setg *Text* -string [<string>]

Sets/Gets the string that is displayed.

Bindings

• In the edit mode, any character can be typed.

• up/down : change the font size

• tab : switch bold/plain

• escape : enters/leaves the edit mode.

Chapter 5

Package signal 2.1

Package allowing to deal with signals.
** Authors and Copyright : E.Bacry, N.Decoster and X.Suraud

5.1 Defined types

5.1.1 Type &signal

This type is the basic type for signals. Uniformly sampled signals (i.e., Y-
signals) can be built using the <value1,...,valueN> syntax. The values can
be either a LWFLOAT, a signal, a range or a listv of floats, signals and
ranges. The different operators are
- +,-,*,/ (and +=,-=,*=,/=) : regular operators
- ==,!=,<=,>=,<,> : regular tests
- xˆ f (and ˆ =) : each value of |x| is taken to the popwer f
- x*ˆ n : each value of x to the power n where n is a positive integer
- : transposition operator (returns a single columnimage)
- //,% : integer division and remainder
- is,isnot : test if 2 signals correspond or not to the same C object
- sinh,sin,cosh,cos,tanh,tan,acos,asin,atan : trigonometric operators
- min,max : if 1 argument, returns the min or max value of a signal, if 2
arguments returns the signal made of the min/max of each value.
- log2,log,ln,sqrt,abs,exp,ceil,floor,round,frac,int : other math functions
- der,prim : derivative and primitive of a signal
- sum : computes the sum of all signal values
- mean : same as sum but divides by the total number of points
- any : returns 1 if at least one of the values is different from 0
- all : returns 1 if all of the values are different from 0

69

70 CHAPTER 5. PACKAGE SIGNAL 2.1

- find : returns a signal made of indices which correspond to non 0 values
- YSIG Constructors : <...>,Zero,One,I,Grand,Urand
- XYSIG Constructors : XY(xsignal,ysignal). In the ysig expression you can
use the ’X’ notation which refers to xsig.

• &signal [*opt,...] [:]= (<LWFLOAT> | <range> | <signal>

| <listv>)

Get/Set the signal values
Options are : *nolimit,*b0,*bconst,*bmirror,*bmirror1,*bperiodic,*x,*xlin

• *nolimit : indexes can be out of range

• *b0 : border effect with 0 value

• *bconst : border effect with constant values (last signal value for
right handside and first signal value for left handside)

• *bperiodic : periodic border effect)

• *bmirror1 : mirror+periodic border effect (first and last points
are repeated)

• *bmirror : mirror+periodic border effect (first and last points are
NOT repeated))

• *x : index values are replaced by x-values. Interpolation is piece-
wise constant

• *xlin : index values are replaced by x-values. Interpolation piece-
wise linear

• &signal.X [*opt,...] [:]= (<LWFLOAT> | <range> | <signal>

| <listv>)

Get/Set the X field of a signal
Options are : *nolimit,*b0,*bconst,*bmirror,*bmirror1,*bperiodic,*x,*xlin

• *nolimit : indexes can be out of range

• *b0 : border effect with 0 value

• *bconst : border effect with constant values (last signal value for
right handside and first signal value for left handside)

• *bperiodic : periodic border effect)

• *bmirror1 : mirror+periodic border effect (first and last points
are repeated)

5.1. DEFINED TYPES 71

• *bmirror : mirror+periodic border effect (first and last points are
NOT repeated))

• *x : index values are replaced by x-values. Interplation is piece-
wise constant

• *xlin : index values are replaced by x-values. Interplation piece-
wise linear

• &signal.Y [*opt,...] [:]= (<LWFLOAT> | <range> | <signal>

| <listv>)

Get/set the Y field of a signal
Options are : *nolimit,*b0,*bconst,*bmirror,*bmirror1,*bperiodic,*x,*xlin

• *nolimit : indexes can be out of range

• *b0 : border effect with 0 value

• *bconst : border effect with constant values (last signal value for
right handside and first signal value for left handside)

• *bperiodic : periodic border effect)

• *bmirror1 : mirror+periodic border effect (first and last points
are repeated)

• *bmirror : mirror+periodic border effect (first and last points are
NOT repeated))

• *x : index values are replaced by x-values. Interplation is piece-
wise constant

• *xlin : index values are replaced by x-values. Interplation piece-
wise linear

• &signal.index [[*nolimit],<xValue>]

Get the index corresponding to a given <xValue>
Options are : *nolimit

• *nolimit : indexes can be out of range

• &signal.size [= <size>]

Sets/Gets the size of a signal. In a case of a Set no initialization is
performed. Moreover, if the asked size is smaller than the allocation
size no additional allocation is performed.

• &signal.dx [= <dx>]

Sets/Gets the dx of a Y-signal

72 CHAPTER 5. PACKAGE SIGNAL 2.1

• &signal.x0 [= <x0>]

Sets/Gets the x0 of a Y-signal

• &signal.name [= <name>]

Sets/Gets the name of a signal

• &signal.xy [= (0|1)]
Sets/Gets ’xy’ flag signal. If 0 it means that the signal is a Y-signal,
otherwise, it is a XY-signal.

• &signal.sizeAllocX [= <sizeAllocX>]

Gets/Sets the allocation size of the X array of a signal.

• &signal.sizeAllocY [= <sizeAllocY>]

Gets the allocation size of the X array of a signal.

• &signal.firstp [= <firstp>]

Sets/Gets the ’firstp’ field of a signal (’firstp’ is the index number used
for storing the first index affected by border effects).

• &signal.lastp [= <lastp>]

Sets/Gets the ’lastp’ field of a signal (’lastp’ is the index number used
for storing the last index affected by border effects).

• &signal.tolistv

Gets a listv made of the y-values of the signal

5.1.2 Type &signali

This type corresponds to non empty signals.

5.2 Commands related to signals

• cantor <signalOut> <depth> <s1> <s2> <s3> <p1> <p3>

Generates a 1–>3 cantor (with a hole in the middle) given a number of
iterations <depth> the relative sizes <s1>, <s2> and <s3> (must be in-
tegers!) of each 3 interval and the weights <p1> and <p3> of the first
interval and the last one. This algorithm stops after <depth> iteration. It
is not adapted to the local resolution (as for the command ’ucantor’)

• conv <signal> <filter> <signalout> <border effect> [-f] [-x

[<xmin> <xmax>]]

5.2. COMMANDS RELATED TO SIGNALS 73

Computes the convolution of <signal> by the compact support <filter>.
Border effect of <signal> can be chosen among ’b0’, ’bconst’, ’bperiodic’,
’bmirror’ or ’bmirror1’ (same effect as for *option extractions of signals).
The fields firstp and lastp are updated (they allow you to keep track of the
points affected by border effects). If the flag -f is not set, the convolution is
computed directly (no FFT) otherwise it is computed using an FFT. If the
flag -x is not set, the abscissa interval on which the result is computed is
(i) the abscissa interval of <signal> (for ’bperiodic’) (ii) double the abscissa
interval of <signal> (for ’bmirror’ and ’bmirror1’) (iii) the abscissa interval
+ the filter border effect (for ’b0’ and ’bconst’). The flag -x allows to fix the
abscissa interval <xmin> <xmax> of the result. Default values for <xmin>

<xmax> are the abscissa interval of <signal>. The command retursn the
time ellapsed (in seconds).

• corr <signalIn1> <signalIn2> <signalCorrelation> <dxmin> <dxmax>

[-c] [-n]

Computes the correlation function between the realization <signalIn1> of a
first stochastic process and the ralization <signalIn2> of a second stochastic
process. The output is set in <signalCorrelation>. The correlation function
is computed with a lag going from <dxmin> to <dxmax> (the dx fields of
the realizations are taken into account). These values represent the origin of
the second signal compared to the origin of the first signal (which is fixed).
By default, the border effects are not used for the computations unless ’-c’
is specified. The result is divided by the product of the square mean roots
of the variances of <signalIn1> and <signalIn2> unless ’-n’ is specified.

• fft <signalInReal> [<signalInImag>] <signalOutReal> <signalOutImag>

[-is]

Computes the Fourier transform or the inverse Fourier transform (if ’-i’ is
set) of a signal (complex or real) which must has a size which is a power
of 2. By default, the fourier transform of a complex signal is supported by
[-Fs/2,Fs/2[where Fs = 1/signal->dx is the sample frequency (in Hertz)
and has the same number of points as the original signal. If ’-s’ is set then
no shift is performed after the fft algorithm has been performed, thus the
resulting fourier transform is represented between [0,Fs[. Consequently, for
the inverse fourier transform if ’-s’ is not set then the input fourier transform
is supposed to be between [-Fs/2,Fs/2[and otherwise it should be between
[0,Fs[. In the case you want to do the fourier transform of real signal, you
should ommit <signalInImag> in the command line. The computed fourier
transform is supported by [0,Fs]. It has one more point than the original
signal. If you want to invert the so obtained fourier transform, you should

74 CHAPTER 5. PACKAGE SIGNAL 2.1

ommit <signalOutImag> in the command line and use the ’-i’ option. The
so-obtained real signal will be placed in <signalOutReal>. Let us note that
in the case of a real input signal, the option ’-s’ is useless. In any case, ’fft’
returns the elapsed time in seconds.

• histo <signalIn> <signalOut> <n> [-x <xMin> <xMax>] [-y <yMin>

<yMax>] [-w <signalWeight>] [-c]

Computes in <signalOut> the <n> branch histogram of the values of
<signalIn>.
-x : Only the values between the abscissa <xMin> and <xMax> are taken
into account.
-y : Only the values between the ordinate <yMin> and <yMax> are taken
into account.
So the histogram will be made of <n> bars between <ymin> and <ymax>.
-c : Only points corresponding to indexes between firstp and lastp are taken
into account.

• padd <signalIn> [<signalOut>=<signalIn>] [*border*= (*bconst

| *b0 | *bmirror | *bperiodic)] [-s <newSize>]

Padds a signal so that it ends having <newSize> points (if ’-s’ specified) or
the closest size which is greater than the actual size and which is a power
2 (if ’-s’ not specified). The padding values are specified by the argument
<border>. The resulting signal is stored in <signalOut> (by default it is
stored in <signalIn>).

• read <signalOut> (<filename> | <stream>) [[<xCol>] <yCol>]

[-f <firstPoint>] [-s <sizeToRead>] [-r [(’little’ | ’big’)] [<floatSize>]]

Reads a signal from a <file> or a <stream>. The file must be in the
LastWave format (i.e., created with ’write’) or in the raw format (option
’-r’). If option ’-r’ is not set then you can specify the column number for
the x-values and the column number for the y-values (first column is 1). If
none are specified then this command tries to read the first two columns as
x and y or, if there is only one colum, directly the y values. If a stream is
specicified and if option ’-r’ is not set then, at the end of the command the
stream is positionned at the end of the signal (even if just a few points are
read). The options are
-f : It reads the signal starting from index <firstPoint> (first point is at
index 0)
-s : It reads only <sizeToRead> values

5.2. COMMANDS RELATED TO SIGNALS 75

• readinfo (<filename> | <stream>) [-p]

This command is used in order to get information about a signal file or
stream that will be read (later) by the ’read’ comand. If ’-p’ is set then
information on the file or stream is printed in a in fully explained english.
If it is not set then either it does not return anything (which means that
the file is not readable) or it returns a listv which gives some information.
The first element of the listv is 0 if there is no header or 1 there is one. If
the file has no header then the remaining is of the form ’nColumns’ ’size’.
If it has one the next element describes the way the values are coded : it
is either ’ascii’, ’binary little <xx>’ or ’binary big <xx>’ where <xx> is
the number of bits used to store a float. The next element is the type of
the signal (either ’x’ or ’xy’). If the signal is of type ’y’ then the next two
elements are the signal fields ’x0’ and ’dx’. Finally the last two elements are
the sigal fields ’firstp and lastp’.

• sort <signalIn>

Sorts the values of <signalIn> according to X (if ’xysig’) or Y (if ’ysig’)

• stats

• stats corr <signalIn> [<signalIn1>] [-c]

Computes the correlation function between the x array and the y array
of <signalIn> or (if <signalIn1> is specified) between the y arrays of
<signalIn> and <signalIn1> (’-c’ : same as in ’mean’ command).

• stats fit <signalIn> [-x <xMin> <xMax>]

Computes a linear fit y = ax+b of <signalIn> between abscissa <xMin>

and <xMax>. Returns the listv {a sigma a b sigma b iMin iMax}.

• stats kurt <signalIn> [-c]

Computes the kurtosis of a signal mu 4/mu 2ˆ 2 (’-c’ : same as in
’mean’ command).

• stats lp <signalIn> <p> [-c]

Computes the Lp norm of a signal (’-c’ : same as in ’mean’ command).

• stats mean <signalIn> [-c]

Computes the mean of a signal (’-c’ is the ”causal” flag : if set, it
means that the mean is computed only from the indexes ’firstp’ to
’lastp’of <signalIn>).

76 CHAPTER 5. PACKAGE SIGNAL 2.1

• stats minmax <signalIn> [-c]

Computes the minimum and the maximum values of a signal and sends
back the corresponding indexes in a listv {<imin> <imax>} (’-c’ :
same as in ’mean’ command).

• stats nth <signalIn> <n> [-cCa]

Computes the (NON centered) <n>th moment of a signal (’-c’ : same
as in ’mean’ command). If ’-C’ then the moment is centered. If ’-a’
the absolute moment is computed (<n> can be a float).

• stats print <signalIn> [-c]

Prints some statistical information about a signal (’-c’ : same as in
’mean’ command).

• stats skew <signalIn> [-c]

Computes the skewness of a signal (’-c’ : same as in ’mean’ command).

• stats var <signalIn> [-c]

Computes the variance of a signal (’-c’ : same as in ’mean’ command).

• thresh <signalIn> <signalOut> -(x | y) (<min> | *) (<max> |
*))

Thresholds the <signalIn> and sets the result in <signalOut>. All the
values between <min> and <max> are set to 0.
- If <min> is ’*’ then <min> is chosen as the minimum of <signalIn>

- If <max> is ’*’ then <max> is chosen as the maximum of <signalIn>

• ucantor <signalOut> <size> <r1> <p1> <r2> <p2> [... <rN>

<pN>]

Generates a 1->N cantor of size <size> down to the smallest resolution
(the smaller the interval the greater the number of iterations). If you want
not adapt the number of iterations to the local resolution use the ’cantor’
command instead. The <ri>’s correspond to the relative size of each interval
(the sum must be equal to 1) and the <pi>’s correspond to their respective
weights (the sum must be equal to 1).

• write <signalIn> (<filename> | <stream>) [(’xy’ | ’yx’ | ’x’

| ’y’]) [-h] [-f <format1> [<format2>]] [-a] [-r [(’little’ | ’big’)]

[<floatSize>]]

5.3. SCRIPT COMMANDS 77

Writes a signal into a <file> or a <stream>. It writes the file either in a
raw format (using ’-r’ option) or (by default) in the LastWave format with
binary coding (unless ’-a’ is specified in which case ascii coding is used).
In the LastWave format, there are different modes :
- ’xy’ : First column is X and second is Y (in ascii mode), or the X-values
are stored first then the Y-values (in binary mode).
- ’yx’ : First column is Y and second is X (in ascii mode), or the Y-values
are stored first then the X-values (in binary mode).
- ’y’ : A single column made of Y
- ’x’ : A single column made of X
By default it uses ’xy’ mode for xy-signals and ’y’ mode for y-signals. The
options are :
-h : No Header (ONLY in ascii mode).
-f : In case of ascii writing, allows to specify the (printf) formats for each
column.
-a : Ascii writing (instead of binary).

5.3 Script Commands

• dirac (in file LastWave 3 0/scripts/signal/signal.pkg)<size> [<pos>]

Returns a dirac function in the middle of the signal.

• sget (in file LastWave 3 0/scripts/signal/signal.pkg) *GraphSignalObject*

Returns the signal displayed in *GraphSignalObject* using the actual bound-
aries

• sin (in file LastWave 3 0/scripts/signal/signal.pkg)<size> [<freq>=1]

Returns a sinus function with <freq> oscillations.

5.4 Graphic class GraphSignal (inherits from GObject)

Graphic Class that allows to display signals
• setg

• setg *GraphSignal* -causal [<flagOnOff>]

Sets/Gets the causal flag. If 1 then it will not display all the values
which were affected by border effects.

78 CHAPTER 5. PACKAGE SIGNAL 2.1

• setg *GraphSignal* -cgraph [<signal>]

Gets/Sets the signal to be displayed by the GraphSignal with a copy
of <signal>.

• setg *GraphSignal* -curve [<symbol> [<parameter>]]

Sets/Gets the symbol which is used to draw the signal. There are
several choices
- ’ ’ : A plain line is used.
- ’-’ : A dashed line is used (since this symbols is also used for speci-
fying fields, for using it in a ’setg’ command, you must escape it using
two successive ’-’, e.g., ’setg ..signal -curve - -’).
- ’|’ : A histogram-type display will be used. The argument <parameter>
specifies the y-value the boxes of the histogram will start at (default
is 0).
- ’+’ : Crosses of size <parameter> will be used.

• setg *GraphSignal* -graph [<signal>]

Gets/Sets the signal to be displayed by the GraphSignal with <signal>.

Bindings

• Shift+Tab or escape = Play the whole signal

• Tab = Play the part of the signal which has been selected.

• Ctrl + Left button = Create a rectangular selection AND remove
former ones

• Ctrl + Right button = Create a rectangular selection

• Shift + Right button = FFT spectrum

• Shift + Middle button = linear fit

• Shift + Left button = draw a line (just click once to remove it)

• Type ’c’ to change cursor mode

• ’z’ : changes the zoom mode just type ’z’

• Left/Right/Middle button : operate the zoom

5.5. DEMOS 79

5.5 Demos

Here is a list of all the Demo files and for each of them all the corresponding
Demo commands. To try a Demo command, you should first source the
corresponding Demo file then run the command. (When sourcing the Demo
file, LastWave tells you about all the commands included in this file).
The Demo files corresponding to this package are :

Demo file DemoSignal

• DemoSignalDisp (in file LastWave 3 0/scripts/signal/DemoSignal)

Demo that displays different signals and teaches you what you can do
with the mouse

80 CHAPTER 5. PACKAGE SIGNAL 2.1

Chapter 6

Package terminal 2.1

Package that regroups all the bindings for managing terminal history, help
and file completion systems. It just adds bindings to LastWave. It almost
does not include any script commands that can be directly callable (most of
the names of the script commands that are defined in this package start with
a ’ ’). You can change the script file ’scripts/terminal/keys’ to redefine the
keys associated to the bindings.
** Authors and Copyright : E. Bacry

6.1 Script Commands

• Help (in file LastWave 3 0/scripts/terminal/help)

Displays some basic help about the help system.

• HelpTerm (in file LastWave 3 0/scripts/terminal/keys)

Command that tells you what the binding keys are for command line editing
capabilities

• apropos (in file LastWave 3 0/scripts/terminal/help) *word1* [*word2*

... *wordN*]

Search for all the commands whose help contain the strings *word<i>* (any
order). For each package, it prints each of the so-obtained command with
the corresponding part of the help around the occurence of *word1*

• help (in file LastWave 3 0/scripts/terminal/help) (*commandName*

[*action*] | *type* [*fieldName*])

Displays help on a command or a &type. If *commandName* is not a valid
command name then it prints a list of commands which name begins with
commandName. if a *type* is specified (i.e., a string starting with ’&’),

81

82 CHAPTER 6. PACKAGE TERMINAL 2.1

it displays the doc on the corresponding type and on all the fields. If *field*
is specified then only the corresponding field is displayed. If *fieldName* is
not a valid field name then it prints a list of fields which name begins with
fieldName.

• helpp (in file LastWave 3 0/scripts/terminal/help) [*packageName*]
Displays help on a package and all the commands available. If *package-
Name is not a valid name, it prints the names of available packages that
start with *packageName*. If no *packageName* is specified it gives a list
of all the available packages.

• helpv (in file LastWave 3 0/scripts/terminal/help)<val> [*fieldname*]

Displays help the fields of a value. If *fieldName* is not a valid field name
then it prints a list of fields which name begins with *fieldName*. The value
should not be a number (numbers do not have any field!).

Index

&array, 7
&float, 7
&int, 7
&list, 7
&listv, 8
&null, 9
&num, 9
&proc, 9
&range, 10
&script, 11
&signal, 61
&signali, 64
&string, 11
&val, 12
&valobj, 12
&word, 12
&wordlist, 12

apply, 12
apropos, 71
array, 13

binding, 25
Box, 56
break, 13
Button, 56

cantor, 64
clear, 13
cmdisp, 55
cminit, 55
color, 25
Colormap, 57

colormap, 26
continue, 13
conv, 64
copy, 13

delete, 13
Demo, 55, 70
DemoSignalDisp, 70
dirac, 69
disp, 46
do, 13
draw, 26

echo, 13
errorf, 13
eval, 13
event, 30
EView, 49

fft, 65
file, 13
font, 30
for, 15
foreach, 15
FramedView, 49

gclass, 32
getchar, 15
getline, 15
GList, 37
global, 15

GObject, 38
GraphSignal, 69

83

84 INDEX

Grid, 42
gupdate, 34

h, 15
Help, 71
help, 71
helpp, 72
HelpTerm, 71
helpv, 72
histo, 65
history, 15

if, 16
import, 16
info, 17

Line, 58
list, 17
listv, 17

man, 72
msge, 34

new, 17
nice, 55
Numbox, 58

package, 17
padd, 66
print, 18
printf, 18
proc, 18
ps, 35

randinit, 19
read, 66
readinfo, 66
RectSelect, 51
return, 19

scanf, 19
set, 19

setbinding, 35
setcolor, 35
SetCursorBindings, 45
setg, 36
setgu, 36
setproc, 19
setsourcedirs, 20
SetSuperposeBindings, 45
setv, 20
setvar, 20
SetZoomBindings, 46
sget, 69
Shape, 58
shell, 20
sin, 69
sort, 67
source, 20
source1, 37
sprintf, 20
sscanf, 20
StartDemo, 55
stats, 67
str, 21
SuperposeAdd1, 46
SuperposeDelete, 46
synchro, 48
system, 36

terminal, 22
Text, 59
thresh, 68
time, 23
type, 23

ucantor, 68

val, 23
var, 24
View, 43

wait, 56

INDEX 85

while, 25
Window, 44
window, 37
WindowDisp, 52
write, 68

