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Abstract. Group signatures allow members of a group to anonymously sign messages in the name of
this group. They typically involve an opening authority that can identify the origin of any signature if the
need arises. In some applications, such a tracing capability can be excessively strong and it seems desir-
able to restrict the power of the authority. Sakai et al. recently suggested the notion of group signatures
with message-dependent opening (GS-MDO), where the opening operation is made contingent on the
knowledge of a trapdoor information – generated by a second authority – associated with the message.
Sakai et al. showed that their primitive implies identity-based encryption (IBE). In the standard model,
efficiently constructing such a system thus requires a structure-preserving IBE scheme, where the plain-
text space is the source group G (rather than the target group GT ) of a bilinear map e : G × G → GT .
Sakai et al. used a structure-preserving IBE which only provides bounded collusion-resistance. As a re-
sult, their GS-MDO construction only provides a weak form of anonymity where the maximal number
of trapdoor queries is determined by the length of the group public key. In this paper, we construct the
first fully collusion-resistant IBE scheme that encrypts messages in G. Using this construction, we obtain
a GS-MDO system with logarithmic signature size (in the number N of group members) and prove its
security in the standard model under simple assumptions.

Keywords. Group signatures, message-dependent opening, efficiency, collusion-resistance, structure-
preserving cryptography.

1 Introduction

Group signatures are central anonymity-related primitives, suggested by Chaum and van Heyst [21],
which allow users to sign messages while hiding their identity within a population they belong to.
They notably find applications in trusted computing platforms, auction protocols, anonymous sub-
scription systems or in mechanisms for protecting the privacy of commuters in public transportation.
To prevent users from abusing the system, group signatures usually involve an opening authority
(OA) which is capable of identifying the signer using some trapdoor information. Although the open-
ing authority can remain most frequently offline, group members have no privacy at all against this
all powerful entity that can spy on all signature generations and identify the signer every time. To
address this problem, Sakai et al. [36] advocated the design of a special kind of group signatures,
called group signatures with message-dependent opening (GS-MDO), where restrictions are placed
on the power of the OA. In the GS-MDO primitive, opening authorities cannot open any signature
on their own. In order to open a signature on a message M , they need both their private key and a
message-specific trapdoor tM generated by a separate authority called admitter.

While the notion of group signatures dates back to Chaum and van Heyst [21], truly scalable
and secure solutions remained elusive until the construction put forth by Ateniese et al. [6]. For
lack of well-understood definitions, the security of their scheme was analyzed w.r.t. a list of some-
times redundant properties. A suitable security model was studied later on by Bellare, Micciancio
and Warinschi [7] in the setting of static groups, where previous properties were subsumed by two
security notions named full anonymity and full traceability. The case of dynamically growing groups
was independently considered by Bellare, Shi and Zhang [9] and Kiayias and Yung [30].

During the last decade, a number of practical schemes were analyzed (e.g., [6, 30, 13, 33, 22]) in



the random oracle model [8], which is known [19] to only provide heuristic arguments in terms of
security. While theoretical standard model constructions were given under general assumptions [7, 9],
they were “only” proofs of concept. Viable constructions were suggested for the first time by Boyen
and Waters [15, 16] and Groth [24, 25] who took advantage of breakthrough results [23, 26] in the
construction of non-interactive zero-knowledge (NIZK) and witness indistinguishable (NIWI) proofs.
The most efficient standard model realizations to date rely on the Groth-Sahai methodology [26],
which is tailored to specific languages involving elements in bilinear groups.

Group Signatures with Message-Dependent Opening. Traditional group signature models
allow opening authorities to identify the originator of every single signature. As discussed by Sakai
et al. [36], it may be desirable to restrict this extremely high power in many real-life applications.

One way to address this problem is to use techniques from threshold cryptography and share the
opening key among several distributed opening authorities (as considered in, e.g., [10]) in such a way
that none of these can individually open signatures and hurt the privacy of group members. While
this approach may be sufficient in some applications, it requires the distributed openers to run a joint
opening protocol whenever they want to trace a signature back to its source. In applications where
many signatures on the same message have to be opened, this may become impractical. For example,
suppose that group signatures are used to verify anonymous access rights to a parking or to enhance
the privacy of users in public transportation systems: by issuing a group signature on a message
consisting of the current date and time, users can demonstrate that they hold a valid credential and
paid the subscription without being linkable to their previous rides. If a crime is committed, the
police may want to find out who used a given metro line during a specific time interval. This requires
a mechanism allowing for the opening of all signatures generated for a given date-time message
and only those. Running a distributed opening protocol for each individual signature may be a
bottleneck in this scenario. The same is true when group signatures are used in auction protocols: if
group members are bidders who anonymously sign their bids, the threshold opening approach entails
a communication cost proportional to the number of winners who offered the highest amount.

The above use cases motivated Sakai et al [36] to formalize the notion of group signatures with
message-dependent opening (GS-MDO), which splits the role of the opening authority between two
entities called opener and admitter. In order to identify the author of a signature on a message M ,
the opener needs both its opening key ok and a trapdoor tM generated by the admitter for the
message M : the opening operation must be approved by the admitter, depending on the content of
the message. Importantly, neither entity is powerful enough to open a signature by itself. A crucial
difference with the aforementioned threshold opening approach is that, once a trapdoor tM has been
released for a sensitive message M , the opener can trace all signatures on M without any further
interaction with the admitter.

We believe this message-dependent opening property to be of interest even in the setting of a
centralized opening authority. Indeed, it features a complementary property to that of traceable
signatures [29]. These involve opening authorities which can release a user-specific trapdoor allowing
anyone to trace all signatures issued by a misbehaving group member. The GS-MDO primitive is
important when the tracing criterion is the signed message (which could contain keywords associated
with an illegal transaction) instead of the group member’s identity. Both techniques could actually
be used in conjunction: one could first use a message-specific trapdoor to identify all group members
who signed a suspicious message before tracing all other signatures created by these members.

Related Work. Sakai et al. [36] gave a general construction of GS-MDO and notably showed
that it implies Identity-Based Encryption [37, 14] (IBE): in their specific construction, the trusted
authority naturally serves as an admitter and message-specific trapdoors are nothing but IBE private
keys associated with the message. They also pointed out that, in order to build an efficient GS-MDO
system in the standard model with the current state of knowledge in the area, they need a form of
structure-preserving IBE scheme. Recall that a cryptographic primitive is called structure-preserving
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(see [24, 20, 3, 1, 2, 18, 4] for examples) if it handles objects – like ciphertexts or signatures – that only
consist of elements from a group G over which a bilinear map is efficiently computable and if the
validity of these objects can be checked using pairing-product equations. The latter properties make
the primitive compatible with the Groth-Sahai techniques [26], which is crucial when one seeks to
prove security in the standard model.

The main difficulty is that no structure-preserving IBE scheme is available to date: all pairing-
based schemes proceed either by XORing the message with a hashed Bilinear Diffie-Hellman key
[14] or encrypting messages that live in the target group GT of the bilinear map e : G × G → GT

(see, e.g., [11, 38]). In order to construct an efficient GS-MDO in the standard model, what we
need is an IBE scheme that encrypts messages in the domain group G. We call such a system
partially structure-preserving since identities do not have to be group elements and private keys can
be ordinary (non-structure-preserving) signatures. For lack of a fully collusion-resistant such IBE,
Sakai et al. [36] used a variant of the k-resilient construction of Heng and Kurosawa [28]: in the
latter, semantic security is only guaranteed against adversaries that obtain private keys for no more
than an a priori bounded number of identities. Moreover, the master public key has linear size in the
pre-determined upper bound k. As a consequence, the standard model GS-MDO realization of [36]
only achieves a relaxed flavor of security: namely, anonymity against the opener is only guaranteed as
long as the adversary obtains trapdoors for at most k distinct messages. Moreover, the group public
key inherits the O(k) size of the underlying IBE system.

In the random oracle model, Ohara et al. [34] recently proposed a construction allowing for an
unbounded number of trapdoor queries. However, for the time being, building a fully secure GS-MDO
system in the standard model remains an open problem.

Our Contribution. In this paper, we describe a GS-MDO system with O(logN) size signatures,
where N is the number of group members, and prove its security in the standard model under
simple, constant-size assumptions (i.e., we do not use q-type assumptions where the number of input
elements depends on the number of adversarial queries or other system-related parameters).

As a result of independent interest, we describe the first fully collusion-resistant pairing-based IBE
scheme that allows encrypting messages in the source group G. This property is useful when it comes
to proving properties about IBE-encrypted data: for example, the techniques of Camenisch et al.
[17] can be used in combination with Groth-Sahai proofs to provide evidence that an IBE-encrypted
plaintext belongs to a public set. Our system proceeds by blinding the plaintext M ∈ G using a
random mask obtained by multiplying a random subset

∏
i∈S Zi of public elements (Z1, . . . , Z`) ∈ G`,

where ` is proportional to the security parameter. The `-bit string K identifying the subset S (so
that K[i] = 1 if and only if Zi ∈ S) is in turn encoded in a bit-wise manner using a variant of the
Waters IBE scheme, each bit K[i] of K being encoded as an independent IBE ciphertext entirely
comprised of elements in G. A consequence of this bit-by-bit encoding is that we need O(`) group
elements to encrypt one element M ∈ G. Despite its relatively large ciphertext size, our construction
suffices to provide O(logN) size signatures.

If we naively plug our IBE scheme into the general GS-MDO construction of Sakai et al. [36],
we obtain signatures consisting of O(λ) group elements (or O(λ2) bits), where λ is the security
parameter, as each signature includes an IBE ciphertext. Fortunately, we can obtain signatures
of only O(logN) group elements – which is substantially shorter since logN � λ for any group of
polynomial cardinality N – by combining the bit-wise encoding of our IBE scheme with the technique
used in the Boyen-Waters group signature [15]. In the latter, membership certificates consist of Waters

signatures
(
gω · (v0 ·

∏`
j=1 v

id[j]
j )r, gr

)
on the group members’ identifiers id ∈ {0, 1}`, where ` = logN ,

and each group signature contains commitments to the individual bits id[j] of id as well as NIWI
proofs showing that committed values are actually bits. Our idea is thus to encode each bit id[j] of
id using a structure-preserving identity-based bit encryption scheme where the receiver’s identity is
the message to be signed. In order to guarantee anonymity against the admitter, we follow [36] and
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super-encrypt each IBE ciphertext under the opener’s public key using a CCA2-secure public-key
cryptosystem. For groups of N = 106 users, we eventually obtain signatures of 68 kB at the 128-bit
security level, which is approximately twice the signature length of the k-resilient scheme of [36].

Organization. In the forthcoming sections, we first recall the syntax and the security definitions
of group signatures with message-dependent opening in Section 2. Section 3 describes our structure-
preserving IBE system and our GS-MDO scheme is detailed in Section 4.

2 Background

2.1 Bilinear Maps and Complexity Assumptions

We use bilinear maps e : G×G→ GT over groups of prime order p where e(g, h) 6= 1GT if and only
if g, h 6= 1G. In these groups, we rely on two hardness assumptions that are both non-interactive and
stated using a constant number of elements.

Definition 1 ([13]). The Decision Linear (DLIN) Problem in G, is to distinguish the distributions
(ga, gb, gac, gbd, gc+d) and (ga, gb, gac, gbd, gz), with a, b, c, d R← Zp, z R← Zp. The Decision Linear
assumption is the intractability of DLIN for any PPT distinguisher.

Definition 2 ([14]). The Decision 3-party Diffie-Hellman (D3DH) Problem in G, is to distin-
guish the distributions (g, ga, gb, gc, gabc) and (g, ga, gb, gc, gz), where a, b, c, z R← Zp.

2.2 Groth-Sahai Proof Systems

Groth-Sahai (GS) proofs [26] can be based on the DLIN assumption, where they use prime order
groups and a common reference string containing three vectors ~f1, ~f2, ~f3 ∈ G3, where ~f1 = (f1, 1, g),
~f2 = (1, f2, g) for some f1, f2 ∈ G. To commit to X ∈ G, one chooses r, s, t R← Zp and computes

~C = (1, 1, X)· ~f1
r
· ~f2

s
· ~f3

t
. In the soundness setting, we have ~f3 = ~f1

ξ1 · ~f2
ξ2

where ξ1, ξ2 ∈ Zp. Commit-

ments ~C = (f r+ξ1t1 , fs+ξ2t2 , X · gr+s+t(ξ1+ξ2)) are then extractable using β1 = logg(f1), β2 = logg(f2).

In the witness indistinguishability (WI) setting, ~f1, ~f2, ~f3 are linearly independent and ~C is a per-
fectly hiding commitment. Under the DLIN assumption, the two kinds of CRS are indistinguishable.

To commit to an exponent x ∈ Zp, the prover computes ~C = ~ϕx · ~f1
r
· ~f2

s
, where r, s R← Zp, using a

CRS consisting of vectors ~ϕ, ~f1, ~f2. In the perfect soundness setting, ~ϕ, ~f1, ~f2 are linearly independent

while, in the perfect WI setting, choosing ~ϕ = ~f1
ξ1 · ~f2

ξ2
gives a perfectly hiding commitment.

To prove that committed variables satisfy a set of relations, the prover computes one commit-
ment per variable and one proof element per relation. Such non-interactive witness indistinguishable
(NIWI) proofs are available for pairing-product equations, which are equations of the form

n∏
i=1

e(Ai,Xi) ·
n∏
i=1

·
n∏
j=1

e(Xi,Xj)aij = tT , (1)

for variables X1, . . . ,Xn ∈ G and constants tT ∈ GT , A1, . . . ,An ∈ G, aij ∈ Zp, for i, j ∈ {1, . . . , n}.
Efficient NIWI proofs are also available for multi-exponentiation equations, which are of the form∏m
i=1A

yi
i ·

∏n
j=1X

bj
j ·

∏m
i=1 ·

∏n
j=1X

yiγij
j = T, for variables X1, . . . ,Xn ∈ G, y1, . . . , ym ∈ Zp and

constants T,A1, . . . ,Am ∈ G, b1, . . . , bn ∈ Zp and γij ∈ G, for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.
In pairing-product equations, proofs for quadratic equations require 9 group elements whereas

linear equations (i.e., where aij = 0 for all i, j in equation (1)) only cost 3 group elements each.
Linear multi-exponentiation equations of the type

∏m
i=1A

yi
i = T require 2 group elements.
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2.3 Group Signatures with Message-Dependent Opening

We use the syntax of [36], which extends the static model of Bellare, Micciancio and Warinschi [7].

Keygen(λ,N): given a security parameter λ ∈ N and a maximal number of group members N ∈ N,
this algorithm outputs a group public key gpk, a vector gsk = (gsk[0], . . . , gsk[N − 1]) of group
members’ private keys as well as private keys mskADM and ok for the admitter and the opener.

Sign: takes as input a message M , a private key gsk[i] and gpk, it outputs a signature σ.
Verify: is a deterministic algorithm taking as input a signature σ, a message M and a group public

key gpk. It returns either 0 or 1.
TrapGen: is a possibly randomized algorithm that takes as input the admitter’s private key mskADM

and a message M . It outputs a trapdoor tM allowing the OA to open all signatures on M .
Open: takes as input a message M , a valid signature σ w.r.t. gpk, the opening authority’s private

key ok and a trapdoor tM for the message M . It outputs i ∈ {0, . . . , N −1}∪{⊥}, which is either
the index of a group member or a symbol indicating an opening failure.

Definition 3. A GS-MDO scheme provides full traceability if, for any λ ∈ N, any N ∈ poly(λ) and
any PPT adversary A involved in the experiment hereafter, it holds that

Advtrace
A (λ) = Pr[Exptrace

A (λ,N) = 1] ∈ negl(λ).

Exptrace
A (n,N)

(gpk, ok,mskADM,gsk)← Keygen(λ,N)

st← (ok,mskADM, gpk) ; C ← ∅ ; K ← ε ; Cont← true

while (Cont = true) do

(Cont, st, j)← ASign(gsk[·],·)(choose, st,K)

if Cont = true then C ← C ∪ {j} ; K ← K ∪ {gsk[j]} end if

end while

(M?, σ?)← ASign(gsk[·],·)(guess, st)

if Verify(gpk,M?, σ?) = 0 then Return 0

if Open(gpk, ok,TrapGen(gpk,mskADM,M
?),M?, σ?) =⊥ then Return 1

if ∃j? ∈ {0, . . . , N − 1} such that

(Open(gpk, ok, tM? ,M?, σ?) = j?) ∧ (j? /∈ C) ∧ ((j?,M?) not queried by A)

with tM? ← TrapGen(gpk,mskADM,M
?)

then Return 1

else Return 0

Definition 4. A GS-MDO scheme provides full anonymity against the admitter if, for any λ ∈ N,
any N ∈ poly(λ) and any PPT adversary A, the function

Advanon-adm
A (λ) = |Pr[Expanon-adm

A (λ,N) = 1]− 1/2| ∈ negl(λ)

is a negligible function in the security parameter if the experiment proceeds as follows

Expanon−adm
A (λ,N)

(gpk, ok,mskADM,gsk)← Keygen(λ,N)

(st, j0, j1,M
?)← AOok(choose, gpk,gsk,mskADM)

b R← {0, 1}; σ? ← Sign(gpk, gsk[jb],M
?)

b′ ← AOok(guess, st, σ?)

Return 1 if b′ = b and 0 otherwise

In the above notation, Ook denotes an oracle that takes as input any adversarially chosen signature
σ 6= σ? and uses ok and mskADM to determine and return the identity of the signer.

5



Definition 5. A GS-MDO scheme provides full anonymity against the opener if, for any λ ∈ N,
any N ∈ poly(λ) and any PPT adversary A, the function

Advanon-oa
A (λ) = |Pr[Expanon-oa

A (λ,N) = 1]− 1/2| ∈ negl(λ)

is a negligible function in the security parameter if the experiment goes as follows

Expanon−oa
A (λ,N)

(gpk, ok,mskADM,gsk)← Keygen(λ,N)
(st, j0, j1,M

?)← AOmskADM (choose, gpk,gsk, ok)

b R← {0, 1}; σ? ← Sign(gpk, gsk[jb],M
?)

b′ ← AOmskADM (guess, st, σ?)
Return 1 if b′ = b and 0 otherwise

In the above notation, OmskADM
(.) is an oracle that returns trapdoors for arbitrary messages M 6=

M? chosen by the adversary.

3 A Fully Collusion-Resistant Partially Structure-Preserving IBE

3.1 Intuition

The scheme is only partially structure-preserving in that identities are still encoded as binary strings
and private keys are ordinary signatures (recall that, in any IBE, private keys are signatures on
the corresponding identity, as mentioned in [14]) instead of structure-preserving ones. It can be
seen as a variant of Waters’ IBE [38] (see Appendix A for syntactic definitions) and builds on a
consequence of the Leftover Hash Lemma [27]: namely, if ` > 2 log2(p) and a1, . . . , a` ∈R Zp are

uniformly distributed in Zp, then random subset sums
∑`

i=1 βiai with (β1, . . . , β`) ∈R {0, 1}` are
statistically indistinguishable from uniformly random values in Zp.

The idea is to include a vector (Z1, . . . , Z`) ∈ G` in the master public key. The message M ∈ G
will be encrypted by choosing a random `-bit string K ∈ {0, 1}` and multiplying M with a product
of elements in the set S = {Zi | K[i] = 1}. Then, each bit K[i] of K will be individually encrypted
using a variant of the Waters IBE. In the latter variant, an encryption of 1 will consist of a tuple

(Ci,1, Ci,2, Ci,3, Ci,4) = (gsi , HG(ID)si , g
si/ωi
1 , gωi2 ), where si, ωi ∈R Zp. In an encryption of 0, the pair

(Ci,3, Ci,4) is chosen uniformly in G2. Upon decryption, the receiver can use his private key (d1, d2) to
test whether the equality e(Ci,3, Ci,4) = e(Ci,1, d1)/e(Ci,2, d2) holds. If it does, the receiver decodes
the i-th bit of K as K[i] = 1. Otherwise, it sets K[i] = 0. The security of the resulting scheme can
be proved under the D3DH assumption (instead of the DBDH assumption).

Although the latter scheme allows encrypting messages in the group G, it still does not provide
all the properties we need for the problem at hand. When it comes to proving that a ciphertext
encrypts a message that coincides with the content of Groth-Sahai commitment, the difficulty is to
prove that the equality e(Ci,3, Ci,4) = e(Ci,1, d1)/e(Ci,2, d2) is not satisfied when K[i] = 0. For this
reason, we need to modify the scheme as suggested in Section 3.2.

3.2 Construction

In order to be able to efficiently prove that a ciphertext and a Groth-Sahai commitment hide the
same group element, we modify the scheme of Section 3.1 as follows. In the master public key, the
element g1 is replaced by a pair (g0, g1) = (gα0 , gα1). The master secret key is twinned in the same
way and now consists of (gα0

2 , gα1
2 ). Likewise, each identity is assigned a private key of the form

(d0,1, d0,2, d1,1, d1,2) = (gα0
2 ·HG(ID)r0 , gr0 , gα1

2 ·HG(ID)r1 , gr1).
In the encryption algorithm, when the sender wants to “encrypt” a bit K[i] of K ∈ {0, 1}`, it

generates (Ci,3, Ci,4) as (Ci,3, Ci,4) =
(
g
si/ωi
K[i] , g

ωi
2

)
, so that the receiver can easily determine the value

of K[i] using his private key.
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The modification will make it easier to prove equalities between the plaintext and a committed
value. The reason is that the prover does not have to prove an inequality when K[i] = 0: he essentially

has to prove statements of the form “(Ci,3, Ci,4) =
(
g
si/ωi
0 , gωi2

)
OR (Ci,3, Ci,4) =

(
g
si/ωi
1 , gωi2

)
”. Our

construction of Groth-Sahai-compatible IBE thus goes follows.

Setup(λ) : Choose bilinear groups (G,GT ) of prime order p > 2λ. Then, do the following.

1. Choose α0, α1
R← Zp, g R← G, g2

R← G and set g0 = gα0 , g1 = gα1 .

2. Choose u0, u1, . . . , uL
R← G, for a suitably large L ∈ poly(λ). These will be used to im-

plement a number-theoretic hash function HG : {0, 1}L → G such that any L-bit string

τ = τ [1] . . . τ [L] ∈ {0, 1}L is mapped to the value HG(τ) = u0 ·
∏L
i=1 u

τ [i]
i .

3. Choose group elements (Z1, . . . , Z`)
R← G`, where ` = 2dlog2(p)e > 2λ.

The master secret key is msk := (gα0
2 , gα1

2 ) and the master public key is defined as

mpk =
(

(G,GT ), p, g, g0 = gα0 , g1 = gα1 , g2, {ui}Li=0, {Zi}`i=1

)
Keygen(msk, ID) : given the master secret key msk = (gα0

2 , gα1
2 ) and an identity ID ∈ {0, 1}L, choose

r0, r1
R← Zp to compute and return

dID = (d0,1, d0,2, d1,1, d1,2) =
(
gα0
2 ·HG(ID)r0 , gr0 , gα1

2 ·HG(ID)r1 , gr1
)
.

Encrypt(mpk, ID,M) : to encrypt a message M ∈ G, conduct the following steps.

1. Choose a random `-bit string K R← {0, 1}`, where ` = 2 log2(p).
2. Choose s1, . . . , s`

R← Zp and ω1, . . . , ω`
R← Zp.

3. Parse K as K[1] . . .K[`] ∈ {0, 1}`. For i = 1 to `, compute

Ci,1 = gsi Ci,2 = HG(ID)si Ci,3 = g
si/ωi
K[i] Ci,4 = gωi2 (2)

4. Then, compute C0 = M ·
∏`
i=1 Z

K[i]
i .

Return the ciphertext C =
(
C0, {(Ci,1, Ci,2, Ci,3, Ci,4)}`i=1

)
∈ G4`+1.

Decrypt(mpk, dID, C) : parse C as C =
(
C0, {(Ci,1, Ci,2, Ci,3, Ci,4)}`i=1

)
.

1. For i = 1 to ` compute µb = e(Ci,1, db,1)/e(Ci,2, db,2) for each b ∈ {0, 1}. If there exists
b ∈ {0, 1} such that µb = e(Ci,3, Ci,4), set K[i] = b. Otherwise, return ⊥.

2. Compute and return M = C0/(
∏`
i=1 Z

K[i]
i ).

Unlike the IBE system of Sakai et al. [36], the above scheme provides full collusion-resistance and
the size of the master public key only depends on the security parameter and not on a pre-determined
bound on the number of corrupted users.

Theorem 1. The above IBE scheme provides IND-ID-CPA security under the D3DH assumption.

Proof. To prove the result, we consider a sequence of games which begins with the real game and
ends with a game where the adversary’s view is independent of the challenger’s bit β ∈ {0, 1}. For
each i, we denote by Si the event that the adversary wins in Game i and we define the adversary’s
advantage as Advi := |Pr[Si]− 1/2|.

Game 0: This is the real attack game where the challenger generates a proper encryption ofMβ, with

β R← {0, 1}, in the challenge phase. The game ends with the adversary A outputting β′ ∈ {0, 1}
and we denote by S0 the event that β′ = β.
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Game i (1 ≤ i ≤ `): In this game, the challenger generates the challenge ciphertext in a hybrid
manner. Namely, for each j ∈ {1, . . . , `}, the challenger generates the ciphertext components
{(Cj,1, Cj,2, Cj,3, Cj,4)} as follows.

- If j ≤ i, its picks sj
R← Zp, computes (Cj,1, Cj,2) = (gsj , HG(ID)sj ) but chooses (Cj,3, Cj,4)

R← G2

at random.
- If j > i, it runs the normal encryption algorithm and sets

(Cj,1, Cj,2, Cj,3, Cj,4) = (gsj , HG(ID)sj , g
sj/ωj
K[j] , g

ωj
2 )

for randomly chosen sj , ωj
R← Zp.

Game `+ 1: This game is identical to Game ` with the difference that, in the challenge ciphertext,

C0 is chosen as a uniformly random C0
R← G instead of being computed as C0 = Mβ ·

∏`
j=1 Z

K[j]
j .

For each j ∈ {1, . . . , `}, Lemma 1 shows that Game j is computationally indistinguishable from
Game j − 1 if the D3DH assumption holds.

In Game `, the ciphertext components {(Cj,1, Cj,2, Cj,3, Cj,4)}`j=1 are completely uncorrelated to

the string K = K[1] . . .K[`] ∈ {0, 1}` that is used to compute C0 = Mβ ·
∏`
j=1 Z

K[j]
j . For this reason,

we argue that the adversary’s view is statistically independent of Mβ. This is easily seen by observing
that the Leftover Hash Lemma implies that the two distributions

D0 = {(a, 〈a, z〉) | a R← Z`p, z
R← {0, 1}`} D1 = {(a,w) | a R← Z`p, w

R← Zp},

are statistically close when ` > 2 log2(p). Consequently, Game ` is statistically close to Game `+ 1,
where C0 is replaced by a uniformly random group element in the challenge ciphertext. In the latter
game, we clearly have Pr[S`+1] = 1/2 (and thus Adv`+1 = 0) since the challenge ciphertext is
completely independent of Mβ. ut

Lemma 1. If the D3DH assumption holds, Game i is computationally indistinguishable from Game
i − 1 for each i ∈ {1, . . . , `}. More precisely, if A runs in time t and has significantly different
advantages in Game i and Game i − 1, then there exists a PPT algorithm B with running time
t+O(ε−2 ln(ε−1)η−1 ln(η−1)) such that

|Advi(A)−Advi−1(A)| ≤ 16 · (L+ 1) · q ·AdvD3DH(B),

where η = 1/(4(L+ 1)q) and q is the maximal number of private key queries. (The proof is given in
Appendix B.)

We note that the same idea can be applied to construct other partially structure-preserving
primitives. For example, it can be applied to selectively-secure attribute-based encryption schemes
based on the Decision Bilinear Diffie-Hellman assumption [35]. We can also construct a structure-
preserving variant of the Boneh-Boyen-Goh HIBE [12]: for a hierarchy of depth d, we have to rely

on a slightly stronger assumption than [12], which posits the hardness of distinguishing h(α
d+1) from

random given (g, gα, . . . , g(α
d), h) ∈ Gd+2.

3.3 Proving Properties about Encrypted Messages

Our solution retains the useful property of the scheme in [36] as it allows efficiently proving relations

about the plaintext using the Groth-Sahai techniques. If ~CM = (1, 1,M) · ~f1
rM · ~f2

sM · ~f3
tM

denotes
a Groth-Sahai commitment to a message M ∈ G which is also encrypted with the above IBE, the
sender can proceed as follows to prove the equality between the committed message and the plaintext.

For each i ∈ {1, . . . , `}, the sender computes a commitment ~CKi = (1, 1, gK[i])· ~f1
rK[i] · ~f2

sK[i] · ~f3
tK[i]
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to the group element Ki = gK[i] and generates a non-interactive proof ~πK[i] that K[i] ∈ {0, 1}. This
is typically achieved by proving the equality K[i]2 = K[i] mod p with a proof ~πK[i] consisting of 9

group elements. Next, the sender generates a commitment ~CGi to the group element Gi = gK[i] and
generates a non-interactive proof ~πGi that committed elements Gi and K[i] satisfy the equality

Gi = g
K[i]
1 · g1−K[i]

0

or, equivalently, e(Gi, g) = e(g1,Ki) ·e(g0,K−1i ·g). The latter is a linear equation for which the proof

~πGi requires three group elements. Then, the sender generates a commitment ~CΘi to the auxiliary
variable Θi = gsi/ωi and generate non-interactive proofs ~πΘi,1, ~πΘi,2 for the relations

e(Θi, Ci,4) = e(Ci,1, g2) (3)

e(Θi, Gi) = e(g, Ci,3). (4)

Since (3) is a linear equation, ~πΘi,1 only requires 3 group elements. On the other hand, (4) is quadratic,
so that ~πΘi,2 costs 9 group elements to prove.

Finally, the sender is left with proving the equality e(C0/M, g) =
∏`
i=1 e(Zi,Ki), which is a linear

equation whose proof ~πC0 requires 3 group elements.
The whole NIWI proof

(
{~CKi , ~CGi , ~CΘi , ~πK[i], ~πGi , ~πΘi,1, ~πΘi,2}`i=1, ~πC0

)
thus takes 35`+ 3 group

elements overall.
In some cases, the above proof might have to be a NIZK (and not just NIWI) proof. In pairing-

product equations, NIZK proofs are not known to always exist. Fortunately, we can solve this issue
by introducing a constant number of extra variables, as we will see in Section 4.

4 A Fully Anonymous GS-MDO Scheme with Logarithmic-Size Signatures

Our construction departs from the general approach suggested in [36] in order to obtain shorter
signatures. The signing algorithm of [36] proceeds by choosing two random session keys KPKE and
KIBE which are separately encrypted using a CCA2-secure public-key encryption scheme and an IBE
scheme, respectively. These two keys KPKE and KIBE are then used to hide the group member’s
credential in the fashion of nested multiple encryptions while adding a proof that the hidden value is
a valid and properly encrypted credential. If we naively apply this approach using our IBE scheme,
we will eventually obtain signatures consisting of O(λ2) bits, where λ is the security parameter.

To reduce the signature size to O(λ logN) bits (recall that logN � λ since the cardinality N of
the group is assumed to be polynomial), we use a different approach. Instead of encrypting random
session keys which conceal the group member’s credential under two randomly generated session keys,
we directly encrypt the bits of the group member’s identity as if it were the session key K in the IBE
scheme of Section 3.2. This allows reducing the number of bit-carrying IBE ciphertext components
from O(λ) to O(logN). In order to make sure that neither the admitter or the opening authority
will be able to individually open any signature, we add a second encryption layer and additionally
encrypt – under the admitter’s public key using Kiltz’s DLIN-based CCA2-secure encryption scheme
[32] – the IBE ciphertext components which depend on the bits of the group member’s identity.

The rest of the signing algorithm proceeds as in the Boyen-Waters group signature [15], by
having the signer verifiably encrypt a two-level hierarchical signature [31], where the first-level (resp.
second-level) message is the signer’s identity (resp. the actual message). Like [15], we use a two-level
hierarchical extension of Waters’ signature [38].

4.1 Construction

Keygen(λ,N): given a security parameter λ ∈ N and N = 2`,

9



1. Choose bilinear groups (G,GT ) of prime order p > 2λ, with g R← G.

2. As a CRS for the Groth-Sahai NIWI proof system, select vectors f = (~f1, ~f2, ~f3) such that

~f1 = (f1, 1, g) ∈ G3, ~f2 = (1, f2, g) ∈ G3, and ~f3 = ~f1
ξ1 · ~f2

ξ2
, where f1 = gβ1 , f2 = gβ2 R← G

and β1, β2, ξ1, ξ2
R← Zp. We also define the vector ~ϕ = ~f3 · (1, 1, g).

3. Generate a master key pair (mskIBE,mpkIBE) for the identity-based key encapsulation scheme
of Section 3.21. These consist of mskIBE = (gα0

2 , gα1
2 ) and

mpkIBE =
(
g0 = gα0 , g1 = gα1 , g2, {ui}Li=0,

)
,

where L ∈ poly(λ) denotes the length of (hashed) messages to be signed. For a message M ∈
{0, 1}L, we define the function HU (M) ∈ G as HU (M) = u0 ·

∏L
i=1 u

M [i]
i , where M [i] ∈ {0, 1}

denotes the i-th bit of M .

4. Generate a key pair (skW, pkW) for a two-level hierarchical Waters signature. At level 1 (resp.
level 2), messages will be of length ` (resp. L). This key pair consists of skW = gω and

pkW =
(
e(g, g)ω, {vi}`i=0, {wi}Li=0

)
,

where ω ∈R Zp. Analogously to step 3, we denote by HW (M) the function that maps the

message M ∈ {0, 1}L to HW (M) = w0 ·
∏L
i=1w

M [i]
i , where M [i] ∈ {0, 1} is the i-th bit of M .

5. For each i ∈ {0, . . . , N − 1} generate the private key gsk[i] of member i as a Waters signature

gsk[i] =
(
gω ·
(
v0·
∏`
j=1 v

idi[j]
j

)r
, gr

)
, with r R← Zp, on the message idi = idi[1] . . . idi[`] ∈ {0, 1}`

which is obtained as the binary expansion of i ∈ {0, . . . , N − 1}. The private key skW = gω is
not needed beyond this point and can be erased after the generation of the vector of private
keys gsk = (gsk[0], . . . , gsk[N − 1]).

6. Generate a public key (X,Y, U, V ) = (gβx , gβy , gβu , gβv), with random βx, βy, βu, βv
R← Zp, for

Kiltz’s CCA2-secure encryption scheme.

7. Select a strongly unforgeable one-time signature scheme Σ = (G,S,V).

The admitter’s message specification key consists of mskADM := mskIBE. The private key ok of
the opening authority is defined as ok := (βx, βy, βu, βv). The private key of member i is gsk[i]
while the group public key is defined to be

gpk :=
(

(G,GT ), p, g, f = (~f1, ~f2, ~f3), mpkIBE, pkW, (X,Y, U, V ), Σ
)

Sign(gpk, gsk[i],M): to sign a message M ∈ {0, 1}L using the i-th group member’s private key

gsk[i] = (Si,1, Si,2) =
(
gω · (v0 ·

∏`
j=1 v

idi[j]
j )r, gr

)
, generate a one-time signature key pair

(SK,VK)← Σ.G(λ) and do the following.

1. Generate a two-level Waters signature where the message is idi ∈ {0, 1}` at the first level and
M ∈ {0, 1}L at level 2. The signature consists of

(Ω1, Ω2, Ω3) =
(
Si,1 · (v0 ·

∏̀
j=1

v
idi[j]
i )r

′ ·HW (M)s, Si,2 · gr
′
, gs

)

=
(
gω · (v0 ·

∏̀
j=1

v
idi[j]
i )r

′′ ·HW (M)s, gr
′′
, gs

)
,

where r′′ = r + r′.

1 Note that the {Zi}`i=1 components are not needed here and can be discarded.
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2. Generate a commitment ~CHV to HV = v0 ·
∏`
j=1 v

idi[j]
j . Then, for each j ∈ {1, . . . , `}, generate

a commitment ~CFj to Fj = gidi[j] and generate a NIWI proof ~πHV ∈ G3 that

e(HV , g) ·
∏̀
j=1

e(vj , Fj)
−1 = e(v0, g) (5)

Since (5) is a linear equation, ~πHV only requires 3 group elements.
3. Choose s1, . . . , s`

R← Zp and ω1, . . . , ω`
R← Zp. For j = 1 to `, compute

Cj,1 = gsj Cj,2 = HU (M)sj (6)

Cj,3 = g
sj/ωj
idi[j]

Cj,4 = g
ωj
2

Then, encrypt Cj,3 using Kiltz’s encryption scheme, by choosing zj,1, zj,2
R← Zp and computing

Ψj = (Ψj,1, Ψj,2, Ψj,3, Ψj,4, Ψj,5) =
(
Xzj,1 , Y zj,2 , Cj,3 · gzj,1+zj,2 , (gVK · U)zj,1 , (gVK · V )zj,2

)
The next step will be to prove that the ciphertexts {Ψj}`j=1 encrypt {Cj,3}`j=1 such that

{(Cj,1, Cj,2, Cj,3, Cj,4)}`j=1 are of the form (6) with idi[j] ∈ {0, 1}.

4. To generate NIZK proofs for the next statements, generate commitments ~Cθ = ~ϕθ · ~f1
rθ · ~f2

sθ
,

as well as ~CΓ1 and ~CΓ2 to the variables

θ = 1, Γ1 = gθ, Γ2 = gθ2 (7)

and a non-interactive proof ~πΓ for the three equalities (7), which requires 9 group elements
(3 for each equation). Then, for each j ∈ {1, . . . , `}, generate Groth-Sahai commitments ~CGj ,

~CΘj ,
~Czj,1 , ~Czj,2 to the variables Gj = g

idi[j]
1 ·g1−idi[j]0 , Θj = gsj/ωj , Zj,1 = gzj,1 and Zj,2 = gzj,2 .

Then, generate NIZK proofs ~πj , ~πGj , ~πΘj , {~πΨj,k}3k=1 for the relations

e(Fj , Fj) = e(g, Fj) (8)

e(Gj , g) = e(g1, Fj) · e(g0, F−1j · g) (9)

e(Θj , Cj,4) = e(Cj,1, g2) (10)

e(Ψj,1, g) = e(X,Zj,1) (11)

e(Ψj,2, g) = e(Y, Zj,2) (12)

e(Ψj,3, g) = e(Θj , Gj) · e(g, Zj,1 · Zj,2) (13)

This is done by proving that

e(Fj , Fj) = e(g, Fj) (14)

e(Gj , g) = e(g1, Fj) · e(g0, F−1j · g) (15)

e(Θj , Cj,4) = e(Cj,1, Γ2) (16)

e(Ψj,1, Γ1) = e(X,Zj,1) (17)

e(Ψj,2, Γ1) = e(Y,Zj,2) (18)

e(Ψj,3, Γ1) = e(Θj , Gj) · e(Γ1, Zj,1 · Zj,2) (19)

Note that relation (8) guarantees that each idi[j] is indeed a bit. Relations (14) and (19) are
quadratic equation and thus require 9 elements each whereas 12 elements suffice for relations
(15)-(18). Note that the same variable θ ∈ Zp can be re-used for each j ∈ {1, . . . , `}, so that
(7) only needs to be proved once.
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5. Generate a commitment ~CΩ1 to Ω1 with a NIWI proof ~πW ∈ G3 that variables (Ω1, HV )
satisfy the verification equation

e(g, g)ω · e(HW (M), Ω3) = e(Ω1, g) · e(HV , Ω
−1
2 ) (20)

of the two-level Waters signature.

6. Finally, use SK to generate a one-time signature σots on the entire set of commitments and
NIWI/NIZK proofs in order to achieve anonymity in the CCA2 sense.

The whole signature σ consists of

σ =
(
VK, ~CHV ,

~Cθ, ~CΓ1 ,
~CΓ2 , ~πΓ , ~πHV , ~πW , {~CFj , (Cj,1, Cj,2, Cj,4, Ψj),

~CGj , ~πGj , ~πΘj ,
~CΘj ,

~CZj,1 ,
~CZj,2 , ~πj , {~πΨj,k}

3
k=1}`j=1,

~CΩ1 , Ω2, Ω3, σots

)
Verify(gpk,M, σ): parse σ as above. Return 1 if and only if: (i) σots is a valid one-time signature on

the entire bundle; (ii) {Ψj}`j=1 are all valid ciphertexts for Kiltz’s cryptosystem (i.e., by testing

if e(Ψj,4, X) = e(Ψj,1, g
VK · U) and e(Ψj,5, Y ) = e(Ψj,2, g

VK · V )); (iii) e(Cj,1, HU (M)) = e(g, Cj,2)
for each j ∈ {1, . . . , `}; (iv) All proofs properly verify.

TrapGen(gpk,mskADM,M): given the admitter’s key mskADM = (gα0
2 , gα1

2 ) and a message M ∈
{0, 1}L, choose r0, r1

R← Zp to compute and return

tM = (t0,1, t0,2, t1,1, t1,2) =
(
gα0
2 ·HU (M)r0 , gr0 , gα1

2 ·HU (M)r1 , gr1
)
. (21)

Open(gpk, ok, tM ,M, σ): return ⊥ if σ is not a valid group signature w.r.t. gpk and M . Otherwise,
parse tM as in (21). For i = 1 to `, do the following.

1. Decrypt Ψj = (Ψj,1, Ψj,2, Ψj,3, Ψj,4, Ψj,5) using ok = (βx, βy, βu, βv) to obtain Cj,3 ∈ G.

2. Use tM to determine the bit id[i] ∈ {0, 1} for which the equalities (6) are satisfied.

Return the identifier id = id[1] . . . id[`] ∈ {0, 1}`.

Overall, each signature consists of 53` + 35 group elements if the scheme is instantiated with
Groth’s discrete-logarithm-based one-time signature [24]. For groups of N ≈ 106 members (which
can accommodate the population of a city), we can set ` = 20 and obtain signatures of 68 kB
at the 128-bit security level assuming that each group element has a 512-bit representation. In
comparison, the k-resilient system of Sakai et al. [36] already requires signatures of 32 kB for the
same security level. While less efficient than the random-oracle-based realization of [34], our scheme
is not unrealistically expensive for practical applications.

4.2 Security

The traceability of the scheme relies on the standard CDH assumption whereas the anonymity
properties rely on the D3DH and DLIN assumptions. In the proof of anonymity against the admitter,
we also need to assume that the one-time signature is strongly unforgeable [5], which is implied by
the DLIN assumption in Groth’s scheme [24]. Since the CDH assumption is implied by both D3DH
and DLIN, we only need two assumptions to prove the following result (as detailed in Appendix C).

Theorem 2. The scheme provides full traceability as well as full anonymity against the opener and
the admitter assuming that: (i) Σ is a strongly unforgeable one-time signature; (ii) The DLIN and
D3DH assumption both hold in G.
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A Definitions for Identity-Based Encryption

Definition 6 ([14]). An IBE scheme is a tuple (Setup,Keygen,Encrypt,Decrypt) of efficient
algorithms such that:

– Setup takes as input a security parameter λ ∈ N and outputs a master public key mpk and a
matching master secret key msk.

– Keygen takes as input an identity ID and a master secret key msk. It outputs a private key dID
for the identity ID.

– Encrypt takes as input the master public key mpk, an identity ID and a message m and outputs
a ciphertext C.

– Decrypt takes as input the master public key mpk, a decryption key dID and a ciphertext C and
outputs a message M .

Correctness requires that, for any λ ∈ N, any outputs (mpk,msk) of Setup(λ), any plaintext M and
any ID, if dID ← Keygen(msk, ID), we have Decrypt(mpk, dID,Encrypt(mpk, ID,M)) = M.

The standard security notion captures the semantic security of messages encrypted under some
identity, even when the adversary has corrupted polynomially-many other identities.

Definition 7. [14] An IBE system is semantically secure (or IND-ID-CPA secure) if no PPT ad-
versary A has non-negligible advantage in this game:

1. The challenger generates a master key pair (mpk,msk)← Setup(λ) and gives mpk to A.
2. A issues a number of key extraction queries for identities ID of its choice. The challenger responds

with dID ← Keygen(msk, ID).
3. When the adversary A decides that phase 2 is over, it chooses distinct equal-length messages

M0,M1 and an identity ID? that has never been queried to the key extraction oracle at step 2. The
challenger flips a coin d R← {0, 1} and returns a challenge ciphertext C? = Encrypt(mpk, ID,M?

d ).
4. A issues new queries but cannot ask for the private key of ID?.
5. A finally outputs a bit d′ ∈ {0, 1} and wins if d′ = d. A’s advantage is defined as the distance

Advind-id-cpa(A) := |Pr[d′ = d]− 1/2|.

In k-resilient IBE schemes [28], the adversary is restricted to make private key extraction queries
on at most k distinct identities. In this paper, we consider the standard definition where the maximal
number of private key queries is not fixed in advance.

B Proof of Lemma 1

Proof. Let us assume that there exists i ∈ {1, . . . , `} for which a PPT adversary A can tell Game i
apart from Game i−1. We show how to build an algorithm B that takes in an instance (g, ga, gb, gc, T )
of the D3DH problem and uses its interaction with A to decide if T = gabc or T ∈R G.
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To this end, algorithm B prepares the master public key mpk by randomly choosing γ0, γ1
R← Zp

and setting g0 = (ga)γ0 , g1 = (ga)γ1 as well as g2 = gb. Note that this implicitly defines α0 = a · γ0
and α1 = a · γ1. Next, B chooses random values ν R← {0, . . . , L}, ρ0, ρ1, . . . , ρL R← {0, . . . , ζ − 1}
and δ0, δ1, . . . , δL

R← Zp, with ζ = 2q and where q is the maximal number of private key queries
throughout the game. These are used to define

u0 = gδ0 · (gb)ν·ζ−ρ0 (22)

ui = gδi · (gb)−ρi , i ∈ {1, . . . , L},

so that any L-bit identity ID = ID[1] . . . ID[L] ∈ {0, 1}L has a hash value HG(ID) = u0 ·
∏L
i=1 u

ID[i]
i

that can be written HG(ID) = gJ2(ID) · (gb)J1(ID) if we define the functions

J1(ID) = ν · ζ − ρ0 −
L∑
i=1

ρi · ID[i], J2(ID) = δ0 −
L∑
i=1

δi · ID[i].

The generation of mpk is completed by having B choose Z1, . . . , Z`
R← G at random.

Whenever A queries an identity ID for private key extraction, B uses the same strategy as in the
security proofs of [11, 38]. Namely, it first evaluates the function J1(ID). If J1(ID) = 0, it aborts and
outputs a random bit. Otherwise, it chooses r0, r1

R← Zp and computes

(d0,1, d0,2, d1,1, d1,2)

=
(
HG(ID)r0 · (ga)−γ0·J2(ID), gr0 · (ga)−γ0/J1(ID), HG(ID)r1 · (ga)−γ1·J2(ID), gr1 · (ga)−γ1/J1(ID)

)
which can be written (gγ0·a2 ·HG(ID)r̃0 , gr̃0 , gγ1·a2 ·HG(ID)r̃1 , gr̃1) if we define r̃0 = r0 − γ0 · a/J1(ID)
and r̃1 = r1 − γ1 · a/J1(ID). The 4-uple dID = (d0,1, d0,2, d1,1, d1,2) thus forms a valid private key and
is returned to A.

When A decides to enter the challenge phase, it chooses messages M0,M1 ∈ G and a target
identity ID?. At this point, B aborts and outputs a random bit in the event that J1(ID

?) 6= 0.
Otherwise (i.e., if J1(ID

?) = 0), B chooses a bit β R← {0, 1} as well as a random `-bit string K R←
{0, 1}` and generates the challenge ciphertext as follows.

- For each j ∈ {1, . . . , i− 1}, B sets (Cj,1, Cj,2, Cj,3, Cj,4) =
(
gsj , HG(ID)sj , C̃j,3, C̃j,4

)
for randomly

chosen sj , ωj
R← Zp and C̃j,3, C̃j,4

R← G.

- For each j ∈ {i+1, . . . , `}, B sets (Cj,1, Cj,2, Cj,3, Cj,4) =
(
gsj , HG(ID)sj , g

sj/ωj
K[j] , g

ωj
2

)
for randomly

chosen sj , ωj
R← Zp.

- For j = i, B picks ωi
R← Zp and sets (Ci,1, Ci,2, Ci,3, Ci,4) =

(
gc, (gc)J2(ID

?), T γK[i]/ωi , gωi
)
.

Finally, B computes C0 = Mβ ·
∏`
j=1 Z

K[j]
j and provides the adversary with the challenge ciphertext

C = (C0, {(Cj,1, Cj,2, Cj,3, Cj,4)}`j=1).

We remark that, if T = gabc, the challenge ciphertext C is distributed as in Game i − 1 as
(Ci,1, Ci,2, Ci,3, Ci,4) can be written

(Ci,1, Ci,2, Ci,3, Ci,4) =
(
gc, HG(ID?)c, gac·γK[i]/ω̃i , (gb)ω̃i

)
=
(
gc, HG(ID?)c, g

c/ω̃i
K[i] , g

ω̃i
2

)
.

where ω̃i = ωi/b. In contrast, if T ∈R G, then the pair (Ci,3, Ci,4) is uniformly distributed in G2,
which means that (Ci,1, Ci,2, Ci,3, Ci,4) has the same distribution as in Game i.

At this stage, the adversary’s probability may be correlated with the probability that the simu-
lator B has to abort (i.e., because A queries the private key of an identity ID for which J1(ID) = 0

15



or because J1(ID
?) 6= 0 in the challenge phase). As in [38], one way to address this problem is to

introduce an artificial abort step in order to guarantee that B always aborts with the maximal prob-
ability, no matter which particular set of queries is made by A.

Namely, with ζ = 2q, the same analysis as [38] shows that B’s probability not to abort for any
set of queries is at least η = 1/(4(L+ 1)q).

At the end of the game, B considers the sequence of identities (ID1, . . . , IDq, ID
?) chosen by A

during the game and estimates the probability that this choice causes the simulation to abort.
This process does not require to run A again but rather involves repeatedly sampling vectors
(ρ0, ρ1, . . . , ρL) R← ZL+1

ζ and evaluate J1(ID1), . . . , J1(IDq) and J1(ID
?) accordingly. When the es-

timated probability η′ is obtained after O(ε−2 ln(ε−1)η−1 ln(η−1)) samples, if η′ > η, B artificially
aborts and outputs a random bit with probability 1− η/η′. With probability η/η′, it continues.

After the artificial abort step, if the simulator B did not naturally or artificially abort, it outputs
1 if A successfully guesses β′ = β and 0 otherwise. We now argue that B has non-negligible advantage
as a D3DH distinguisher if A can distinguish Game i from Game i − 1. Indeed, depending on the
distribution of T , B is playing either Game i − 1 or Game i with A. Using the same analysis as in
[38], we find that, if the difference |Advi−1 − Advi| between A’s advantage functions in Game i − 1
and Game i is ε, then B can break the D3DH assumption with probability ε/(16(L+ 1)q). ut

C Security Proofs for the GS-MDO Scheme

C.1 Anonymity

Theorem 3. The scheme provides anonymity against the opener if the DLIN and D3DH assump-
tions both hold in G.

Proof. The proof uses a sequence of games where the first game is the real game and the last one
leaves no advantage to the adversary. In Game i, Wi denotes the event that the adversary A wins.

Game 0: This game is the actual attack game of Definition 5. Namely, the challenger performs the
setup of the system and generates the group public key gpk, the vector gsk of members’ private
keys as well as the opening key ok and the admitter’s private key mskADM. The adversaryA is given
gpk, gsk and ok and it is also allowed to invoke the oracle OmskADM

(.) an arbitrary but polynomial
number of times. In the challenge phase, A chooses two indices j0, j1 ∈ {0, . . . , N − 1} and a
message M? that has never been submitted to OmskADM

(.). The challenger replies by returning

a challenge signature σ? on the message M? using the private key gsk[jb], where b R← {0, 1}. In
the second phase, A is allowed further queries to OmskADM

(.) (with the restriction of not querying
M?) and eventually outputs a bit b′ ∈ {0, 1}. We denote by W0 the event that b′ = b.

Game 1: In this game, the perfectly sound Groth-Sahai CRS f = (~f1, ~f2, ~f3) is replaced by a CRS

for the NIWI setting, where ~f3 = ~f ξ21 · ~f
ξ2
2 · (1, 1, g)−1. Under the DLIN assumption, this change

should not be noticeable to A and we can write |Pr[W1]− Pr[W0]| ≤ 2 ·AdvDLIN(B).
Game 2: We modify the generation of the challenge signature σ?. In the latter, we replace the

actual NIZK proofs for equations (10)-(13) by simulated proofs which are produced using the
simulation trapdoor (ξ1, ξ2) of the CRS f = (~f1, ~f2, ~f3). To this end, B uses the variable assignment
Γ1 = Γ2 = 1G and

Θj = Zj,1 = Zj,2 = 1G j ∈ {1, . . . , `},

which amounts to set θ = 0 and immediately allows generating proofs for (16)-(19). In order to
generate a simulated proof ~πΓ for the relations (7), B uses the trapdoor (ξ1, ξ2) to open to 1 a
commitment ~Cθ which is initially generated as a commitment to 0. We remark that, in Game
2, the proofs for relations (16)-(19) are computed without using the IBE encryption exponents
{(sj , ωj)}`j=1. Moreover, since simulated NIZK proofs are perfectly indistinguishable from actual
proof on a perfectly hiding CRS, A’s view remains unchanged and we thus have Pr[W2] = Pr[W1].
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We now consider a subsequence of games where the IBE ciphertexts contained in the challenge
signature σ? have a hybrid distribution. We define Game 3.0 to be identical to Game 2 for simplicity.

Game 3.i (0 ≤ i ≤ `): This game is a hybrid game where the challenger B generates the IBE cipher-
text components {(Cj,1, Cj,2, Cj,3, Cj,4)} as follows at step 3 of the signature generation algorithm.

- If j ≤ i, B chooses sj
R← Zp and computes (Cj,1, Cj,2) = (gsj , HG(M?)sj ) normally. However, it

chooses (Cj,3, Cj,4)
R← G2 at random.

- If j > i, B sets (Cj,1, Cj,2, Cj,3, Cj,4) = (gsj , HG(M?)sj , g
sj/ωj
idjb [j]

, g
ωj
2 ) for random sj , ωj

R← Zp,
where idjb ∈ {0, 1}` is the identity of one of the two candidates idj0 , idj1 chosen by A.

Using exactly the same strategy as in the proof of Lemma 1, we can easily prove that, for each
i ∈ {0, . . . , `−1}, Game 3.i is computationally indistinguishable from Game 3.(i+1) if the D3DH
assumption holds in G. We have |Pr[W3.i] − Pr[W3.(i+1)]| ≤ 16 · q · (n + 1) ·AdvD3DH(B). The
proof is essentially identical to the proof of Lemma 1 and omitted.

In Game 3.`, we observe that, in the challenge signature σ?, all IBE ciphertexts have been tampered
with and {(Cj,3, Cj,4)}`j=1 are just a set of random group elements. This implies that σ? is devoid
of any information about the signer’s identity idjb . Indeed, the bits of idjb are only used to compute
HV , Fj and Gj . However, these group elements are hidden within perfectly hiding Groth-Sahai
commitments and the proof of relations (5), (8), (9) and (20) are perfectly NIWI proofs. It follows
that gsk[j0] and gsk[j1] are equally likely candidates as witnesses for the generation of these proofs.
We thus conclude that Pr[W3.`] = 1/2. ut

Theorem 4. The scheme provides anonymity against the admitter assuming that the DLIN assump-
tion holds in G and that Σ is a strongly unforgeable one-time signature.

Proof. We proceed again with a sequence of games that begins with the actual attack game and ends
with a game where even an unbounded adversary has no advantage. In Game i, we denote by Wi

the event that the adversary A wins.

Game 0: This game is the real attack game described in Definition 4. In this game, the challenger B
generates the group public key gpk, the vector gsk of private keys as well as private keys ok and
mskADM for the opener and the admitter, respectively. The adversary A receives gpk, gsk and
mskADM at the very beginning of the game. It is further granted access to a signature opening
oracle Ook(.) which it can invoke on polynomially many occasions. In the challenge phase, A
chooses two indices j0, j1 ∈ {0, . . . , N − 1} and a message M?. At this point, B generates a
challenge signature σ? on M? using gsk[jb], where b R← {0, 1} is chosen at random. In the second
phase, A can make additional queries to Ook(.) (with the restriction of not asking for the opening
of σ?) and eventually outputs a bit b′ ∈ {0, 1}. We denote by W0 the event that b′ = b.

Game 1: This game is like Game 0 with the difference that B aborts if A queries the opening oracle
Ook(.) on input of a valid signature for which the built-in one-time verification key VK coincides
with the one-time verification key VK? used in the challenge phase (we can assume w.l.o.g. that
the latter is chosen at the outset of the game). It is easy to see that, if the latter event occurs,
A can be turned into a forger that breaks the strong unforgeability of the one-time signature
Σ. Indeed, even if this event occurs before the challenge phase (which is unlikely since VK? is
independent of A’s view until that point), it implies that A is able to forge a signature without
having seen a single one-time signature. We can thus write |Pr[W1]− Pr[W0]| ≤ ·Advots-suf(B).

Game 2: In this game, the perfectly sound Groth-Sahai CRS f = (~f1, ~f2, ~f3) is traded for a perfectly

WI CRS, where ~f3 = ~f ξ21 · ~f
ξ2
2 · (1, 1, g)−1. Under the DLIN assumption, this change should not

noticeably affect A’s behavior and we can write |Pr[W2]− Pr[W1]| ≤ 2 ·AdvDLIN(B).
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Game 3: We now change the generation of the challenge signature σ?. Namely, we replace its un-
derlying NIZK proofs for equations (10)-(13) by simulated proofs which are produced using the
trapdoor (ξ1, ξ2) as in the proof of Theorem 3. To this end, B defines Γ1 = Γ2 = 1G and

Θj = Zj,1 = Zj,2 = 1G j ∈ {1, . . . , `},

which allows generating proofs for the relations (16)-(19) since they form witnesses satisfying
these equalities. When it comes to simulating a fake proof ~πΓ for the relations (7), B uses the
trapdoor (ξ1, ξ2) which allows trapdoor opening to 1 a commitment ~Cθ to 0 (recall that ~Cθ is
a perfectly hiding commitment from Game 2 onwards). In this game, the proofs for (17)-(19)
are computed without using the encryption exponents {(zj,1, zj,2)}`j=1 at step 2 of the signing
algorithm. Also, since simulated NIZK proofs have the same distribution as genuine proofs on a
perfectly hiding CRS f , A’s has not changed since Game 2 and we thus have Pr[W3] = Pr[W2].

We now consider a subsequence of games where, in the challenge signature σ?, the ciphertexts of
Kiltz’s tag-based encryption scheme are gradually replaced by encryptions of random group elements.
For convenience, we define Game 4.0 to be identical to Game 3.

Game 4.i (0 ≤ i ≤ `): This game is a hybrid game where the challenger B generates the ciphertexts
{Ψj = (Ψj,1, Ψj,2, Ψj,3, Ψj,4, Ψj,5)}`j=1 as follows at step 3 of the signing algorithm.

- If j ≤ i, B computes Ψj as an encryption of a random group element.
- If j > i, B follows the usual signing algorithm and computes Ψj as a tag-based encryption of

Cj,3 (i.e., the third component of the IBE ciphertext) with respect to the tag VK?.

Since we do not use the encryption exponents {(zj,1, zj,2)}`j=1 as witnesses to generate NIZK proofs
and we ruled out the case of A recycling VK? in a query to Ook(.), we can meaningfully appeal to
the selective-tag security of Kiltz’s tag-based cryptosystem when it comes to arguing that Game
4.i is computationally indistinguishable from Game 4.(i+ 1). By repeating the proof of [32] (we
omit the details here), it is straightforward to show that |Pr[W4.i]−Pr[W4.(i+1)]| ≤ AdvDLIN(B).

In Game 4.`, we observe that the challenge signature σ? carries no information about the signer’s
identity idjb . Indeed, all tag-based encryption ciphertexts {Ψ}`j=1 have been replaced by encryptions
of random group elements. This implies that the bits of idjb are only involved in the computation
HV , Fj and Gj as well as in proofs for the relations (5), (8), (9) and (20). However, these are perfectly
NIWI proofs and only perfectly hiding commitments to HV and {(Fj , Gj)}`j=1 are given out. We thus
find that Pr[W4.`] = 1/2. ut

C.2 Traceability

Theorem 5. The scheme provides full traceability under the CDH assumption in G.

Proof. We prove that, if an adversary A can defeat the traceability property of the scheme with
non-negligible advantage, we can build a chosen-message adversary B against the Waters signature,
which contradicts the CDH assumption (as proved in [38]).

Our forger B inputs a public key PKW =
(
g, ga, gb, {wi}Li=0

)
for the Waters signature scheme,

for which the underlying secret key is SKW = gab, and interacts with a chosen-message challenger.

Setup: To prepare the group public key gpk, our forger B sets e(g, g)ω = e(ga, gb) (which implicitly
defines ω = ab) at step 4 of the group key generation algorithm. It also picks a random `-bit string
id† = id†[1] . . . id†[`] R← {0, 1}`, hoping that A’s fake group signature will open to id†. It completes
the generation of the pkW part of gpk by choosing δ0, . . . , δL

R← Zp and ρ0, . . . , ρL
R← Zp subject to

the constraint ρ0 +
∑`

j=1 ρj · id
†[j] = 0 mod p in order to define vj = gδj · (gb)ρj for j = 1 to `. By

doing so, B is able to generate valid private keys gsk[id] for all users id such that id 6= id† (here, user
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indexes are identified with their binary representation, which are their `-bit identifier) as follows: a
private key for id = id[1] . . . id[`] ∈ {0, 1}` is obtained by choosing r R← Zp and computing

gsk[id] =
(
HV (id)r · (ga)−J2(id)/J1(id), gr · (ga)−1/J1(id)

)
where J1(id) = ρ0 +

∑`
j=1 ρj · id[j], J2(id) = δ0 +

∑`
j=1 δj · id[j]. In the unlikely event that J1(id) = 0

for some id 6= id†, B aborts. Note that gsk[id] is a valid private key for id as it can be written
gsk[id] = (gab ·HV (id)r̃, ·gr̃) if we define r̃ = r − a/J1(id). On the other hand, B lacks a private key
gsk[id†] for the expected target member id†. Still, with probability 1/N , A will create a forgery that
opens to id†, in which case it will refrain from requesting gsk[id†].

Finally, B generates a perfectly sound Groth-Sahai CRS f = (~f1, ~f2, ~f3) for which it retains the
extraction trapdoor (β1, β2) = (logg(f1), logg(f2)).

Queries: If the adversary chooses to corrupt the private key gsk[id†], B halts and declares failure
since its choice of the expected target user id† was necessarily incorrect. For any other private key
query, B has the private key gsk[id] at disposal and can consistently answer the query.

For all signing queries (id,M) involving users id 6= id†, B can generate a valid signature by faith-
fully running the signing algorithm since it knows gsk[id]. We thus focus on signing queries involving
id†. For each of these, our forger B invokes its own chosen-message challenge which replies by return-

ing a Waters signature (Ω1, Ω3) = (gab · (w0 ·
∏L
j=1w

M [j]
j )s, gs) on the message M = M [1] . . .M [L].

From (Ω1, Ω3), B can form a valid 2-level hierarchical signature (Ω̃1, Ω̃2, Ω̃3) by choosing r R← Zp
and setting (Ω̃1, Ω̃2, Ω̃3) = (Ω1 · gr·(δ0+

∑`
j=1 δj ·id

†[j]), gr, Ω3). Having constructed (Ω̃1, Ω̃2, Ω̃3), B can
faithfully run steps 2-6 of the real signing algorithm and obtain a well-formed group signature.

Output: When A halts, it outputs a message M? and a valid group signature σ? which presumably
opens to an uncorrupted user that did not sign the message M?. At this point, B uses the extraction
trapdoor (β1, β2) to open all the commitments contained in σ?. Having extracted {Fj}`j=1 from their
respective commitments, it can decode the identity id? of the involved group member and aborts in
the event that id? 6= id†. With probability 1/N = 1/2`, we have id? = id† (which also implies that
B did not have to abort during the querying phase) and B can forge a Waters signature as follows.
Having extracted a valid hierarchical signature (Ω?

1 , Ω
?
2 , Ω

?
3) from σ?, B obtains a Waters signature

by computing (Ω′1, Ω
′
3) =

(
Ω?

1/Ω
?
2
δ0+

∑`
j=1 δj ·id

?[j], Ω?
1

)
. The latter is easily seen to be a valid forgery

since, as long as id? = id†, B never had to ask for a Waters signature on M? to its own challenger.
Since B’s probability to correctly predict id? is at least 1/N , if A has advantage ε, the result of

[38] implies that B can be used to break the CDH assumption with probability ε/(4·N ·q ·(L+1)). ut
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