
The stft package
Managing short time Fourier transforms

and

The mp package
Managing Matching Pursuit decompositions

Rémi Gribonval
IRISA, Campus de Beaulieu, F-35042 Rennes Cedex, France

email : remi.gribonval@inria.fr
web : http://www.cmap.polytechnique.fr/ ˜ bacry/LastWave

The stft package and mp packages were co-written by

• Rémi Gribonval IRISA, Campus de Beaulieu, F-35042 Rennes Cedex, France.
e-mail: remi.gribonval@inria.fr
web: http://www.irisa.fr/metiss/gribonval/

• Emmanuel Bacry CMAP, Ecole Polytechnique, 91128 Palaiseau Cedex France.

• Javier Abadia formerly at CMAP, Ecole Polytechnique, 91128 Palaiseau Cedex
France.

3

GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

Version 2, June 1991

0. This License applies to any program or other work which contains a notice placed by the copyright holder
saying it may be distributed under the terms of this General Public License. The ”Program”, below, refers to
any such program or work, and a ”work based on the Program” means either the Program or any derivative
work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim
or with modifications and/or translated into another language. (Hereinafter, translation is included without
limitation in the term ”modification”.) Each licensee is addressed as ”you”.

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running the Program is not restricted, and the output from the Program is covered
only if its contents constitute a work based on the Program (independent of having been made by running
the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of
any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

• a) You must cause the modified files to carry prominent notices stating that you changed the files
and the date of any change.

• b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

• c) If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Exception: if the Program itself is interactive
but does not normally print such an announcement, your work based on the Program is not required
to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you distribute them as separate works.
But when you distribute the same sections as part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by
you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work
based on the Program) on a volume of a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

• a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

• b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge
no more than your cost of physically performing source distribution, a complete machine-readable
copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above
on a medium customarily used for software interchange; or,

• c) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components (compiler, kernel, and
so on) of the operating system on which the executable runs, unless that component itself accompanies the
executable.
If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source along with the object code.
4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.
5. You are not required to accept this License, since you have not signed it. However, nothing else grants you
permission to modify or distribute the Program or its derivative works. These actions are prohibited by law
if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based
on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.
6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the recipients’ exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this License.
7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance
of the section is intended to apply and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other property right claims
or to contest validity of any such claims; this section has the sole purpose of protecting the integrity of
the free software distribution system, which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute
software through any other system and a licensee cannot impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.
8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries, so that distribution is permitted only
in or among countries not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.
9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail

to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies a version number of this
License which applies to it and ”any later version”, you have the option of following the terms and conditions
either of that version or of any later version published by the Free Software Foundation. If the Program
does not specify a version number of this License, you may choose any version ever published by the Free
Software Foundation.
10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status of all derivatives of our free software
and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTH-
ERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM ”AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR RE-

DISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,

INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING

OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO

LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU

OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PRO-

GRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY

OF SUCH DAMAGES.

Contents

I Documentation 11

1 Using the Short Time Fourier Transform (stft) package, version 2.0. 13

1.1 Loading the stft package . 13

1.2 A simple example . 13

1.3 The stft structure in LastWaveTM . 14

1.3.1 Real units vs indexes . 14

1.3.2 Window-related fields . 15

1.3.3 The structure of the time-frequency grid 16

1.3.4 Border effects . 17

1.3.5 Type . 18

1.3.6 Data slices and signal names . 18

1.4 Other Time-Frequency representations . 19

1.5 Display and mouse interaction . 20

1.6 Miscelaneous . 20

1.6.1 Arithmetic operations on &stft variables 21

1.6.2 Wish list . 21

2 The Matching Pursuit (mp) package. 23

2.1 Loading the mp package . 23

2.2 A simple example . 23

2.3 The &book structure in LastWaveTM . 25

2.4 The &mol structure in LastWaveTM . 26

2.5 The &atom structure . 26

2.5.1 Chirp units . 26

2.5.2 Time-frequency concentration . 27

2.5.3 Coefficient information . 27

2.5.4 Controlling the content of an &atom 27

2.5.5 Building an &atom into a signal . 27

2.6 The mpd command . 28

2.6.1 How to change the dictionary ? . 28

2.6.2 How to perform a Matching Pursuit with Chirplets ? 28

2.6.3 How to resume a pursuit . 28

2.7 A faster algorithm for Matching Pursuit . 29

2.7.1 Fast Matching Pursuit with Chirplets 30

2.7.2 Resuming a Fast Matching Pursuit 30

9

10

2.8 Other types of pursuits . 30
2.8.1 A High Resolution Matching Pursuit 30
2.8.2 A Harmonic Matching Pursuit . 30

2.9 Display and mouse interaction . 30

II Reference 33

3 Package mp 2.1 35
3.1 Defined types . 35

3.1.1 Type &atom . 35
3.1.2 Type &book . 37
3.1.3 Type &dict . 39
3.1.4 Type &maximadict . 39
3.1.5 Type &mol . 39

3.2 Commands which deal with &dict : dictionaries of atoms 40
3.3 Commands which deal with &book and &mol variables 40
3.4 Commands which deal with inner products of &atoms 41
3.5 Commands which deal with notes from a book 41
3.6 Script Commands . 42
3.7 Graphic class GraphBook (inherits from GObject) 43
3.8 Demos . 45

4 Package stft 2.1 47
4.1 Defined types . 47

4.1.1 Type &stft . 47
4.2 Commands which deal with Short Time Fourier Transforms 48
4.3 Graphic class GraphStft (inherits from GObject) 49
4.4 Demos . 50

Part I

Documentation

11

Chapter 1

Using the Short Time Fourier
Transform (stft) package, version
2.0.

1.1 Loading the stft package

The stft package allows to compute Short Time Fourier Transforms of real signals. It
actually allows to compute other time-frequency representations that we will describe in
more details in section 1.4 of this chapter. In order to use the stft package you must first be
sure it is loaded (using the package command, see chapter 2). If it is not then you should
load it by typing

wtrans a> package load ’stft’

1.2 A simple example

Let us start by a simple example: we will describe here the demo script in the file ’scripts/stft/DemoStft’.

WARNING : For Macintosh (Classic/OS 9) users. This demo needs a lot of memory, in
order to run it you must allocate at least 30Mo to LastWaveTM.

In order to compute a Short Time Fourier Transform, we need to create a stft structure (no
one is created when the package is loaded. We will call it s1 :

wtrans a> s1=[new &stft]

This creates a variable of type ’&stft’. Then we need to create a signal bonjour in which
we will load the signal to be analyzed :

wtrans a> bonjour=[new &signal]

The signal will be a speech signal that I have recorded, it is in the file ’scripts/sound/-
sounds/bonjour.aiff16’:

wtrans a> sound read bonjour ’scripts/sound/sounds/bonjour.aiff16’

13

14CHAPTER 1. USING THE SHORT TIME FOURIER TRANSFORM (STFT) PACKAGE, VERSION 2.0.

You can display it and hear it

wtrans a> disp bonjour

wtrans a> sound play bonjour

Then, in order to compute the Short Time Fourier Transform of the signal, we need to
specify the stft structure where the result will be stored, the signal to be analyzed, the size
of the window (in this example the window will be 256 samples) :

WARNING : There has been a major change since version 1.2 : we now specify the actual
window size instead of its logarithm in base 2. For example, we use 256 instead of 8.

wtrans a> stftd s1 bonjour 256

You can display the energy of this Short Time Fourier Transform (that is to say the squared
magnitude of the complex coefficients) along with the signal using the disp command and
specifying that the stft structure should be displayed using an inverse grey colormap :

wtrans a> disp bonjour s1 -..2 -cm ’_grey’

1.3 The stft structure in LastWaveTM

The stft package allows to compute various time-frequency representations of real signals
that we will describe in more details in section 1.4 of this chapter. These time-frequency
representations are stored in variables of type &stft: such variables essentially contain a
2D-array that corresponds to a map on a regular time-frequency grid with a time axis and
a frequency axis.

1.3.1 Real units vs indexes

The coordinates on these two axes can be specified either in “real units” (second, Hertz) or
as an “index”. The conversion between real units and indexes is made possible by the ’dx’
and ’x0’ fields of the &stft structure.

• dx : the dx of the signal which has been analyzed,

• x0 : the x0 of the signal which has been analyzed,

Time units

Whenever the user needs to specify, as an argument of a command of the stft package (or of
a derived package such as the mp package), a point in time, it will be either a <time> which
would mean that “real units” should be used (e.g., 1.3 for 1.3 seconds after the beginning
of a signal when x0 is zero), or a <timeId>. The signalSize field of a &stft variable limits
the range of allowable <timeId> values:

• signalSize : the size of the signal which has been analyzed, that is to say its number
of samples.

1.3. THE STFT STRUCTURE IN LASTWAVETM 15

A <timeId> is in general a number ranging from 0 (beginning of the signal) to signalSize-1.
The relation between real time units and time indexes is

< time >= x0+ < timeId > ×dx. (1.1)

Frequency units

Whenever the user needs to specify, as an argument of a command, a frequency value, it
will be either a <freq> which would mean that “real units” should be used (e.g., 440 for
440Hz) or a <freqId>. There is a field called freqIdNyquist in a &stft variable:

• freqIdNyquist : the value of the Nyquist frequency, in ’index’ coordinates.

This field allows one to convert between <freq> and <freqId> values:

< freq >=
1

2

< freqId >

freqIdNyquist
× (dx)−1. (1.2)

WARNING : in version 1.2 of the stft package, there was a field called fftSize which
corresponded to 2 × freqIdNyquist.

Thus, a <freqId> is in general a number ranging from 0 included (corresponding to
0Hz) to freqIdNyquist included.

The different fields can be accessed using the usual syntax

wtrans a> s1.signalSize

= 10871

wtrans a> s1.freqIdNyquist

= ’32768’

Note that the signalSize and freqIdNyquist fields are read-only: they are set when the stftd
command is invoked to compute the time-frequency representation.

1.3.2 Window-related fields

Two (read-only) fields of &stft variables characterize the analysis window (or, equivalently,
the enveloppe of the Gabor atoms associated to the time-frequency representation, see
Section 1.4:

• windowSize : the number of samples of the analysis window;

• windowShape : the type of window used (could be either ’blackman’, ’hamming’,
’hanning’, ’gauss’, ’spline0’ (rectangular), ’spline1’ (triangle), ’spline2’, ’spline3’, ’ex-
ponential’ or ’FoF’.),

To see what a given window looks like, you can use the stft window command:

wtrans a> disp [stft window ’hanning’ 256]

16CHAPTER 1. USING THE SHORT TIME FOURIER TRANSFORM (STFT) PACKAGE, VERSION 2.0.

Remark : in the current implementation of LastWaveTM, windowSize must be a power of
2 that divides freqIdNyquist. This limitation should be removed in future versions.

All windows w[n], 0 ≤ n < windowSize are of unit energy
∑

n w[n]2 = 1. Symmetric
windows (i.e. of all but the ’exponential’ and ’FoF’ shapes) satisfy w[0] = 0, their maxi-
mum is at n = windowSize/2 and the symmetry corresponds to w[windowSize/2 − n] =
w[windowSize/2 + n].

WARNING : The ’exponential’ and ’FoF’ shapes are still alpha-features, there may be
bugs left if you use them.

Controlling the window shape and its size. The windowSize and the windowShape
fields are read only. You can control the shape of the window using the arguments in the
stftd command.

1.3.3 The structure of the time-frequency grid

The Short Time Fourier Transform is subsampled both in time and in frequency. Thus both
the <freqId>’s and the <timeId>’s do not take all possible values. The (read-only) field
grid describes how they are subsampled.

• grid : a &listv of 4 numbers {timeRate, timeLength, freqRate, freqLength}.

The <timeId>’s are subsampled on the grid <n> ×timeRate where <n> varies from 0 to
timeLength-1 and the <freqId>’s are subsampled on the grid <m> ×freqRate where <m>
varies from 0 to freqLength-1.

Controlling the time grid. By default the stftd command overlaps the window so
that each point is exactly covered by 4 windows, thus by default timeRate=windowSize/4.
In the last example, windowSize=256 so timeRate=64. The timeLength is the smallest in-
teger so that there are enough windows to cover all the signal. You can get its value using
the standard syntax :

wtrans a> s1.grid

= {64 170 32 129}

Thus we checked that timeRate=64 and we got timeLength=170. We can check that 170 ∗
64 = 10880 which is larger than the signal size (10871).

You can change the time resolution (i.e., the overlapping of the windows) using the
option ’-T <T>’ in the stftd command. An argument <T>= 4 is the default, an integer
value of <T> will set

timeRate =
windowSize

< T >
. (1.3)

If the resulting value of timeRate is not an integer, then the integer part is used instead. If
the resulting value of timeRate is smaller than 1 then 1 is used instead, hence <T> should
be between 1 and windowSize.

Thus, in order to increase the time resolution, we could type

1.3. THE STFT STRUCTURE IN LASTWAVETM 17

wtrans a> stftd s1 bonjour 256 -T 16

wtrans a> disp bonjour s1 -..2 -cm ’_grey’

wtrans a> s1.grid

= {16 680 256 129}

Controlling the frequency grid. In the same way we can control the frequency grid. By
default, the stftd command sets the freqLength to windowSize/2+1: this is the number of
independent coefficients of a complex FFT performed on the windowed real-valued signal
(without zero padding). The <freqId> varies by steps of freqRate, from 0 to freqIdNyquist
(included), thus by default freqRate=2×freqIdNyquist/windowSize.

In our case, we can check that freqIdNyquist=32768 and windowSize=256 thus fre-
qLength=129 and freqRate=256.

You can increase the frequency resolution, i.e. the number of bins actually considered in
each Fourier transform, by using the option ’-F <F>’ in the stftd command. Technically,
zero padding is used before a FFT is performed. An argment <F>= 2 is the default, an
integer value of <F> will set

freqLength = 1+ < F > ×windowSize/4 (1.4)

thus freqRate = 4×freqIdNyquist/(<F> ×windowSize). If the resulting value of freqRate
is smaller than 1, then 1 is used instead. Else the value of <F> should be such that
<F> ×windowSize divides 2×freqIdNyquist.

For example, in order to increase the frequency resolution, we could type

wtrans a> stftd s1 bonjour 256 -T 16 -F 16

wtrans a> disp bonjour s1 -..2 -cm ’_grey’

wtrans a> s1.grid

= {16 680 16 1025}

WARNING : There has been a major change since version 1.2 : -T <T> and -F <F>
used to set timeRate = windowSize/2<T> and freqLength = 1+2<F>windowSize/2.

1.3.4 Border effects

The time-frequency analysis of a finite length signal is subject to some border effects,
depending how we model the signal beyond its borders.

Controlling the treatment of the borders. You can control how an analyzed signal
is extended beyond its borders using the ’-b’ option in the stftd command. Let us note
that you can have a look at the different border treatments available using the help of the
command extract.

The (read-only) field border of &stft variables describes what border treatment was
done.

• border : the type of border effects (either ’pad0’, ’pad”, ’per’ or ’mir’), i.e. how is the
signal extended beyond its boundaries.

18CHAPTER 1. USING THE SHORT TIME FOURIER TRANSFORM (STFT) PACKAGE, VERSION 2.0.

When some further treatment is done based on an &stft variable, it can be useful to
know which values of the time-frequency representation were not affected by border effects.
This is indicated by two fields

• firstp : the index (<timeId>) of the first time-frequency “column” that is not affected
by border effects.

• lastp : the index (<timeId>) of the last time-frequency “column” that is not affected
by border effects.

Remark : Commands performed on a &stft variable generally use the entirety of its
content. Some commands –such as the stftmax command– can act on or use only the part
of the content that is not affected by border effects. This behaviour is usually selected
with the ’-c’ option (for “causality”). It is also possible to use the disp command with the
’-causal’ option in order to display only the representation not affected by border effects.

wtrans a> disp bonjour s1 -..2 -cm ’_grey’ -causal 1

1.3.5 Type

The default type of time-frequency representation that can be stored in a &stft variable
is a standard Short Time Fourier Transform, but there are several other types. There is a
corresponding (read-only) field:

• type : the type of the stft. For Short Time Fourier Transform, this type is set to
’complex’ but later we will see two other types: ’real’, ’phase’, . . . that correspond to
other time-frequency representations.

Controlling the type. You can control the type using an optional parameter of the stftd
command. This will be discussed with examples in Section 1.4.

1.3.6 Data slices and signal names

It is possible to easily access the values of a &stft variable. A first way to do that is to use
the sig field. For instance, if you want to have a look at the real and imaginary part of s1,
you should type

wtrans a> disp s1.sig

This would display two signals. Each one is the concatenation of timeLength signals of
size freqLength that you may consider as “vertical slices” of the stft: each vertical slice
corresponds to the values of the real (resp. imaginary) part of the Short Time Fourier
Transform at a given <timeId> and for all <freqId>. You could also superimpose the
display of the real part and the imaginary part using

wtrans a> disp {s1.sig}

Alternatively, you could get directly either a vertical slice or an horizontal slice of s1 using
the signal extraction syntax. To obtain the vertical slice corresponding to <timeId>=512
simply type

1.4. OTHER TIME-FREQUENCY REPRESENTATIONS 19

wtrans a> disp {512s1}

For the horizontal slice corresponding to <freqId>=128 you should type

wtrans a> disp {.128s1}

When the type of the stft is not complex, the slices and the sig field return a single signal
instead of the &listv corresponding to the real and imaginary parts.

Remark : you can combine the above commands with the stats command (see the signal
package) to get statistics on the value of a Short Time Fourier Transform.

WARNING : so far, the content of the time-frequency array of a stft is only accessible in
read-only mode, which means that modifying the content of the signals obtained through
s1.sig = ..., <freqId>s1= ... or <timeId>s1= ... does not change the corresponding content
of the &stft variable. This behaviour may change in a future release of LastWaveTM.

1.4 Other Time-Frequency representations

We have already mentioned that a &stft variable can contain various types of time-
frequency representations other than a standard Short Time Fourier Transform. A standard
Short Time Fourier Transform corresponds to a subsampling (both in time and frequency)
of the following function

G(t, f) =

∫
s(u)w(u − t)e−2iπfudu,

where s(t) is the analyzed signal and w(t) is the window function. One can rewrite the
latter expression as

G(t, f) =< s, gt,f >,

where < ., . > corresponds to the scalar product of two signals and gt,f (u) is a time and
frequency localized function whose expression is

gt,f (u) = w(u − t)e+2iπfu.

Thus, computing the Short Time Fourier Transform consists in selecting a subsampled
family of all the atoms {gt,f}t,f and computing all the scalar products of the original signal
with each atomic function of the family. These atomic functions (referred to as atoms in
the following) behave like test functions we want to test the signal with.

LastWaveTM allows to work with the ’real-valued’ version of this complex valued rep-
resentation. Without going into the details it basically consists in finding for each time-
frequency location (t, f) the best phasis so that the scalar product with < s,w(t−u) cos(2π(fu+
φ)) > is maximum for that φ ∈ [0, 1). Then for each (t, f), instead of storing the real and
imaginary part of the scalar product < s, gt,f > (which is what is done in the case of a
regular Short Time Fourier Transform), a &stft variable stores either the best phase φ
(if its type is ’phase’) or the associated optimized real-valued scalar product < s,w(t −
u) cos(2π(fu + φ)) > (if its type is ’real’).

20CHAPTER 1. USING THE SHORT TIME FOURIER TRANSFORM (STFT) PACKAGE, VERSION 2.0.

This type of representation is mainly used in the Matching Pursuit package (mp). How-
ever you can compute and display such a representation by setting the type of the &stft

variable (in the stftd command) to ’phase’ or ’real’ instead of the default value (’complex’).
If we use the same example as in the previous sections, we would type :

wtrans a> stftd s1 bonjour ’hamming’ 256 ’real’ -F 16 -T 16

wtrans a> disp bonjour s1 -..2 -cm ’_grey’

It would display the signal and the square of the real valued scalar product (in deciBel by
default).

Remark : When the type of the &stft is ’phase’, the display does not depend on the value
of the ’db’ flag.

1.5 Display and mouse interaction

When you display a stft structure, you can, while moving the mouse on the image, see (at
the bottom of the window) the coordinate of the time frequency point and the energy (or
the phase) of the stft at this point. You can zoom the image using the left button and go
back to the original image using the middle button. If you type the ’z’ key you switch to a
different zooming mode (just try it!). If you hit ’z’ again you go back to the original mode.
In the same way, hitting the ’c’ key allows you to get a cursor on the screen.

Moreover, if you hit the middle button while the ’control’ key is down, you display a
vertical cut (in dB) of the Short Time Fourier Transform. With the ’shift’ key down instead
of the ’control’ key, you obtain an horizontal cut. If you drag the mouse (while holding the
button down) it changes dynamically !

A stft structure is displayed using GraphStft graphic class. This class inherits from the
basic class GObject and has 5 new fields :

• cm : that allows to set the colormap used to display the stft.

• causal : which is a flag which indicates whether we display or not the part affected by
border effects (default value=0)

• db : which is a flag which indicates whether the energy is coded in deciBel or not
(default value=1)

• expo : the dynamic range of the display in deciBels (default value=70dB). When db
is non zero, the colormap corresponds to the energy in deciBels between −<expo>
dB and 0dB relatively to the maximum energy in the window. When db is zero, the
expo is not used.

• graph : which allows to get/set the stft structure that will be displayed,

1.6 Miscelaneous

Let us list a few additional features of the stft package.

1.6. MISCELANEOUS 21

1.6.1 Arithmetic operations on &stft variables

Arithmetic operations on &stft variables are possible through the stft command.

• stft + <stft1> <stft2> [<stftOut>=<stft1>]

• stft - <stft1> <stft2> [<stftOut>=<stft1>]

• stft * <stft1> <stft2> [<stftOut>=<stft1>]

• stft / <stft1> <stft2> [<stftOut>=<stft1>]

• stft ln <stft1> [<stftOut>=<stft1>]

• stft log <stft1> [<stftOut>=<stft1>]

• stft log2 <stft1> [<stftOut>=<stft1>]

• stft conjugate <stft1> [<stftOut>=<stft1>]

The stfts must be of the same type and have the same time-frequency structure.

WARNING : this is still an alpha version feature, we now there are some bugs left. For
instance, the stft resulting from the above operations may not display correctly with the
disp function.

1.6.2 Wish list

• a stftr command to perform overlap-add reconstruction using a &stft variable.

• write access to the content of &stft variables using the fields extraction syntax

• optimization of the analysis algorithm (direct convolution/FFT) depending on the
oversampling and the size of the window.

• allow any window size (not only powers of two) and more arbitrary grids.

22CHAPTER 1. USING THE SHORT TIME FOURIER TRANSFORM (STFT) PACKAGE, VERSION 2.0.

Chapter 2

The Matching Pursuit (mp)
package.

The mp package allows to compute various types of Matching Pursuit decompositions of
real-valued signals. The mp package makes an intensive use of the stft package, so in order
to understand this chapter you should first read the chapter about the stft package.

WARNING : In this chapter we will assume that you know about the Matching Pursuit
method. If you do not know it, you should have a look at the article Matching pursuit with
time-frequency dictionaries, S.Mallat and Z.Zhang, IEEE Trans. on Sig. Proc. 41 (12),
3397 (1993) or the corresponding chapter in the book A wavelet tour of signal processing,
S.Mallat, Academic Press. (1998).

2.1 Loading the mp package

In order to use the mp package you must first be sure it is loaded. If it is not then you
should type

wtransa> package load ’mp’

2.2 A simple example

As for &wtrans variables, when loading the mp package, it creates (look in the script file
’scripts/mp/mp.pkg’) two &book variables named m and n. We will explain in Section 2.3
the structure of &book variables, but for now we will just look at an example to see how it
works. You can set the current object objCur to be m by simply typing the command m :

wtrans a> m

book m>

The current object is now the variable m which is of type &book. Again, as for &wtrans

structures, the numbers 0 to 9 (or 0<bookName> to 9<bookName> if you want to refer
to a book which is not the current object) refer to signals for your personal use. They are
automatically allocated by LastWaveTM(in every book) and never used.

23

24 CHAPTER 2. THE MATCHING PURSUIT (MP) PACKAGE.

The example we are going to present here is very much inspired from the demo which is
in the file ’scripts/mp/DemoMP’ (commands DemoMPRegAlgo and DemoMPFastAlgo). Let
us analyze a signal which corresponds to a sinusoid plus a Dirac (in the middle) and some
white Gaussian noise. It will be of size 1024 :

m> 0 = sin(2*pi*40*I(1024)/1024)+1.2*(I==512)+0.1*Grand

Actually, we are going to smooth it by a gaussian window in order to avoid discontinuities
at the borders :

book m> 0 = 0m*exp(-.00002*(I-512)*(I-512))

You can display the signal

book m> disp 0

Then we want the matching pursuit to find the first 30 Gabor atoms that approximate the
signal :

book m> mpd 30

0.4599908

={<&dict;0xa1b9428> <size=31>}

As indicated by the value 0.4599908 displayed after the mpd command has been performed,
the duration of the computation on my system (a Pentium III 750 Mhz with 256 Mb of
RAM) is about 0.45 second. We can build the so-obtained approximation using the 30
Gabor atoms and store it in the signal 1

book m> mpr 1

= ’1 1023’

Then we can display both the original and the approximation along with the error of
approximation

book m> disp 0 1 0m-1m

You can reconstruct using only some specific atoms. This can be done using a “masking
signal” for arbitrary selection of atoms, or using options of the mpr command.

WARNING : in the previous release of the mp package, a ’-r’ flag was needed before the
first option of the mpr command. This is no longer needed.

For instance if you want to reconstruct using only the atoms with a large scale, you
must use the -s syntax :

book m> mpr 1 -s 2^7 2^15

book m> disp 0 1

This allows you to extract only the sinusoidal behavior and get rid of both the noise and
the Dirac. If you want to extract the Dirac you can type

2.3. THE &BOOK STRUCTURE IN LASTWAVETM 25

book m> mpr 1 -s 2^1 2^2

book m> disp 0 1

WARNING : in the previous release of the mp package, the ’-o’ option was used to specify
an ’octave’ range for the atoms used in the reconstruction. It has been replaced by the ’-s’
option which specifies a ’windowSize’ range.

If you want to denoise the whole signal (sinusoidal component + Dirac) you can recon-
struct using the first atoms only, i.e., the (10) most energetic atoms

book m> mpr 1 -n 1 10

book m> disp 0 1

Last, but not the least, you can display the time frequency representation of the book
m using the regular disp command

book m> disp 0 m -..2 -db 1 -expo 34 -cm ’_grey’

2.3 The &book structure in LastWaveTM

The mp package allows to perform various types of Matching Pursuit decomposition of real-
valued signals. The decomposition is performed using the mpd command and its variants
(fastmpd, hmpd, fasthmpd), and the reconstruction is performed with the mpr command.
We will describe in Sections 2.6, 2.7 and 2.8 of this chapter the various types of Match-
ing Pursuit decompositions that are available and how to invoke the variants of the mpd

command to perform these various decompositions.

The result of a pursuit is stored in a variable of type &book, the fields of which are
accessed through the standard syntax. A few fields are identical to those of &stft variables,
they specify the correspondance between “real units” (seconds,Hertz,. . .) and “index” units.

• signalSize, freqIdNyquist, dx, x0 : these fields have the same meaning as those defined
in the structure &stft (see Chapter 1).

The result of a matching pursuit with a multiscale Gabor dictionnary is a list of Gabor
atoms. In order to store these atoms (using &atom variables), we actually use another
variable type called a &mol Thus you have to see a &book variable as containing an array
of &mol variables each of them containing one or more &atom variables.

To access the <i>th molecule in a book (in a read-only mode) you should use the
<bookName>[<i>] syntax, where <bookName> is the &book variable where the molecule
you want to access is, and <i> is the rank number of this molecule in that book (0 is the
first molecule that has been selected by the pursuit, 1 is the second one and so on until
<bookName>.size-1 for the last one)

bookm> print m[1]

m[1] =

<&mol[1][1];0xa20dc68>

26 CHAPTER 2. THE MATCHING PURSUIT (MP) PACKAGE.

WARNING : in the previous version of LastWaveTM, molecules were numbered between
1 for the first one and <bookName>.size for the last one. Check your scripts!

You can add a &mol to a book using the book+=molecule syntax. To know the (read-
only) number of &mol variables stored in the &book you should use the field size.

2.4 The &mol structure in LastWaveTM

Each &mol structure actually can store several atoms (this feature is used essentially for
Harmonic Matching Pursuit). You can access (read-only) the <k>th atom of a molecule
with the <moleculeName>[<k>] syntax. The main fields of &mol variables are

• dim: (read-only) number of &atom variables contained in the molecule.

• coeff2: (read-only) sum of the coeff2 fields of the &atom variables in the molecule.

As a very good example of how to use molecules you should read the ’scripts/mp/mp.pkg’
file and particularly the arrow key behavior definitions.

2.5 The &atom structure

Gabor time-frequency atoms are represented in LastWaveTM by &atom variables. The fields
of &atom variables are accessed using the standard syntax. Besides the signalSize, freqId-
Nyquist, dx, x0, windowShape fields (cf. the corresponding fields of &stft variables), the
main fields are

• time/timeId : the time where the atom is localized at (in real or “index” units). In
“index” coordinates, it can range from 0 to signalSize-1.

• freq/freqId : the frequency where the atom is localized at (in real or “index” units).
In “index” coordinates, it can range from 0 (for unmodulated atoms) to freqIdNyquist
(for atoms at the Nyquist frequency).

• chirp/chirpId : the chirprate of the atom (in real or “index” coordinates)

2.5.1 Chirp units

Starting in LastWaveTM version 2.0, as an extension to Gabor atoms, &atom variables can
be used to represent chirplets through the field chirp(Id). Whenever the user needs to
specify, as an argument of a command of the mp package, the frequency slope of a chirp
atom, it will be either a <chirp> which would mean that “real units” should be used (e.g.,
0.01 for 0.01 Hz/second), or a <chirpId>. The relation between real chirp units and chirp
indexes is

< chirp >=
< chirpId >

2freqIdNyquist
× (dx)−2. (2.1)

The freqIdNyquist field of a &atom variable limits the range of allowable <chirpId> values: a
<chirpId> is in general a number with absolute value less than or equal to freqIdNyquist/2,
because a larger value of the chirprate would mean that the atom is necessarily aliased.

2.5. THE &ATOM STRUCTURE 27

2.5.2 Time-frequency concentration

One of the interesting aspects of decompositions in the Gabor multiscale dictionary is the
possibility to use atoms at different scales and shapes. The corresponding fields are

• windowSize : the size of the time support of the atom (number of samples).

WARNING : In the previous version of LastWaveTM, there was an octave field which was
the log2 of the windowSize. In this version, windowSize is limited to being a power of 2,
this should change in a future version.

• support/supportId : support {timeMin,timeMax} of the atom in real or index coordi-
nates.

• dt,df : (read-only) time/frequency spread of the atom, in real coordinates.

2.5.3 Coefficient information

As briefly explained in Section 1.4, one can consider either complex-valued or real-valued
normalized Gabor atoms. An &atom variable stores the inner product (complex or real) of
the residual with the atoms gt,f (complex valued scalar product) or w(t−u) cos(2π(fu+φ))
(real valued scalar product), as well as the phase of real-valued atoms.

• coeff : the real part and imaginary parts of the complex-scalar product between the
analyzed signal and a ’complex’ atom with the &atom’s time-frequency-shape-chirp
coordinates.

• coeff2/phase : the square of the modulus and the phase of the ’real’ atom that best
matches the analyzed signal with the &atom’s time-frequency-shape-chirp coordinates.

• gg : the inner-product between the ’complex’ atom and its conjugate. It is used to
convert between coeff and coeff2/phase.

2.5.4 Controlling the content of an &atom

To have some good example of manipulation of atoms you should have a look at the
’scripts/mp/mp.pkg’ file and in particular the mouse interaction with atoms to move them
around.

2.5.5 Building an &atom into a signal

There are two “methods” of &atom variables that make it possible to build a signal with
the corresponding waveform. If you type

book m> disp m[0][0].buildr

it will display the waveform of the ’real’ atom, taking into account its coeff2 and phase. By
typing

book m> disp m[0][0].buildc

you will display two signals corresponding to the real and the imaginary part of the waveform
of the normalized ’complex’ atom.

28 CHAPTER 2. THE MATCHING PURSUIT (MP) PACKAGE.

2.6 The mpd command

There is only one argument that the mpd command requires, and it is the number <nIter>
of iterations of the pursuit. If you invoke mpd with no additional argument, i.e.,

book m> mpd 20

what happens is:

- it will assume you want to put the result in objCur (which should be a &book variable);

- objCur will be cleared and a new pursuit will start using the signal 0 of this book.
The dictionary for the pursuit will be with ’gauss’ (Gaussian) windows and 22 ≤
windowSize ≤ 2n where 2n ≤ signalSize < 2n+1.

If you want to, you can specify explicitly to the mpd command which book to put the result
in, and/or which signal to analyze.

book m> 1m = Grand(1183)

book m> mpd n 20 1m

2.6.1 How to change the dictionary ?

By default, mpd performs a decomposition using a multiscale Gabor dictionary with real-
valued Gabor atoms based on a ’gauss’ window and 22 ≤ windowSize = 2j ≤ 2n where
2n ≤ signalSize < 2n+1. The nature of the dictionary can be changed by using some
additional arguments of the mpd command. If you want to use both ’gauss’ and ’FoF’
windows (’gauss’ windows are symmetric in time, ’FoF’ ones are not) and window size 4,16
and 1024, you can type

book m> mpd 30 ’-s’ {4 16 1024} ’-w’ {’gauss’ ’FoF’}

0.36

={<&dict;0xa1b9428> <size=31>}

Please use the stft window command to see the available window shapes.

2.6.2 How to perform a Matching Pursuit with Chirplets ?

For understanding how a Matching Pursuit with Chirplets works, please refer to the paper
Fast matching pursuit with a multiscale dictionary of Gaussian chirps, R. Gribonval, IEEE
Trans. on Signal Proc., Vol. 49, No. 5, mai 2001, pp 994-1001.

You simply have to invoke the mpd command with the ’-O’ {’chirp’} option, but only
for Gaussian windows (which is the default).

2.6.3 How to resume a pursuit

A new feature in this version of the mp package is that you can now resume a Matching
Pursuit decomposition, using the return value of the mpd command.

book m> {dict decay}=[mpd 30]

0.22000122

={<&dict;0xx87b890> <size=31>}

2.7. A FASTER ALGORITHM FOR MATCHING PURSUIT 29

Remark : Notice that the Matching Pursuit decomposition is faster (only 0.22 second) the
second time you call it, because some data has been tabulated at the first call.

The return value consist in a &listv of two variables : a &dict variable (cf the Reference
part) and a &signal containing the decay of the approximation error. To resume a pursuit,
simply use the mpd command again but with the alternate syntax

book m> {dict decay}=[mpd 30 dict decay]

0.150001

={<&dict;0xx87b890> <size=61>}

You can have a look at how the relative error (the ratio of the energy of the residual by that
of the original analyzed signal) decays, in deciBels, as a function of the number of iterations
of the pursuit

book m> disp 10*log(decay)

2.7 A faster algorithm for Matching Pursuit

The algorithm presented above to perform the pursuit can be pretty slow when performed
on very long signals. You can use a different algorithm which is much faster but that is less
optimized in terms of capturing energy. It consists in performing the pursuits only on the
atoms which correspond to the most energetic local maxima (both in time and frequency)
of the spectrogram (at any scale). When none are left (either because they have all been
selected or because after a few iterations their energy is too low), then all the spectrograms
are updated (using the residual) and a new set of maximum atoms selected. the algorithm
performs the pursuit on this new set and so on.

In order to use this algorithm you need to specify the number of maxima in the set. Let
us note that if this number is 1, then this algorithm is exactly equivalent to the previous one.
The more maxima you put in the set, the faster the algorithm will be and the less optimum
in terms of captured energy. Using the same signal as the one presented in the section
above, one could compare the regular and the fast algorithm. The regular decomposition
of the signal 0 with 100 Gabor atoms is obtained by typing

book m> mpd 100

’1.522’

= {<&dict;0xa23ce28> <size=101>}

and takes about 1.5 seconds to compute. The fast algorithm is invoked using

book m> fastmpd 100 100

= ’0.631’

= {<&dict;0xa32a980> <size=101>}

It means that you want to get 100 molecules and that each time a set of 100 maxima should
be selected. As you can see it is much faster (only about 0.6 second) than the regular
algorithm.

30 CHAPTER 2. THE MATCHING PURSUIT (MP) PACKAGE.

2.7.1 Fast Matching Pursuit with Chirplets

You simply have to invoke the fastmpd command with the ’-O’ {’chirp’} option, but only
for Gaussian windows (which is the default).

2.7.2 Resuming a Fast Matching Pursuit

A Fast Matching Pursuit decomposition can be resumed just as a regular one, using the
mpd command. For that, you would type

book m> {dict decay}=[fastmpd 100 100]

0.652

={<&dict;0xx87b890> <size=101>}

book m> {dict decay}=[mpd 30 dict decay]

0.150001

={<&dict;0xx87b890> <size=131>}

Next, we will see other types of pursuit. You can resume them in the same way.

2.8 Other types of pursuits

2.8.1 A High Resolution Matching Pursuit

WARNING : High-Resolution MP is no longer supported in LastWaveTM2.0. In case of
demand and we could help interested people making the necessary ports to re implement it
with the new APIs of LastWaveTM2.0

2.8.2 A Harmonic Matching Pursuit

For understanding how a Harmonic Matching Pursuit works, please refer to the paper Har-
monic Decomposition of Audio Signals with Matching Pursuit, R. Gribonval and E. Bacry,
IEEE Trans. on Signal Proc., Vol. 51, no. 1, January 2003, pp 101–111.

You simply have to invoke the hmpd command instead of the mpd one. The fasthmpd

command corresponding to the fast algorithm with local maxima is also available, but is
not recommended. Compared to the regular mpd and fastmpd commands, the hmpd and
fasthmpd commands take just two additional arguments <freq0Min> and <freq0Max>
that indicate the range in which the fundamental frequency of harmonic molecules should
be looked for.

2.9 Display and mouse interaction

Zoom and cursor: When you display a &book structure, you can, while moving the mouse
on the image, see (at the bottom of the window) the coordinate of the time frequency point
you are pointing to (the <timeId> and <freqId> are between brackets). You can zoom
the image using the left button and go back to the original image using the middle button.
If you type the ’z’ key you switch to a different zooming mode (just try it!). If you hit ’z’
again you go back to the original mode.

2.9. DISPLAY AND MOUSE INTERACTION 31

In the same way, hitting a first time the ’c’ key allows you to get a cross-hair cursor on
the screen. If you hit it a second time, you enter a mode where LastWaveTMlooks for the
atom/molecule which is the closest to the point the mouse is pointing to. This atom is
circled and its fields are shown at the bottom of the window (the fist number shown is
the iteration number the corresponding atom was found at). If you hit again the ’c’ key
you go back to the no-cursor mode. Actually, there is another way to navigate through
the atoms/molecules using the display. It consists in using the arrow keys : the down key
circles the first atom which was found by the pursuit and which is currently displayed in
the graphic, the up key circles the last atom, the right key circles the next atom and the
left key the previous atom.

Playing molecules/atoms: On computers where LastWaveTMwas set up so that sounds
can be played, if the signal you decomposed is a sound signal and if you set the dx field
of the signal according to the sample frequency, you can play on the computer speaker
the sound associated to an atom which has been circled using either the arrow keys of the
mouse. For that purpose you just need to type the ’=’ key. If you type the ′ <′ key then it
will play the reconstruction of the sound using all the atoms up to the circled atom and if
you type the ′ >′ key it will play the reconstruction of the sound using all the atoms down
to the circled atom.

Moving molecules/atoms and changing their parameters: You can change the pa-
rameters of a molecule/atom interactivel using the mouse drag and drop. Thus

• left button drag/drop + shift key : allows to move a molecule/atom in the time/frequency
plane

• middle button drag/drop + shift key : allows to transpose a molecule/atom, i.e., to
change the center frequency (the time position is not changed)

• right button drag/drop + shift key : allows to translate a molecule/atom, i.e., to
change the time position (the center frequency is not changed)

• left button drag/drop + ctrl key : allows to change the scale of a molecule/atom

The GraphBook graphic class: A book structure is displayed using GraphBook graphic
class. This class inherits from the basic class GObject and has some new fields :

• cm : that allows to set the colormap used to display the book

• db : which is a flag which indicates whether the energy is coded in deciBel or not
(default value=1)

• expo : the dynamic range of the display in deciBels (default value=30dB) information
in the manual of the stft package.

• n : the rank range [<nMin> <nMax>] of the atoms displayed (this allow to select
the atoms you want to be displayed).

• k : the partial number range [<kMin> <kMax>] of the atoms displayed within a
harmonic molecule (this allow to select the atoms you want to be displayed).

32 CHAPTER 2. THE MATCHING PURSUIT (MP) PACKAGE.

• s : the scale range [<windowSizeMin> <windowSizeMax>] of the atoms displayed
(this allow to select the atoms you want to be displayed).

• chirp/chirpId: the chirp range of the atoms displayed (this allow to select the atoms
you want to be displayed).

• fund: a flag that selects the way harmonic words are displayed. All the atoms within
each word (flag=’all’) or only the most energetic atom with its energy (flag=’max’)
or with the total energy of the word (flag=’sum’).

• graph : allows to set/get the book structure that will be displayed,

• ?closest: which is a “get-only” field which allows to get the index {<n> <k>} of the
displayed atom which is closest to a time-frequency location.

Part II

Reference

33

Chapter 3

Package mp 2.1

Package allowing to perform Matching Pursuit.
** Authors and Copyright : R.Gribonval, E.Bacry and J. Abadia

3.1 Defined types

3.1.1 Type &atom

This type is the basic type for time-frequency atoms that are used in Short Time Fourier
Transform and Matching Pursuit decompositions.

• &atom.dx [= <dx>]

Sets/Gets the abscissa step of the signal which has been analyzed.

• &atom.x0 [= <x0>]

Sets/Gets the first abscissa of the signal which has been analyzed.

• &atom.signalSize

Gets the size of the original signal of the time-frequency transform.

• &atom.freqIdNyquist

Gets the Nyquist frequency in sample coordinates.

• &atom.windowShape [= <windowShape>]

Sets/Gets the windowShape of an atom. The available window shapes are : blackman,
hanning, hamming, gauss, spline0 (rectangle), spline1, spline2, spline3, exponential or
FoF.

• &atom.windowSize [= <windowSize>]

Sets/Gets the windowSize of an atom, i.e. the number of samples of its window. So
far only powers of 2 are allowed.

• &atom.timeId [= <timeId>]

Sets/Gets the time center of an atom in sample coordinates, i.e. an index 0 <= timeId
< atom.signalSize.

35

36 CHAPTER 3. PACKAGE MP 2.1

• &atom.time [= <time>]

Sets/Gets the time center of an atom in real coordinates, i.e. the real time in seconds.

• &atom.freqId [= <freqId>]

Sets/Gets the frequency center of an atom in sample coordinates, i.e. an index 0 <=
freqId <= atom.freqIdNyquist.

• &atom.freq [= <freq>]

Sets/Gets the frequency center of an atom in real coordinates, i.e. the real frequency
in Hertz.

• &atom.chirp [= <chirp>]

Sets/Gets the chirp rate of an atom in real coordinates, i.e. the real frequency slope
in Hertz per second.

• &atom.chirpId [= <chirpId>]

Sets/Gets the chirp rate of an atom in sample coordinates, i.e. an index chirpId with
|chirpId| <= atom.freqIdNyquist/2.

• &atom.coeff2 [= <coeff2>]

Sets/Gets the atom squared coefficient.

• &atom.phase [= <phase>]

Sets/Gets the atom phase (which is defined modulo 1).

• &atom.coeff

Gets the atom complex coefficient.

• &atom.buildr [*opt,...] [:]

Gets a signal where the real atom has been built.
Options are : *sizeonly,*bperiodic,...

• *sizeonly : the signal(s) where the atom will be built will have exactly the size
of the atom. Otherwise the atom.signalSize will be used.

• &atom.buildc [*opt,...] [:]

Gets a pair {real imag} of signals where the normalized complex atom has been built.
Options are : *sizeonly,*bperiodic,...

• *sizeonly : the signal(s) where the atom will be built will have exactly the size
of the atom. Otherwise the atom.signalSize will be used.

• &atom.dt

Gets the time spread of an atom in seconds.

• &atom.df

Gets the frequency spread of an atom in Hertz.

• &atom.support

Gets the time support {timeMin timeMax} of an atom in seconds

3.1. DEFINED TYPES 37

• &atom.supportId

Gets the time support {timeIdMin timeIdMax} of an atom in sample coordinates

• &atom.gg

Gets a listv {real imag} that corresponds to the (complex) inner-product <g, g>
between a (normalized) complex atom ’g’ and its complex conjugate ’ g’. The value
of <g, g> depends on the windowShape, windowSize, frequency and chirp parameters.
It is used to compute the energy ||P {g, g}s||ˆ 2 of the projection of a (real valued)
signal ’s’ on the subspace spanned by ’g’ and ’ g’ from the complex inner product
<s,g>. WARNING : this is a read-only field. If you type ’atom.gg[0]=1’ it will be
accepted but what will be performed is similar to ’l=atom.gg; l[0]=1’.

3.1.2 Type &book

This type is the basic type for storing the result of Matching Pursuit decompositions as an
array of &mol’s.
- Operator + : book+molecule, appends a molecule at the end of the book.

• &book [<n>]

Gets the molecule <n> of a book

• &book.sig [<n>]

Gets the signal <n> of a book

• &book.name [= <name>]

Sets/Gets the name of a book

• &book.dx [= <dx>]

Sets/Gets the abscissa step of the signal which has been analyzed.

• &book.x0 [= <x0>]

Sets/Gets the first abscissa of the signal which has been analyzed.

• &book.signalSize

Gets the size of the original signal of the time-frequency transform.

• &book.freqIdNyquist

Gets the Nyquist frequency in sample coordinates.

• &book.size

Gets the number of &mol in a book.

• &book.sizeAlloc [= <sizeAlloc>]

Sets/Gets the allocation size for the array of &mol in a book. In case of a Set,
<sizeAlloc> must be larger than book.size, else an error is generated. The previously
allocated part is kept (book.size is not changed).

• &book.dim

Gets a &signal of size book.size containing the list of dimensions of the molecules of a

38 CHAPTER 3. PACKAGE MP 2.1

book (i.e. the number of atoms contained in each molecule). The dimension is larger
than 1 only for books built using the Harmonic Matching Pursuit.

• &book.wcoeff2

Gets a &signal of size book.size containing the list of ’coeff2’ of the molecule in a
book.

• &book.windowSize

Gets a &signal of size book.size containing the list of ’windowSize’ of the first atom
of the molecules in a book.

• &book.windowShape

Gets a &listv of size book.size containing the list of ’windowShape’ of the first atom
of the molecules of a book.The available window shapes are : blackman, hanning,
hamming, gauss, spline0 (rectangle), spline1, spline2, spline3, exponential or FoF.

• &book.timeId

Gets a &signal of size book.size containing the list of ’timeId’ of the first atom of the
molecules in a book..

• &book.time

Gets a &signal of size book.size containing the list of ’time’ of the first atom of the
molecules in a book.

• &book.freqId

Gets a &signal of size book.size containing the list of ’freqId’ of the first atom of the
molecules in a book.

• &book.freq

Gets a &signal of size book.size containing the list of ’freq’ of the first atom of the
molecules in a book.

• &book.chirpId

Gets a &signal of size book.size containing the list of ’chirpId’ of the first atom of the
molecules in a book.

• &book.chirp

Gets a &signal of size book.size containing the list of ’chirp’ of the first atom of the
molecules in a book.

• &book.acoeff2

Gets a &signal of size book.size containing the list of ’coeff2’ of the first atom of the
molecules in a book.

• &book.phase

Gets a &signal of size book.size containing the list of ’phase’ of the first atom of the
molecules in a book.

• &book.gg

Gets a &listv {real imag} of two &signal of size book.size containing the list of ’gg’
of the first atom of the molecules in a book.

3.1. DEFINED TYPES 39

3.1.3 Type &dict

This type is the basic type for time-frequency dictionaries for Matching Pursuit decompo-
sitions.

• &dict.channels

Gets a &listv containing the channels of a &dict.

• &dict.signalEnergy

Gets the energy of the signal of a &dict.

• &dict.maximadict

Gets the &maximadict sub-dictionary of a &dict.

• &dict.stft

Gets a &listv containing all the &stft sub-dictionaries of a &dict.

3.1.4 Type &maximadict

This type is the basic type for local maxima of time-frequency dictionaries for Matching
Pursuit decompositions.

• &maximadict.book

Gets a &listv containing all the &book of local maxima of a &maximadict.

• &maximadict.thresh

Gets the threshold of a &maximadict.

• &maximadict.nmax

Gets the total number of maxima of a &maximadict.

3.1.5 Type &mol

This type corresponds to subspaces spanned by a few atoms and is used in (Harmonic)
Matching Pursuit decompositions.

• &mol [<n>]

Gets the molecule <n> of a molecule

• &mol.dim

Returns the number of atoms in the &mol

• &mol.coeff2

Returns the coeff2 of the &mol (it is the sum of those of its atoms)

40 CHAPTER 3. PACKAGE MP 2.1

3.2 Commands which deal with &dict : dictionaries of atoms

• setdict

• setdict add <dict> ’&maximadict’ <nmaxima>

Adds a sub-dictionary of local maxima.

• setdict add <dict> ’&stft’ [(’real’|’harmo’|’highres’)] <windowSize> [<windowShape>=’gauss’]

[{<freq0Min> <freq0max>}]

Adds a &stft sub-dictionary.

• setdict channels <dict> {<signali1> ... <signaliN>}

Sets the channels of a dictionary.

• setdict getmax <dict> [{[’causal’] [{’time(Id)’ <range>}] [{’freq(Id)’
<range>}] [{’windowSize’ <range>}]}] [{[’interpolate’] [’chirp’]}]

• setdict optmol <dict> <molecule> [{[’time’] [’freq’] [’chirp’] [’recompute’]}
]

Optimizes a molecule using a dictionary

• setdict rmmol <dict> <molecule>

• setdict update <dict>

Updates all sub-dictionaries to enable a new ’getmax’.

3.3 Commands which deal with &book and &mol variables

• book

• book read [<book>=objCur] <filename>

Reads a book from a file.

• book readold [<book>=objCur] <filename> <forceMaxFreqId> <decay>

Reads a book (and the decay signal) from a file in older format. You have to specify
what was the MaxFreqId, you may have to make several trials and check the result
using ’mpr’.

• book write [<book>=objCur] <filename> [-b]

Writes a book to a file in ascii format (by default) or in binary (option -b).

• mpr [<book>=objCur] <reconsSignal> [<maskSignal>] [-n <nMin> [<nMax>=<nMin>]]

[-s <windowSizeMin> [<windowSizeMax>=<windowSizeMin>]>] [-t <timeMin> <timeMax>]

[-T <timeIdMin> <timeIdMax>] [-f <freqMin> <freqMax>] [-F <freqIdMin> <freqIdMax>]

[-c <chirpMin> <chirpMax>] [-C <chirpIdMin> <chirpIdMax>]

Builds the reconstructed signal from the molecules of a book. The command returns the
number of molecules that were actually used. A masking signal can optionally be used to

3.4. COMMANDS WHICH DEAL WITH INNER PRODUCTS OF &ATOMS 41

specify which molecules are used (the molecule number <n> is used in the reconstruction
iff the <n>th sample in maskSignal is nonzero). Additionally, the reconstruction only uses
the molecules whose fields lie within the range specified by the following options:
-n : Specifies the molecule number range
-s : Specifies the scale range
-t : Specifies the time range (real units)
-f : Specifies the frequency range (real coordinate)
-c : Specifies the chirp range (real coordinates)
-C : Specifies the chirpId range (id units).
-T : Specifies the timeId range (id units)

3.4 Commands which deal with inner products of &atoms

• inner

• inner auto <atom>

Computes the inner product between a complex atom and its conjugate.

• inner cc <atom1> <atom2> [-n]

Computes the inner product between two complex atoms, with a fast computation if
possible. Option -n forces exact (slow) numeric computation.

• inner rc <atomR> <atomC> [-n]

Computes the inner product between a real atom and a complex one, with a fast
computation if possible. Option -n forces exact (slow) numeric computation.

• inner rr <atom1> <atom2> [-n]

Computes the inner product between two real atoms, with a fast computation if
possible. Option -n forces exact (slow) numeric computation.

• inner sig <signal> <atom>

Computes the inner product between a signal and a complex atom.

3.5 Commands which deal with notes from a book

• notes <book> ([-n <nMin> [<nMax>=<nMin>]] | [-s <output> [<attackDuration>]

<noteList>])

Gets a list with the notes from <book> usign molecules between index <nMin> and
<nMax>. Options ’-s’ is used to synthesize in a signal the notes using sinusoids and a
simple cosinusoidal attack pattern of <attackDuration> samples.

• profile <book> <signal> <n> <deltaFreq>

Computes the energy profile at the location of the <n>th molecule of a book and puts it
in a signal.

42 CHAPTER 3. PACKAGE MP 2.1

3.6 Script Commands

• BuildDict (in file LastWave 3 0/scripts/mp/MPDalgorithms) <book> {<args>}

Parses the arguments of a *mpd command to derive the correct dictionary and residual
energy signals

• book convert format (in file LastWave 3 0/scripts/mp/MPDalgorithms)<oldfilename>
<newfilename> <forceMaxFreqId> [<decayFilename>]

Reads a book in an old format from <oldfilename> using <forceMaxFreqId> and writes
it in the new format to <newfilename>. The residualEnergy, as a signal, is written to
<decayFileName>.

• fasthmpd (in file LastWave 3 0/scripts/mp/MPDalgorithms)[<book>=objCur] <nIter>
<nmaxima> <freq0min> <freq0max> [<signal>=0book] [’-w’ {<windowShapes>}={’gauss’}]
[’-s’ {<windowSizes>}=2^ (2:max)] [’-O’ {MPoptimizations}]

Makes <nIter> iterations of a Fast Harmonic Matching Pursuit on <signal> (by default,
we analyze the signal ’0’ of the <book>) and stores the result in <book>. The book will
end up with <nIter> molecules in it, except if the pursuit stops before because the residue
is zero.

• fastmpd (in file LastWave 3 0/scripts/mp/MPDalgorithms)[<book>=objCur] <nIter>
<nMaxima> [<signal>=0book] [’-w’ {<windowShapes>}={’gauss’}] [’-s’ {<windowSizes>}=2^
(2:max)] [’-O’ {MPoptimizations}]

Makes <nIter> iterations of a Fast Matching Pursuit on <signal> (by default, we analyze
the signal ’0’ of the <book>) and stores the result in <book>. The book will end up with
<nIter> molecules in it, except if the pursuit stops before because the residue is zero.
Fast Matching Pursuit uses sub-dictionaries of <nmaxima> local time-frequency maximas
(it is MUCH faster than the regular ’mpd’ algorithm but the algorithm is more greedy and
may sometimes give poorer approximations of the analyzed signal). HINT : as a rule of
thumb, you can choose <nmaxima> of the order of <nIter>. The algorithm is optimized
for ’gauss’ and ’FoF’ atoms type.
The default shape of the atoms in the dictionary is Gaussian but you can use, e.g., Hanning
and FoF windows using the {’hanning’ ’FoF’} syntax for {<windowShapes>}. The default
atom sizes in the dictionary are powers of two from 2 to 2ˆ max, where 2ˆ max is about the
size of the signal, but you can choose other (still powers of two!) sizes using, e.g., the {2
16 32} syntax for {<windowShapes>}. Note that for {<windowShapes>} you can provide
either a &range, a &listv or a &signal or &signali.
The possible MP optimizations options are ’chirp’ and ’freq’ which correspond to extending
the dictionary to chirps (only for ’gauss’ window shapes) and newton interpolation of the
frequency, respectively.

• hmpd (in file LastWave 3 0/scripts/mp/MPDalgorithms) [<book>=objCur] <nIter>
<freq0min> <freq0max> [<signal>=0book] [’-w’ {<windowShapes>}={’gauss’}]
[’-s’ {<windowSizes>}=2^ (2:max)] [’-O’ {MPoptimizations}]

Makes <nIter> iterations of a Harmonic Matching Pursuit on <signal> (by default, we
analyze the signal ’0’ of the <book>) and stores the result in <book>. The book will end

3.7. GRAPHIC CLASS GRAPHBOOK (INHERITS FROM GOBJECT) 43

up with <nIter> molecules in it, except if the pursuit stops before because the residue is
zero.

• m (in file LastWave 3 0/scripts/mp/mp.pkg)
Changes the objCur variable to the book ’m’.

• mpd (in file LastWave 3 0/scripts/mp/MPDalgorithms)

• mpd [<book>=objCur] <nIter> <dict> <residualEnergy> [{MPoptimizations}]

To resume a Matching Pursuit using the pair <dict> <residualEnergy> returned by a
previous call, you only have to specify <nIter> and you can specify the optimizations
you want to perform.

• mpd [<book>=objCur] <nIter> [<signal>=0book] [’-w’ {<windowShapes>}={’gauss’}]
[’-s’ {<windowSizes>}=2^ (2:max)] [’-O’ {MPoptimizations}]

Makes <nIter> iterations of a Matching Pursuit on <signal> (by default, we analyze
the signal ’0’ of the <book>) and stores the result in <book>.The book will end up
with <nIter> molecules in it, except if the pursuit stops before because the residue
is zero.
The default shape of the atoms in the dictionary is Gaussian but you can use, e.g., Han-
ning and FoF windows using the {’hanning’ ’FoF’} syntax for {<windowShapes>}.
The default atom sizes in the dictionary are powers of two from 2 to 2ˆ max, where
2ˆ max is about the size of the signal, but you can choose other sizes (powers
of two) using, e.g., the {2 16 32} syntax for {<windowShapes>}. Note that for
{<windowShapes>} you can provide either a &range, a &listv or a &signal or &sig-
nali.
The possible MP optimizations options are ’chirp’ and ’freq’ which correspond to
extending the dictionary to chirps (only for ’gauss’ window shapes) and newton in-
terpolation of the frequency, respectively.

• n (in file LastWave 3 0/scripts/mp/mp.pkg)
Changes the objCur variable to the book ’n’.

3.7 Graphic class GraphBook (inherits from GObject)

Graphic Class that allows to display Book
• setg

• setg *GraphBook* -?closest <time> <freq>

Gets the rank of the atom that is currently displayed and that is the closest to posi-
tion <time> <freq>. It returns either ’null’ if it fails or a listv {<n> <k>} where
0<=n<book.size is the rank of the molecule and 0<=k<molecule.dim is the atom
number in the molecule.

• setg *GraphBook* -chirp [<chirpMin> <chirpMax>]

Sets/Gets the chirp range of the molecules that are displayed.

44 CHAPTER 3. PACKAGE MP 2.1

• setg *GraphBook* -chirpId [<chirpIdMin> <chirpIdMax>]

Sets/Gets the chirpId range of the molecules that are displayed.

• setg *GraphBook* -cm [<colormap>]

Sets/Gets the colormap that will be used to display the book.

• setg *GraphBook* -db [<flagOnOff>]

Sets/Gets the decibel-display flag. If it is on, the energy of the molecules is displayed
in decibel.

• setg *GraphBook* -expo [<exponent>]

Sets/Gets the exponent used for display. If ’-db’ is off, then the energy to the
<exponent> of the molecules is displayed. If ’-db’ is on, then the same quantity
is displayed in decibel.

• setg *GraphBook* -fund <flag>

Sets/Gets the fundamental flag which can be ’all’,’max’ or ’sum’. This flag allows
to display all the atoms within each molecule (<flag>=’all’) or only the most ener-
getic atom with its energy (<flag>=’max’) or with the total energy of the molecule
(<flag>=’sum’).

• setg *GraphBook* -graph [<book>]

Gets/Sets the book to be displayed by the GraphBook. (The ’-cgraph’ field is equiv-
alent to that field).

• setg *GraphBook* -n [<nMin> <nMax>]

Sets/Gets the minimum and maximum ranks of the molecules that are displayed.

• setg *GraphBook* -scale [<windowSizeMin> <windowSizeMax>]

Sets/Gets the windowSize range of the molecules that are displayed.

Bindings

• Shift+Left button = move molecule/atom

• Shift+Middle button = transpose molecule/atom

• Shift+Right button = translates molecule/atom

• Ctrl+Left button = scale molecule/atom

• Ctrl+Middle button = change amplitude molecule/atom

• Down key = Go to First atom

• Up key = Go to Last atom

• Right key = Go to Next atom

3.8. DEMOS 45

• Left key = Go to Previous atom

• ’-’ = Play a sine at cursor frequency

• ’=’ = Play Closest atom

• ’<’ = Play reconstruction up to closest atom

• ’>’ = Play reconstruction from closest atom

• Type ’c’ to change cursor mode

• ’z’ : changes the zoom mode just type ’z’

• Left/Right/Middle button : operate the zoom

3.8 Demos

Here is a list of all the Demo files and for each of them all the corresponding Demo com-
mands. To try a Demo command, you should first source the corresponding Demo file
then run the command. (When sourcing the Demo file, LastWave tells you about all the
commands included in this file).
The Demo files corresponding to this package are :

Demo file DemoMP

• DemoMPFastAlgo (in file LastWave 3 0/scripts/mp/DemoMP)

Demo command that compares the results of both the regular matching pursuit algo-
rithm and the fast one (using 100 atoms) on an artificial signal which consists in the
sum of a sinus a dirac and some white noise. It displays the time-frequency represen-
tations given by both the fast algorithm and the regular one as well as the so-obtained
reconstruction (along with the original and the error). It also displays the decays of
the residue energy (after each iteration) for both the regular and the fast algorithms.

• DemoMPRegAlgo (in file LastWave 3 0/scripts/mp/DemoMP)

Demo command that computes and displays the result of the regular matching pursuit
algorithm (30 atoms) on an artificial signal which consists in the sum of a sinus a dirac
and some white noise. It also displays the reconstructed signal when using only ’long’
atoms (i.e., to recover the sinus) and the reconstructed signal when using only ’short’
atoms (i.e., to recover the dirac). It also teaches you how to use the mouse.

• DemoMPSound (in file LastWave 3 0/scripts/mp/DemoMP)

WARNING : YOU SHOULD FIRST RUN THE DEMO ’DemoSound’ OF THE
SOUND PACKAGE AND THE OTHER DEMOS OF THE MP PACKAGE BEFORE
RUNNING THIS DEMO. This Demo command performs the matching pursuit anal-
ysis of a piano sound and teaches you the sound capabilities of the ’mp’ package. This
demo involves computation that can take 2-3 minutes. This demo is also included in
the ’sound’ package.

46 CHAPTER 3. PACKAGE MP 2.1

Chapter 4

Package stft 2.1

Package allowing the computation of Short Time Fourier Transforms and some derived
time-frequency representations.
** Authors and Copyright : R.Gribonval, E. Bacry and J.Abadia

4.1 Defined types

4.1.1 Type &stft

This type is the basic type for Short Time Fourier transforms and related time-frequency
transforms.

• &stft.dx [= <dx>]

Sets/Gets the abscissa step of the signal which has been analyzed.

• &stft.x0 [= <x0>]

Sets/Gets the first abscissa of the signal which has been analyzed.

• &stft.signalSize

Gets the size of the original signal of the time-frequency transform.

• &stft.freqIdNyquist

Gets the Nyquist frequency in sample coordinates.

• &stft.windowShape

Gets the windowShape of a Short Time Fourier Transform. The available window
shapes are : blackman, hanning, hamming, gauss, spline0 (rectangle), spline1, spline2,
spline3, exponential or FoF.. To see the shape of a window, you can build it using the
’stft window ...’ command.

• &stft.windowSize

Gets the windowSize of a Short Time Fourier Transform, i.e. the number of samples
of its window. So far only powers of 2 are allowed. To see the shape of a window, you
can build it using the ’stft window ...’ command.

47

48 CHAPTER 4. PACKAGE STFT 2.1

• &stft.grid

Gets stft ’grid’ i.e. returns a &listv {timeRate timeLength freqRate freqLength}.

• &stft.border

Returns stft <border type>(’per’=periodic, ’mir’=mirror, ’pad0’=padding with 0 val-
ues).

• &stft.firstp

Gets stft <firstp>

• &stft.lastp

Gets stft <lastp>

• &stft.type

Gets stft type (it is either ’complex’ for short time fourier transform, ’real’, ’phase’ or
’highres’

• &stft.sig

Returns a signal containing the stft real data or a listv {real imag} containing its
complex data

4.2 Commands which deal with Short Time Fourier Trans-
forms

• stft

• stft * <stftIn1> <stftIn2> [<stftOut>=<stftIn1>]

Multiply two stfts and puts the result in a new one.

• stft + <stftIn1> <stftIn2> [<stftOut>=<stftIn1>]

Adds two stfts and puts the result in a new one.

• stft - <stftIn1> <stftIn2> [<stftOut>=<stftIn1>]

Substract two stfts and puts the result in a new one.

• stft / <stftIn1> <stftIn2> [<stftOut>=<stftIn1>]

Divides two stfts and puts the result in a new one.

• stft conjugate <stftIn> [<stftOut>=<stftIn>]

Conjugates a (complex) stft and puts the result in a new one.

• stft ln <stftIn> [<stftOut>=<stftIn>]

Takes the natural logarithm of a stft and puts the result in a new one. If the stft is
complex, the result is complex with its imaginary part equal to the phase of the input.

• stft log <stftIn> [<stftOut>=<stftIn>]

Takes the logarithm in base 10 of a stft and puts the result in a new one. If the stft
is complex, the result is complex with its imaginary part equal to the phase of the
input.

4.3. GRAPHIC CLASS GRAPHSTFT (INHERITS FROM GOBJECT) 49

• stft log2 <stftIn> [<stftOut>=<stftIn>]

Takes the logarithm in base 2 of a stft and puts the result in a new one. If the stft
is complex, the result is complex with its imaginary part equal to the phase of the
input.

• stft window <windowShape> <windowSize>

Returns a signal which contains a copy of a window tabulated in the package ’stft’.

• stft write <stft> (<stream>|<filename>) [-h]

Writes a stft to a <file> in ascii format. With option ’-h’ no header is written.

• stftd [<stft>=objCur] <signal> [<windowShape>=’gauss’] <windowSize> [(complex

| real | phase)] [-b <borderType>] [-T <time redundancy>=4] [-F <freq redundancy>=2]

Computes a Short Time Fourier Transform of the <signal>.
- The window size is <windowSize>, its shape is given by <windowShape>. The avail-
able window shapes are : blackman, hanning, hamming, gauss, spline0 (rectangle), spline1,
spline2, spline3, exponential or FoF.
- You can specify the type of stft that should be computed :
’complex’ corresponds to a regular short time fourier transform.
’real’, ’phase’ correspond respectively to the energy/phase of the best matched real Gabor
atoms (which is quite close to, but slightly different from, the magnitude or phase of the
complex spectrogram ...).
- The treatment of border effects is determined by the argument of option ’-b’. (’per’=periodic,
’mir’=mirror, ’pad0’=padding with 0 values)
- Options ’-T’ and ’-F’ determine the time and frequency redundancy factors, that is to say
the *time-frequency grid* associated with the spectrogram. This means that :
** a FFT is computed at each 1/<time redundancy>th of the window size.

• stftmax [<stft>=objCur] [-(t,T) <tMin> <tMax>] [-(f,F) <fMin> <fMax>]

[-c]

Gets the point where the maximum of energy of a stft is reached. It returns the list
’<maxEnergy> <timeId> <freqId>’, or 0 if <maxEnergy> is zero, -1 if the domain is
empty. The options ’-t’ and ’-T’ allow to restrict the search to points for which the time
is in between a given range <tMin> <tMax> which is specified using real time scale (’-t’)
or timeIds (’-T’). The options ’-f’ and ’-F’ allow to restrict the search in the same way in
the frequency domain. The option ’-c’ restricts the search to points not affected by border
effects.

4.3 Graphic class GraphStft (inherits from GObject)

Graphic Class that allows to display Stft
• setg

• setg *GraphStft* -causal [<flagOnOff>]

Sets/Gets the causal-display flag. If it is on, only the region not affected by border
effects is displayed.

50 CHAPTER 4. PACKAGE STFT 2.1

• setg *GraphStft* -cm [<colormap>]

Sets/Gets the colormap that will be used to display the stft.

• setg *GraphStft* -db [<flagOnOff>]

Sets/Gets the decibel-display flag. If it is on, the energy is displayed in decibel.

• setg *GraphStft* -expo [<exponent>]

Sets/Gets the exponent used for display. If ’-db’ is off, then the <exponent> is not
used. If ’-db’ is on, then the same quantity is displayed in decibel.

• setg *GraphStft* -graph [<stft>]

Gets/Sets the stft to be displayed by the GraphStft. (The ’-cgraph’ field is equivalent
to that field).

Bindings

• {Shift + Middle button = vertical (decibel) section}

• {Ctrl + Middle button = horizontal (decibel) section}

• Type ’c’ to change cursor mode

• ’z’ : changes the zoom mode just type ’z’

• Left/Right/Middle button : operate the zoom

4.4 Demos

Here is a list of all the Demo files and for each of them all the corresponding Demo com-
mands. To try a Demo command, you should first source the corresponding Demo file
then run the command. (When sourcing the Demo file, LastWave tells you about all the
commands included in this file).
The Demo files corresponding to this package are :

Demo file DemoSTFT

• DemoSTFTBonjour (in file LastWave 3 0/scripts/stft/DemoSTFT)

Demo command that computes and displays the short time fourier transform (using
a hamming window) of a voice signal saying the french word ’bonjour’. It also prints
the coordinates of the most correlated atom. Warning : This demo uses a lot of
memory, thus, if you are running on a Macintosh, you should allocate at least 20Mo
to LastWave before running it.

Index

&atom, 35
&book, 37
&dict, 39
&maximadict, 39
&mol, 39
&stft, 47

book, 40
book convert format, 42
BuildDict, 42

Demo, 45
DemoMPFastAlgo, 45
DemoMPRegAlgo, 45
DemoMPSound, 45
DemoSTFTBonjour, 50

fasthmpd, 42
fastmpd, 42

GraphBook, 43
GraphStft, 49

hmpd, 42

inner, 41

m, 43
mpd, 43
mpr, 40

n, 43
notes, 41

profile, 41

setdict, 40
stft, 48
stftd, 49
stftmax, 49

51

