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Introduction

This document presents some of the results I obtained in the recent years in the area of
cryptography.

My current and past researches were devoted to the design of efficient and provably
secure public-key cryptographic schemes. These days, when it comes to proposing a new
cryptosystem, it is (fortunately) a common practice to provide strong evidence of its security
by means of a rigorous security proof. To this end, one should first formally define what it
means for the specific cryptographic primitive to be secure. Then, a common approach con-
sists in giving a reduction showing that, in the sense of the considered security definition,
any efficient adversary (i.e., with polynomial running time in the security parameter) break-
ing the system with non-negligible probability would imply a polynomial algorithm solving
a hard problem (such as factoring large integers, computing discrete logarithms, etc). The
conjectured intractability of the problem in polynomial time thus implies the non-existence
of polynomial adversaries. In some cases, security proofs may take place in the random
oracle model [32], which is an idealized model of computation where hash functions are
modeled as oracles controled by the reduction. This notably implies that, whenver the ad-
versary wants to know the hash value of any input string, it has to ask an oracle for it and
thus reveal to the reduction which hash values it decides to compute. The random oracle
methodology has been subject to criticism as there are examples (see, e.g., [72]) of crypto-
graphic schemes that have no secure instantiation with a real hash function although they
do have a security proof in the random oracle model. For this reason, a security proof in the
standard model (i.e., without random oracles) may be preferrable, especially when it comes
at a reasonable cost. The results presented in this habilitation thesis do not rely on random
oracles and thus stand in the standard model of computation.

My contributions fit within several sub-areas of public-key cryptography. In order to de-
scribe the global context of my research, these sub-areas will briefly outlined in the follow-
ing pages. In this habiliation thesis, however, I will focus on the topics of anonymity-related
cryptographic protocols and homomorphic cryptography, which are discussed in sections
[0.5land [0.7 of this introduction.

0.1 Identity-Based Encryption

My PhD thesis presented new applications of bilinear maps over groups where the dis-
crete logarithm problem is presumably hard. These tools found many applications such
as identity-based encryption (IBE) [236, 45], where any human-readable identifier (e.g., an
email address) can serve as a public key so as to eliminate the need for digital certificates
and simplify key management. The most important contribution [27] of my PhD thesis was
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to describe the most efficient identity-based cryptosystem combining the functionalities of
signature and encryption. This research was carried out in collaboration with Paulo Barreto
and Noel McCullagh.

Part of my post-doctoral research was also related to identity-based encryption. In col-
laboration with Damien Vergnaud, we described an improved technique [186] allowing to
decrease the required amount of trust in authorities (that have to generate users” private
keys and are obviously able to decrypt all ciphertexts) in IBE schemes as initially suggested
by Goyal [130]. We showed [186] an efficient way to prevent dishonest authorities from
re-distributing copies of users” private keys without being detected. Our technique allows
tracing obfuscated decryption devices (based on their input-output behavior) that illegally
decrypt users’ communications back to their source. The advantage of our construction is
to provide a much better efficiency than previous constructions [130, [131] enabling black-
box traceability. In collaboration with Nuttapong Attrapadung, we also described [22] the
first identity-based broadcast encryption scheme — where the sender can encrypt messages
for several identities — that simultaneously provides adaptive security and constant-size ci-
phertexts, regardless of the number of receivers. This result was published at the Public-Key
Cryptography 2010 conference. Together with Nuttapong Attrapadung and Elie de Panafieu
(who was an internship student of mine during the summer 2009), we also described several
constructions [24, 21] of attribute-based encryption (ABE) schemes featuring short cipher-
texts. In short, ABE schemes are a generalization of identity-based encryption where ci-
phertexts are labeled with sets of descriptive attributes whereas users’ private keys encode a
complex access formula specifying which ciphertexts users are entitled to decrypt. The ABE
primitive is motivated by fine-grained access control over encrypted data. For example, they
make it possible to selectively share one’s data in cloud storage systems. Our contribution
[24, 21] was to describe the first truly expressive solutions where the size of the ciphertext
does not depend on the number of associated attributes.

0.2 Key-Evolving Cryptography

Between 2006 and 2009, in collaboration with Moti Yung, I explored techniques allowing
to confine the effect of private key exposures — caused by hackers rather than actual crypt-
analysis — within a certain time interval. With the growing use of mobile devices, it has
become much easier to break into users’ computer than defeating cryptosystems by solving
hard problems. One way to address this concern is to update private keys at discrete time
periods (without changing the public key) in such a way that the security of past periods
is preserved after a key exposure. This property is termed “forward security”. Our main
result [181] was a generic technique allowing a computer to automatically handle key up-
dates (without any human intervention) in forward-secure signatures where private keys
are shielded by a second factor, such as a password. Most previous key-evolving signatures
were not compatible with this kind of additional password-based key protection since, in
straightforward implementations, users had to enter their password at each update opera-
tion, which was impractical in case of frequent updates. Our results [181} [182] consisted of
generic ways allowing an untrusted computing environment to update an encrypted version
of the user’s private key, in such a way that passwords only come into play to sign messages.
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0.3 Cryptographic Schemes with Delegation

In 2008, in collaboration with Damien Vergnaud, we studied [184] key delegation techniques
that find applications in the secure forwarding of encrypted emails or in distributed file
systems. As initially suggested by Blaze, Bleumer and Strauss [35]], a proxy re-encryption
system (PRE) is an encryption scheme where a delegator A can provide a proxy with a re-
encryption key allowing to translate ciphertexts initially encrypted for A into ciphertexts
encrypted for a delegatee B. The proxy should be able to do so without seeing underlying
plaintexts or any user’s private key. Our contribution [184] was to describe the first unidi-
rectional PRE system (where the proxy can translate from A to B without being also able to
translate from B to A) that can be proven secure against chosen-ciphertext attacks, where the
adversary has access to a decryption oracle. Later on, we addressed similar problems in the
context of signature schemes [183], where a proxy should be able to translate B’s signatures
into signatures bearing A’s name. In 2005, Ateniese and Hohenberger showed how crypto-
graphic bilinear maps can be used to design unidirectional proxy re-signatures (PRS), which
are useful for the inter-domain conversion of digital certificates. They left open the problem
of constructing unidirectional PRS schemes where signatures can be translated in sequence
(from A to B first, then from B to C and so on). We provided the first step [183] towards
efficiently solving this problem suggested for the first time by Blaze, Bleumer and Strauss in
1998 [35].

0.4 Distributed Cryptography

Threshold cryptography [96, 98] aims at avoiding single points of failure by splitting private
keys into n shares, each one of which is given to a different server, in such a way that at
least t of these shares should be combined to recover the original private key. This implies
that at least t servers should contribute to private key operations (namely, the decryption
procedure in a public-key encryption scheme and the signing process in digital signatures).
A threshold primitive is said robust if a malicious adversary who corrupts at most t — 1
servers cannot prevent the honest majority (which exists when n > 2t — 1) from successfully
completing their operations. Threshold cryptographic schemes have been mostly analyzed
in the scenario of static corruptions, where the adversary has to choose which servers he
wants to corrupt before the generation of the public key. Unfortunately, adaptive adver-
saries (who can choose whom to corrupt at any time, based on their complete view) turn out
to be harder to deal with. In the context of robust threshold public-key encryption systems
with chosen-ciphertext security (i.e., that resist adversaries equipped with a decryption ora-
cle), most adaptively secure solutions have a relatively complex decryption protocol, where
some interaction is required among decryption servers. In collaboration with Moti Yung, we
proposed the first fully non-interactive robust threshold cryptosystems that provide chosen-
ciphertext security against adaptive adversaries in the standard model. In 2011, we first
described a scheme [189] based on specific number theoretic assumptions. In 2012, we pro-
vided a more general framework [191] for constructing such threshold cryptosystems and
gave several instantiations with a better efficiency than our initial realization.
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0.5 Anonymity-Related Cryptographic Primitives

Between 2009 and 2014, I also worked on privacy-enhancing cryptographic mechanisms
such as those allowing users to accountably hide in a crowd. Group signature:ﬂ as intro-
duced by Chaum and Van Heyst [85], allow registered members of a group to anonymously
sign messages in the name of the entire group. If necessary, an authority is able to identify the
signer using some secret information. This primitive finds applications in trusted computing
platforms or in electronic auction systems. It is well-known how to construct efficient group
signatures in the random oracle model [15] and in the standard model [55, 56| [134]. Traceable
signatures [155] extend group signatures in that the group manager can additionally reveal
a user-specific trapdoor allowing to publicly trace all signatures issued by a given member
suspected of illegal activity. Hence, misbehaving users’ signatures can be traced without
requiring the opening authority to open all signatures, which would harm the privacy of
honest users. In a joint work with Moti Yung [187, [190], we constructed the first efficient
traceable signature scheme that does not appeal to the random oracle model.

In the area of group signatures, I also paid attention to the revocation problem, which
consists in efficiently disabling the anonymous signing capability of expelled group mem-
bers and only these members. Together with Damien Vergnaud [185], we proposed a first
solution in the standard model in 2009. Unfortunately, this approach has the disadvantage
of incurring a verification cost linear in the number of revocations. In collaboration with
Moti Yung and Thomas Peters [180, [179], we subsequently showed how to avoid this limi-
tation. Specifically, we described a new revocation mechanism which is borrowed from the
literature on broadcast encryption. This approach is well-suited to group signatures in the
standard model. Its main advantage over many existing solutions is that unrevoked group
members do not need to update their private keys when other members are revoked. At
the same time, the verification cost and the size of signatures are constant (where “constant”
means that it only depends on the security parameter and not on the number of revocations
or the maximal number group members). Our initial scheme improves upon a comparable
mechanism (published by Nakanishi et al. [202]) in that it completely avoids linear com-
plexities in the maximal cardinality of the group: the complexity is at most poly-logarithmic
in all metrics. Subsequently, we further showed how to additionally obtain constant-size
private keys without degrading the efficiency in other metrics.

Group encryption [156] is the encryption analogue of group signatures. Namely, a sender
should be able to encrypt a message for some anonymous member of a group while append-
ing to the ciphertext a proof that the latter is well-formed and intended for some certified
group member. The primitive finds applications in the asynchronous transfer of credentials
between peer devices or the verifiable encryption of keys to anonymous trusted parties. The
first scheme, proposed by Kiayias, Tsiounis and Yung in 2007 [156], requires interactive con-
versations (at least if one is willing to avoid the random oracle model) between the sender
and the proof verifier. The need for interaction is a limitation since it requires senders to be
online at the same time as verifiers and to remember the random numbers that were used to
encrypt all ciphertexts. In collaboration with Julien Cathalo and Moti Yung [81], we showed
the first truly non-interactive scheme (i.e., no interaction is ever needed between the sender
and the verifier) with a security proof in the standard model. In the same article on non-
interactive group encryption [81], we described one of the first realizations (actually, the first

INote that, here, the term “group” refers to a population for users rather than an algebraic structure.
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practical one with a security proof under non-interactive number theoretic assumptions) of
a primitive initially suggested by Groth [133] and that was subsequently called “structure-
preserving signature” in the literature [4, 6]. Structure-preserving signatures are signature
schemes where messages and public keys only consist of elements of an abelian group over
which a bilinear map is efficiently computable. They have many applications in privacy-
preserving protocols because they are fully compatible with the Groth-Sahai non-interactive
proof systems [138]. The reason is that Groth-Sahai proofs can only serve as proofs of knowl-
edge — in the sense that a knowledge extractor can recover the witnesses from any valid
proof — when the witnesses are elements of an abelian group over which a bilinear map is
efficiently computable. The useful property of structure-preserving signatures is that they
precisely allow signing elements of bilinear groups without destroying their algebraic struc-
ture (in particular, without first hashing them). For example, this allows one to efficiently
prove knowledge of a hidden message-signature pair, as typically done in group signature
schemes. More efficient structure-preserving signatures appeared in the literature later on
[, 6,2, 3].

In the context of group signatures, I also considered alternatives to factoring and discrete-
logarithm-based solutions. In collaboration with Fabien Laguillaumie, Adeline Langlois and
Damien Stehlé [166], we proposed the first group signature based on lattice hardness as-
sumptions with logarithmic signature size in the cardinality of the group. In earlier lattice-
based constructions [129] [69], the signature length was linear in the maximal number of
group members.

0.6 Commitment Schemes with Special Properties

A commitment scheme is the digital analogue of a safe or a sealed envelope. Namely, what-
ever is in the envelope remains secret until the opening of that envelope. At the same time,
the sender is bound to a unique message and cannot change his mind about the content
when the envelope is sealed. Commitment schemes are a fundamental cryptographic prim-
itive (often used in auction protocols, for example) which comes into play when it comes
to force a party to choose a value without directly revealing it. Zero-knowledge sets (ZKS)
[199] allow a prover to commit to a set of values S so as to be able to subsequently (and
non-interactively) prove statements such as « element x belongs to the set S » or « element y
does not belong to S » without revealing anything else, not even the overall cardinality of the
set S. In collaboration with Moti Yung, we described [188] a ZKS protocol where proofs of
membership and non-membership can both be short (less than 2 kB in implementations us-
ing suitable parameters). We thus improved upon previous ZKS schemes (and notably the
construction of Catalano, Fiore and Messina [76]), where only proofs of non-membership
can be made compact. So far, our construction remains the most efficient ZKS system in
terms of communication complexity. In comparison with the first proposal of Micali, Rabin
and Kilian [199], proofs are compressed to 13 % of their original length. In addition, we
showed how to provide our scheme with certain non-malleability properties. Namely, we
can prevent dishonest provers from correlating their hidden set to those of honest provers
and still generating convincing proofs. In the same paper [188], as an intermediate result,
we also proposed the first commitment scheme that allows committing to vectors of mes-
sages in such a way that the commitment — which has constant size — can be selectively
opened with respect to one coordinate of the vector without revealing the content of other
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coordinates and with an opening of constant size (here, “constant” means independent of
the dimension of the vector). As a second contribution to the area of commitment schemes,
in collaboration with Marc Fischlin and Mark Manulis, we described [108] new construc-
tions of universally composable commitments [71]. These are commitment schemes that,
as required by Canetti’s universal composition framework [70], provably remain secure in
arbitrary environments, when composed with any other protocol. Universally composable
(UC) commitments provide very strong security guarantees, including non-malleability, but
they are notoriously very hard to construct (some setup assumption, like a common refer-
ence string generated by some trusted party, is inevitable, as shown by Canetti and Fischlin
[71]). Yet, our new constructions feature a previously unique combination of efficiency and
security properties. Namely, they are the first adaptively secure UC commitments where:
(1) The sender can commit to multiple bits at once (so that n-bit strings can be committed
to using O(k + n) bits instead of O(kn), where k is the security parameter); (2) The common
reference string can be re-used across multiple commitments (and not only once as in certain
constructions); (3) The commitment and opening phases both consist of a single message
from the sender to the receiver.

0.7 Homomorphic Cryptography

Homomorphic signatures were first suggested by Desmedt [97] and formally defined by
Johnson et al. [148]. They can be seen as the signature counterpart of homomorphic public-
key encryption in that they allow a signer to authenticate messages in such a way that any-
one can publicly derive a signature on certain functions of previously signed messages. In
linearly homomorphic signatures [48], for example, the signer can authenticate vectors using
his private key. Later on, anyone will be able to compute a signature on any linear combi-
nation of the signed vectors. As another example, homomorphic subset signatures [148, [11]
make it possible for the signer to sign a set of values so that it will be possible to publicly
derive a signature on a subset of the original set. Homomorphic signatures notably find ap-
plications in proofs of storage [13} [16] or proofs of correct computation [47, 46, 11] in cloud
computing systems: when a client wants to outsource large datasets on a remote storage
server, he can ask the latter to perform computations on his data. If the original dataset
is signed by the client using a homomorphic signature scheme, the server will be able to
authenticate the result of his computation, by publicly deriving a signature on the result
of the carried out operation. For example, a linearly homomorphic scheme allows one to
authenticate sums, averages or Fourier transforms on outsourced data: by verifying the sig-
nature derived by the server, the client will be convinced that the server properly archived
his dataset and correctly computed the requested statistics. Certain applications need homo-
morphic signatures that satisfy certain privacy properties requiring derived signatures to be
perfectly indistinguishable from original signatures. In proofs of correct computation, one
may want the derived signature to hide all partial information about the original dataset:
only the mean or the average should become public. If homomorphic subset signatures are
used by an administration to authenticate e-ID cards, the latter privacy notion guarantees
that the card holder will be able to prove that he is above 18 years old (by deriving a signa-
ture on the “date of birth” field of his ID card) without revealing his exact place of birth or
any other private information. In collaboration with Nuttapong Attrapadung and Thomas
Peters, we suggested stronger definitions of information-theoretic privacy for homomorphic
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signatures. In [25] 26], we also described the first constructions of homomorphic subset sig-
natures and linearly homomorphic signatures that satisfy our strongest privacy notion in
the standard model. We also described the most efficient (notably in terms of signature size)
linearly homomorphic signature with a security proof under standard assumptions in the
standard model. At PKC 2013, we also designed a homomorphic quotable signature scheme
— where a signature on a string allows publicly computing a signature on any substring of
the original string — satisfying the strongest privacy property while retaining signatures of
optimal size.

In 2013, in collaboration with Marc Joye, Moti Yung and Thomas Peters [177], we showed
a somewhat surprising application of linearly homomorphic signatures in the construction
of non-interactive non-malleable commitments [101} [102] in the common reference string
model. The goal of non-malleable commitments is to enforce the independence among dis-
tinct parties” committed values. To our knowledge, there was previously no efficient con-
struction of non-interactive non-malleable commitment where a short commitment string
allows committing to a vector while remaining able to efficiently prove properties about
committed coordinates (which precludes the trivial solution consisting in committing to
hashed vectors). In [177], we showed that any linearly homomorphic signature that fits a
certain template — as is the case of all known constructions based on bilinear maps — can
be turned into a primitive called non-interactive simulation-sound trapdoor commitment
[116,195] which, in turn, implies non-interactive non-malleable commitments in the sense of
a definition used by Damgard and Groth [94]. Our construction yields constant-size commit-
ments to vectors which preserve the ability to prove statements about committed vectors in a
zero-knowledge manner (using interaction or not). In the same paper [177], we also consid-
ered linearly homomorphic signature schemes that are also structure-preserving. Namely,
they make it possible to sign vectors of group elements of unknown discrete logarithms. We
described efficient constructions of linearly homomorphic structure-preserving signatures
(LHSPS) and used them to generically build non-malleable commitments to group elements.
These were the first examples of non-malleable commitments allowing to prove knowledge
of an opening using the Groth-Sahai techniques [138]]. Later on [178], we also used linearly
homomorphic structure-preserving signatures to build quasi-adaptive non-interactive zero-
knowledge (QA-NIZK) proof systems, as defined by Jutla and Roy [151], with constant-size
proofs. Specifically, our construction [178] allows proving that a vector of group elements
v € G" belongs to a linear subspace spanned by t < n independent vectors of group ele-
ments vy,...,v; € G". The novelty of our proof system — which is actually an argument
system since only polynomially bounded adversaries are unable to prove false statements —
is to provide constant-size proofs (typically made of 2 or 3 group elements), regardless of the
dimension of the subspace. In addition, we showed how our QA-NIZK proof system can
be endowed with a property called simulation-soundness [231], which basically prevents
a probabilistic polynomial-time (PPT) adversary from proving false statements, even after
having seen simulated proofs for possibly false statements. As an application, we described
[178] more efficient non-interactive threshold cryptosystems that are both chosen-ciphertext-
secure and secure against adaptive corruptions.
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0.8 Organization

In the upcoming chapters, this thesis will give an overview of my results on the applications
of structure-preserving cryptography. Chapter [1| will provide some background material
which will ease the reading of subsequent chapters. Chapter [2l will describe my results on
the design of group encryption [81] and revocable group signatures [180| 179], which are
amongst my most important results on privacy-enhancing cryptographic protocols based
on structure-preserving cryptography. Chapter 3| will finally present my constructions [178]
of structure-preserving signatures with additive homomorphic properties and explain their
applications in the design of non-interactive non-malleable primitives. These include non-
malleable commitments, space-efficient simulation-sound QA-NIZK argument systems and
chosen-ciphertext-secure public-key encryption.



List of Publications

Articles marked with [x] are the articles presented in this manuscript.
The articles below can be downloaded at http://perso.ens—1yon.fr/benoit.libert/.

Refereed Journals

[J1] Benoit Libert, Jean-Jacques Quisquater and Moti Yung. Key Evolution Systems in Un-
trusted Update Environments , extended version of [15], in ACM Transactions on In-
formation and System Security (ACM-TISSEC), December 2010, volume 13(4), Article
37.

[J2] Benoit Libert and Damien Vergnaud. Unidirectional Chosen-Ciphertext Secure Proxy
Re-Encryption, extended version of [17], in IEEE Transactions on Information Theory,
March 2011, volume 57(3), pp. 1786-1802.

[J3] Benoit Libert and Moti Yung. Efficient Traceable Signatures in the Standard Model ,
extended version of [22], in Theoretical Computer Science, March 2011, volume 412(12-
14), pp. 1220-1242.

[J4] Benoit Libert and Damien Vergnaud. Towards Practical Black-Box Accountable Au-
thority IBE: Weak Black-Box Traceability with Short Ciphertexts and Private Keys ,
extended version of [20], in IEEE Transactions on Information Theory, October 2011,
volume 57(10), pp. 7189-7204.

[J5] Nuttapong Attrapadung and Benoit Libert. Functional Encryption for Public-Attribute
Inner Product: Achieving Constant-Size Ciphertexts with Adaptive Security or Sup-
port for Negation, extended version of [27], in Journal of Mathematical Cryptology,
October 2011, vol. 5(2), pp. 115-158.

[J6] Nuttapong Attrapadung, Javier Herranz, Fabien Laguillaumie, Benoit Libert, Elie De
Panafieu and Carla Rafols. Attribute-Based Encryption Schemes with Constant-Size
Ciphertexts. Includes an extended version of [30], in Theoretical Computer Science,
March 2012, vol. 422, pp. 15-38, 2012.

[J7] Benoit Libert and Moti Yung. Adaptively Secure Non-Interactive Threshold Crypto-
systems, extended version of [32], in Theoretical Computer Science, March 2013, Vol.
478, pp. 76-100.

Papers in international conferences with scientific committee and proceedings


http://perso.ens-lyon.fr/benoit.libert/

12 Contents

[1] Benoit Libert & Jean-Jacques Quisquater. New identity based signcryption schemes
from pairings, in IEEE Information Theory Workshop (ITW) 2003, (J. Boutros ed.),
IEEE, 2003, p. 155-158.

[2] Benoit Libert & Jean-Jacques Quisquater. Efficient Revocation and Threshold Pairing
Based Cryptosystems, in 22nd Symposium on Principles of Distributed Computing
(PODC 2003), (S. Rajsbaum ed.), ACM Press, 2003, p. 163-171.

[3] Benoit Libert & Jean-Jacques Quisquater. Identity Based Undeniable Signatures, in
Topics in Cryptology - CT-RSA 2004 (T. Okamoto, ed.), Lect. Notes Comput. Sci., vol.
2964, Springer, 2004, p. 112-125.

[4] Benoit Libert & Jean-Jacques Quisquater. Efficient Signcryption with Key Privacy from
Gap Ditfie-Hellman Groups, in Public Key Cryptography (PKC) 2004 (E. Bao, ed.),
Lect. Notes Comput. Sci., vol. 2947, Springer, 2004, p. 187-200.

[5] Julien Cathalo, Benoit Libert & Jean-Jacques Quisquater. Cryptanalysis of a Verifiably
Committed Signature Scheme based on GPS and RSA, in Information Security Con-
ference (ISC) 2004 (K. Zhang & Y. Zheng, ed.), Lect. Notes Comput. Sci., vol. 3225,
Springer, 2004, p. 52-60.

[6] Benoit Libert & Jean-Jacques Quisquater. Improved Signcryption from g-Diffie-Hellman
Problems, in Fourth Conference on Security in Communication Networks, SCN 2004
(C. Blundo & S. Cimato, eds.), Lect. Notes Comput. Sci., vol. 3352, Springer, 2005,
p. 220-234.

[7] Benoit Libert & Jean-Jacques Quisquater. Identity Based Encryption without Redun-
dancy, in Applied Cryptography and Network Security (ACNS) 2005 (]J. Ioannidis,
A. Keromytis & M. Yung eds.), Lect. Notes Comput. Sci., vol. 3531, Springer, 2005,
p- 285-300.

[8] Paulo Barreto, Benoit Libert, Noel McCullagh & Jean-Jacques Quisquater. Efficient
and Provably-Secure Identity-Based Signatures and Signcryption from Bilinear Maps,
in Advances in Cryptology - ASIACRYPT 2005, (B. Roy ed.), Lect. Notes Comput. Sci.,
vol. 3788, Springer, 2005, p. 515-532.

[9] Julien Cathalo, Benoit Libert & Jean-Jacques Quisquater. Efficient and Non-interactive
Timed-Release Encryption, in Information and Communications Security, 7th Interna-
tional Conference, ICICS 2005 (J. Lopez, W. Mao, S. Qing & G. Wang eds.), Lect. Notes
Comput. Sci., vol. 3783, Springer, 2004, p. 291-303.

[10] Benoit Libert & Jean-Jacques Quisquater. On Constructing Certificateless Cryptosys-
tems from Identity Based Encryption, in Public Key Cryptography (PKC) 2006 (M.
Yung ed.), Lect. Notes Comput. Sci., vol. 3958, Springer, 2007, p. 474-490.

[11] Fabien Laguillaumie, Benoit Libert & Jean-Jacques Quisquater. Universal Designated
Veritier Signatures Without Random Oracles or Non-Black Box Assumptions, in Secu-
rity and Cryptography for Networks (SCN) 2006, (R. De Prisco & M. Yung eds.), Lect.
Notes Comput. Sci., vol. 4116, Springer, 2007, p. 63-77.



0.8 Organization 13

[12]

[16]

[21]

Benoit Libert, Jean-Jacques Quisquater & Moti Yung. Efficient Intrusion-Resilient Sig-
natures Without Random Oracles, in 2nd International Conference on Information Se-
curity and Cryptology (Inscrypt 2006), Lect. Notes Comput. Sci., vol. 4318, Springer,
2006, p. 27-41.

Benoit Libert, Jean-Jacques Quisquater & Moti Yung. Parallel Key-Insulated Public
Key Encryption Without Random Oracles, in Public Key Cryptography (PKC) 2007
(T. Okamoto & X. Wang eds.), Lect. Notes Comput. Sci., vol. 4450, Springer, 2007,
p. 298-314.

Benoit Libert & Jean-Jacques Quisquater. Practical Time Capsule Signatures in the
Standard Model from Bilinear Maps, in 1st International Conference on Pairing-based
Cryptography — PAIRING 2007, (T. Takagi & T. Okamoto eds.), Lect. Notes Comput.
Sci., vol. 4575, Springer, 2007, p. 23-38.

Benoit Libert, Jean-Jacques Quisquater & Moti Yung. Forward-secure signatures in un-
trusted update environments: efficient and generic constructions, in 14th ACM Con-
ference on Computer and Communications Security (ACM-CCS) 2007 (S. De Capitani
di Vimercati & P. Syverson eds.), ACM Press, 2007, p. 266-275.

Alexander W. Dent, Benoit Libert & Kenneth G. Paterson. Certificateless Encryption
Schemes Strongly Secure in the Standard Model, in Public Key Cryptography (PKC)
2008 (R. Cramer ed.), Lect. Notes Comput. Sci., vol. 4939, Springer, 2008, p. 344-359.

Benoit Libert & Damien Vergnaud. Unidirectional Chosen-Ciphertext Secure Proxy
Re-Encryption, in Public Key Cryptography (PKC) 2008 (R. Cramer ed.), Lect. Notes
Comput. Sci., vol. 4939, Springer, 2008, p. 360-379.

Benoit Libert & Damien Vergnaud. Tracing Malicious Proxies in Proxy Re-Encryption,
in 2nd International Conference on Pairing-Based Cryptography (Pairing 2008), (S. Gal-
braith & K. Paterson eds.), Lect. Notes Comput. Sci., vol. 5209, Springer, 2008, p. 332-
353.

Benoit Libert & Damien Vergnaud. Multi-Use Unidirectional Proxy Re-Signatures, in
15th ACM Conference on Computer and Communications Security (ACM-CCS) 2008
(P. Syverson & S. Jha eds.), ACM Press, 2008, p. 511-520.

Benoit Libert & Damien Vergnaud. Towards Black-Box Accountable Authority IBE
with Short Ciphertexts and Private Keys, in Public Key Cryptography (PKC) 2009,
(G. Tsudik & S. Jarecki eds.), Lect. Notes Comput. Sci., vol. 5443, Springer, 2009,
p- 235-255.

Benoit Libert & Damien Vergnaud. Adaptive-ID Secure Revocable Identity-Based En-
cryption, in Topics in Cryptology - CT-RSA 2009, (M. Fischlin ed.), Lect. Notes Com-
put. Sci., vol. 5473, Springer, 2008, p. 1-15.

Benoit Libert & Moti Yung. Efficient Traceable Signatures in the Standard Model, in 3rd
International Conference on Pairing-Based Cryptography - PAIRING 2009 (H. Shacham
& B. Waters eds.), Lect. Notes Comput. Sci., vol. 5671, Springer, 2009, p. 187-205.



14

Contents

*[23] Julien Cathalo, Benoit Libert & Moti Yung. Group Encryption: Non-Interactive Real-

[24]

[30]

ization in the Standard Model, in Advances in Cryptology - ASIACRYPT 2009 (M. Mat-
sui ed.), Lect. Notes Comput. Sci., vol. 5912, Springer, 2009, p. 179-196.

Benoit Libert & Damien Vergnaud. Group Signatures with Verifier-Local Revocation
and Backward Unlinkability in the Standard Model, in 8th International Conference
on Cryptology and Network Security (CANS 2009), (J. Garay & A . Miyaji eds.), Lect.
Notes Comput. Sci., vol. 5888, Springer, 2009, p. 498-517.

Benoit Libert & Moti Yung. Concise Mercurial Vector Commitments and Independent
Zero-Knowledge Sets with Short Proofs, in 7th Theory of Cryptography Conference -
TCC 2010 (D. Micciancio ed.), Lect. Notes Comput. Sci., vol. 5978, Springer, 2010,
p- 499-517.

Benoit Libert & Moti Yung. Dynamic Fully Forward-Secure Group Signatures, in 5th
ACM Symposium on Information, Computer and Communications Security
(AsiaCCS) 2010 (D. Basin ed.), ACM Press, 2010, p. 70-81.

Nuttapong Attrapadung & Benoit Libert. Functional Encryption for Inner Product:
Achieving Constant-Size Ciphertexts with Adaptive Security or Support for Negation,
in Public Key Cryptography (PKC) 2010 (P. Nguyen & D. Pointcheval eds.), Lect. Notes
Comput. Sci., vol. 6056, Springer, 2010, p. 384—402.

David Galindo, Benoit Libert, Marc Fischlin, Georg Fuchsbauer, Anja Lehmann,
Mark Manulis & Dominique Schroder. Public-Key Encryption with Non-Interactive
Opening: New Constructions and Stronger Definitions, in Africacrypt 2010 (D. Bern-
stein & T. Lange eds.), Lect. Notes Comput. Sci., vol. 6055, Springer, 2010, p. 333-350.

Benoit Libert & Moti Yung. Efficient Completely Non-Malleable Public Key Encryp-
tion, in 37th International Colloquium on Automata, Languages and Programming
(ICALP) 2010 - Track A (Algorithms, Complexity and Games) (P. Spirakis ed.), Lect.
Notes Comput. Sci., vol. 6198, Springer, 2010, p. 127-139.

Nuttapong Attrapadung & Benoit Libert. Homomorphic Network Coding Signatures
in the Standard Model, in Public Key Cryptography (PKC) 2011 (D. Catalano, N. Fazio,
R. Gennaro & A. Nicolosi eds.), Lect. Notes Comput. Sci., vol. 6571, Springer, 2011,
p. 17-34.

Nuttapong Attrapadung, Benoit Libert & Elie de Panafieu. Expressive Key-Policy
Attribute-Based Encryption with Constant-Size Ciphertexts, in Public Key Cryptog-
raphy (PKC) 2011, (D. Catalano, N. Fazio, R. Gennaro & A. Nicolosi eds.), Lect. Notes
Comput. Sci., vol. 6571, Springer, 2011, p. 90-108.

Benoit Libert & Moti Yung. Adaptively Secure Non-Interactive Threshold Crypto-
systems, in 38th International Colloquium on Automata, Languages and Programming
(ICALP) 2011 - Track C (Models, Algorithms and Information Management) (M. Hen-
zinger, L. Aceto & J. Sgall eds.), Lect. Notes Comput. Sci., vol. 6756, Springer, p. 588—
600, 2011.



0.8 Organization 15

[33]

[36]

[37]

*[38]

*[41]

Brett Hemenway, Benoit Libert, Rafail Ostrovsky & Damien Vergnaud. Lossy Encryp-
tion: Constructions from General Assumptions and Efficient Selective Opening Cho-
sen Ciphertext Security, in Advances in Cryptology - ASIACRYPT 2011 (D.-H. Lee &
X. Wang eds.), Lect. Notes Comput. Sci., vol. 7073, Springer, p. 70-88, 2011.

Marc Fischlin, Benoit Libert & Mark Manulis. Non-Interactive and Re-Usable Univer-
sally Composable String Commitments with Adaptive Security, in Advances in Cryp-
tology - ASIACRYPT 2011 (D.-H. Lee & X. Wang eds.), Lect. Notes Comput. Sci., vol.
7073, p. 468-485, Springer, 2011.

Malika Izabachene, Benoit Libert & Damien Vergnaud. Block-Wise P-Signatures and
Non-Interactive Anonymous Credentials with Efficient Attributes, in IMA Interna-
tional Conference on Cryptography and Coding (IMACC) 2011 (L. Chen ed.), Lect.
Notes Comput. Sci., vol. 7089, p. 431-450, Springer, 2011.

Javier Herranz, Fabien Laguillaumie, Benoit Libert & Carla Rafols. Short Attribute-
Based Signatures for Threshold Predicates, in Topics in Cryptology - CT-RSA 2012
(O. Dunkelman ed.), Lect. Notes Comput. Sci., vol. 7178, p. 51-67, Springer, 2012.

Benoit Libert & Moti Yung. Non-Interactive CCA-Secure Threshold Cryptosystems
with Adaptive Security: New Framework and Constructions, in 9th Theory of Cryp-
tography Conference (TCC 2012) (R. Cramer ed.), Lect. Notes Comput. Sci., vol. 7194,
p- 75-93, Springer, 2012.

Benoit Libert, Thomas Peters & Moti Yung. Scalable Group Signatures with Revoca-
tion, in Advances in Cryptology - EUROCRYPT 2012 (D. Pointcheval & T. Johansson
eds.), Lect. Notes Comput. Sci., vol. 7237, p. 609-627, Springer, 2012.

Benoit Libert, Kenneth G. Paterson & Elizabeth A. Quaglia. Anonymous Broadcast
Encryption: Adaptive Security and Efficient Constructions in the Standard Model, in
Public Key Cryptography (PKC) 2012 (M. Fischlin, J. Buchmann & M. Manulis eds.),
Lect. Notes Comput. Sci., vol. 7293, p. 206224, Springer, 2012.

Malika Izabachéne & Benoit Libert. Divisible E-Cash in the Standard Model, in 5th
International Conference on Pairing-Based Cryptography - PAIRING 2012 (M. Abdalla
& T. Lange eds.), Lect. Notes Comput. Sci. vol. 7708, p. 314-332, Springer, 2012.

Benoit Libert, Thomas Peters & Moti Yung. Group Signatures with Almost-for-free
Revocation, in Advances in Cryptology - CRYPTO 2012 (R. Safavi-Naini & R. Canetti
eds.), Lect. Notes Comput. Sci. vol. 7417, p. 571-589, Springer, 2012.

Nuttapong Attrapadung, Benoit Libert & Thomas Peters. Computing on Authenti-
cated Data: New Privacy Definitions and Constructions, in Advances in Cryptology -
ASIACRYPT 2012 (X. Wang & K. Sako eds.), Lect. Notes Comput. Sci. vol. 7658, p.
367-385, Springer, 2012.

Pooya Farshim, Benoit Libert, Kenneth G. Paterson & Elizabeth Quaglia. Robust En-
cryption, Revisited, in PUBLIC KEY CRYPTOGRAPHY (PKC) 2013 (K. Kurosawa ed.),
Lect. Notes Comput. Sci. vol. 7778, p. 352-368, Springer, 2013.



16

Contents

[44]

[45]

[46]

*[47]

Nuttapong Attrapadung, Benoit Libert & Thomas Peters. Efficient Completely Context
Hiding Quotable and Linearly Homomorphic Signatures, in PUBLIC KEY CRYPTOGRA-
PHY (PKC) 2013, (K. Kurosawa ed.), Lect. Notes Comput. Sci. vol. 7778, p. 386-404,
Springer, 2013.

Marc Joye & Benoit Libert. A Scalable Scheme for Privacy-Preserving Aggregation
of Time-Series Data, in FINANCIAL CRYPTOGRAPHY AND DATA SECURITY (FC) 2013
(A. Sadeghi ed.), Lect. Notes Comput. Sci. vol. 7859, p. 111-125, Springer, 2013.

Marc Joye & Benoit Libert. Efficient Cryptosystems from 2¥-th Power Residue Symbols,
in Advances in Cryptology - EUROCRYPT 2013 (T. Johansson & P. Nguyen eds.), Lect.
Notes Comput. Sci. vol. 7881, p. 76-92, Springer, 2013.

Benoit Libert, Thomas Peters, Marc Joye & Moti Yung. Linearly Homomorphic Structu-
re-Preserving Signatures and their Applications, in Advances in Cryptology - CRYPTO
2013 (R. Canetti & J. Garay eds.), Lect. Notes Comput. Sci. vol. 8043, p. 289-307,
Springer, 2013.

Fabien Laguillaumie, Adeline Langlois, Benoit Libert & Damien Stehlé. Lattice-Based
Group Signatures with Logarithmic Signature Size, in Advances in Cryptology - ASI-
ACRYPT 2013 (K. Sako & P. Sarkar eds.), Lect. Notes Comput. Sci. vol. 8270, p. 41-61,
Springer, 2013.

Benoit Libert & Marc Joye. Group Signatures with Message-Dependent Opening in the
Standard Model, in Topics in Cryptology - CT-RSA 2014 (J. Benaloh ed.), Lect. Notes
Comput. Sci. vol. 8366, p. 286-306, Springer, 2014.

Alex Escala, Javier Herranz, Benoit Libert & Carla Rafols. Identity-Based Lossy Trap-
door Functions: New Definition, Hierarchical Extensions, and Implications, in Public
Key Cryptography (PKC) 2014 (H. Krawczyk ed.), Lect. Notes Comput. Sci. vol. 8383,
p- 239-256, Springer, 2014.

Benoit Libert, Moti Yung, Marc Joye & Thomas Peters. Traceable Group Encryption, in
Public Key Cryptography (PKC) 2014 (H. Krawczyk ed.), Lect. Notes Comput. Sci.
vol. 8383, p. 592-610, Springer, 2014.

Benoit Libert, Thomas Peters, Marc Joye & Moti Yung. Non-Malleability from Malleabi-
lity: Simulation-Sound Quasi-Adaptive NIZK Proofs and CCA2-Secure Encryption from
Homomorphic Signatures, in Advances in Cryptology - EUROCRYPT 2014 (P. Nguyen
& E. Oswald eds.), Lect. Notes Comput. Sci. vol. 8441, p. 514-532, Springer, 2014.

Benoit Libert, Marc Joye & Moti Yung. Born and Raised Distributively: Fully Dis-
tributed Non-Interactive Adaptively-Secure Threshold Signatures with Short Shares,
in 33rd Symposium on Principles of Distributed Computing (PODC 2014), (S. Dolev
ed.), p. 303-312, ACM Press, 2014.

Benoit Libert, Marc Joye, Moti Yung and Thomas Peters. Concise Multi-Challenge
CCA-Secure Encryption and Signatures with Almost Tight Security. In Advances in
Cryptology - ASIACRYPT 2014 (P. Sarkar & T. Iwata eds.), Lect. Notes Comput. Sci.
series, Springer, 2014.



CHAPTER

Background

This chapter briefly recalls several notions and definitions that are related to non-interactive
zero-knowledge proofs and structure-preserving cryptography. These reminders will make
it easier to explain the results of subsequent chapters.

1.1 Bilinear Maps and Hardness Assumptions

Definition 1 (Bilinear Groups). A bilinear group system is a tuple (p, G1, G2, Gr, e, 41, $2)
where Gy, G, and Gr are cyclic abelian groups of prime order p > 2", where A € N is
a security parameter, generated respectively by ¢1 € G, §2 € G and e(g1,82) € Gr. If
e : G x G — Gr is a non-degenerated bilinear form, for all X € Gy, for all Y € Gy, for all
a,b € Zy,

e(X%,YP) = e(X,Y)". (1.1)

For a security parameter A, it is assumed that bilinear groups are efficiently samplable so
that p > 2. Mainly, there are three types of elliptic-curve instantiations [115]:

Type I: where Gi = G, and g1 = 2. We usually refer to Type-I instances as symmetric
pairings. We denote by (p, G, Gr, e, g) < A(A) the generation of this setting.

Type II: where G; # Gy and an efficient isomorphism ¢ : Gy — G is available but none is
efficiently computable from G; to G,.

Type III: where G; # G but no efficient isomorphism between G and G, is efficiently
computable in either direction.

Type III elliptic curves have the most efficient instantiations and admit a smaller repre-
sentation of Gi-elements than those of Gy-elements. At a same bit-security level, G-elements
of Type I elliptic curves have an intermediate size relatively to Type III curves. In the fol-
lowing chapters we will often use Type I groups in order to keep the description of systems
as simple as possible. We will, however, mention extensions to Type II or Type III pairings
whenever they are possible.

1.1.1 Algorithmic Assumptions

All the schemes proposed in the thesis have their security based on one or several of the
following assumptions. To simplify their descriptions we will say “a problem is hard in a
group G” for “a problem is hard relatively to the generation of G”, which means that the
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probability to efficiently solve the problem is negligible in the security parameter A where
the random coins are taken over the distribution of the A-bit length instance of the problem
and the distribution that generates the group G whose cardinality is at least 2. In symmetric
bilinear groups, the latter distribution is that of A(A) such that (p, G, Gr, e, ) < A(A).

As a warm-up, we start with the weakest assumption of the thesis. Breaking this as-
sumption means breaking all the other ones since the underlying problem is the hardest to

solve. Foraset S, s & S means that s is equally-likely sampled from S.

Assumption 1 (DLOG). The Discrete Logarithm (DLOG) problem in a cyclic group (p, G, g),

is to computea € Z, such thath = g for someh & G. The Discrete Logarithm Assumption
asserts that the DLOG problem is hard in G.

Assumption 2 (CDH). In a cyclic group G = (g) of order p, the Computational Diffie-
Hellman (CDH) problem is, given (g,g",8") € G3, for some a, b & Z;, to compute g" €
G. The Computational Diffie-Hellman Assumption posits the intractability of the CDH
problem in the group G.

In some cases, reductions from the hardness of CDH may be difficult to obtain. In such
situations, the following assumption is sometimes convenient to use.

Assumption 3 (Flex-CDH [163]). The Flexible Diffie-Hellman Assumption (Flex-CDH) in
G asserts the hardness of finding a non-trivial triple (g¥, g"*, g™*) € (G\{1g})?, for some

non-zero j € Z?, given (3,8, g") & G.

When it comes to proving indistinguishability-based security, the hardness of decisional
problems often come in handy. A well-known decisional assumption is the difficulty of the
Decision Diffie-Hellman DDH problem which amounts to recognizing the solution of a CDH
instance.

Assumption 4 (DDH). In a cyclic group G = (g) of order p, the Decision Diffie-Hellman
(DDH) problem, is to distinguish the distributions (g,g", " ¢%) and (g,¢% &%, °), with
a,b ﬁ Zy, c <i Z,. The Decision Diffie-Hellman Assumption posits that DDH is hard
in G. The DDH assumption holds in G if, for any PPT distinguisher A, it holds that

AdVPH (1) = |Pr[A(g, 8% 8% 8") = 1] a,b < Z,)]
—PrA(g,8% 8" ¢) = 1] a,b,c & Z,)| € negl(A),

where the probabilities are taken over all coin tosses.

In symmetric bilinear groups (p,G,Gr,e,g) < A(A), the DDH assumption does not

hold. Indeed, given (g,h, f, T) € G4, deciding whether T = flOgg (") can be done efficient by
checking whether e(g, T) = e(h, f).

On the other hand, the DDH assumption is believed [234] to hold in G; for asymmetric
bilinear groups (p, G1, Gz, Gr,¢,g1,82) of Type II since there is no apparent way to invert
the isomorphism ¢ : G, — Gi. In Type III configurations (p, G1, G2, Gr, ¢, 91, 2) (Where
no isomorphism is efficiently computable in either direction between G; and G,), the DDH
assumption is believed to hold in both G; and G,. The simultaneous intractability of DDH
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in G; and G, for Type III pairings is called Symmetric eXternal Diffie-Hellman assumption
(SXDH) [234].

In symmetric pairings, the hardness of the DLIN problem appears as a reasonable as-
sumption to rely on.

Assumption 5 (DLIN [44]). In a cyclic group G = (g) of order p, the Decision Linear (DLIN)
problem is to distinguish the distributions (g%, g, ", ¢", ¢™) and (g%, ¢*, §°, §"%, ¢*), with

a,b,c,d <i 7y, z <i Z,. The Decision Linear Assumption is the intractability of DLIN for
any PPT distinguisher D. The advantage of a distinguisher is defined analogously to the
DDH case.

Equivalently, for random group elements g, i, f <+ G, the DLIN assumption is the hard-
ness of deciding whether an given triple (f¢, ht, z ) € G3, for unknown (c,d) € Z’%, satisfies
(f¢, W, 7) € span((f,1,¢),(1,h,g)) (i.e., Z = gc+d), where span stands for the linear span of
two or more vectors.

Assumption 6 (DP [4]). In asymmetric bilinear groups (p, G1, G2, Gr, e,81,2), the Double

Pairing (DP) problem is, given g, gr & Gy, to find a non-trivial (z,7) € (G2\{1g, })? satisfy-
ing 1g, = e(gz,z) - e(gr, ). The Double Pairing Assumption asserts that the DBP problem
is hard in G.

It is easy to see that the DP assumption is implied by the DDH assumption in G;. Given
a DDH instance (g2, g, 8,87, for any non-trivial pair (z,7) € G} satisfying the equality
e(g2,2) -e(gr,7) = 1g,, we have @ = ¢ if and only if e(g%,2) - e(g?, 7) = 1g,-

In symmetric pairings, the DP and DDH problems are both easy. However, the DP as-
sumption has an analogue, which we introduced in [81], that seems to hold in Type I pair-
ings. This assumption is called Simultaneous Double Pairing (SDP) and, as shown in [81], it
is implied by DLIN.

Assumption 7 (SDP [81]). The Simultaneous Double Pairing Problem (SDP) in a symmetric

bilinear group (p,G,Gr,e,g) < A(A) is, given gz, gy, hz, hy & G4, to find (z,7,u) € G
satisfying the equalities

lg, = e(gz,2) -e(gr, 1), lg, = e(hz, z) - e(hy, u). (1.2)
The Simultaneous Double Pairing Assumption is the hardness of the SDP problem.

The assumption can be generalized to asymmetric pairing configurations (Gi, Gz, Gr).
If ¢z, gr, 2, hy are in Gy (resp. Gy), finding a non-trivial (z,7,u) € G% (resp. (z,1,u) € Gi’)
such that (resp. e(z, g-) - e(r, gr) = e(z,hz) - e(u, h,) = 1g,) is at least as hard as breaking the
DLIN assumption in G; (resp. Gy).

In the symmetric setting, the connection between SDP and DLIN was observed [81] by
noticing that, given a DLIN instance (g, hy, g, gfl, hzz, T) where either T = g91+92 orT e€r G,
for any triple (z,7,u) € G such that e(gh,2) - e(g,, 1) = e(h?,2) - e(hy, u) = 1g,, we have the
equivalence

T=g¢"" o ¢(T,2) e(gr u)=1lg,.

The DLIN assumption can be generalized as the problem of deciding whether K + 1
vectors of dimension K + 1 are linearly independent.
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Assumption 8 (K-LIN [235][143])). In a cyclic group G = (g) of order p, the K-Linear (K-LIN)
problem is to distinguish the distributions

K a0
{(gqllggzl"-lg?é(/gzi:] al) |g1/""gK g GI ai,...,4K i Zp}

and
$ $
{785 -, 85 8) 181, 8k < G, a1,...,ax,2 & Zp}.
The K-linear assumption is the infeasibility of K-LIN for any PPT algorithm.

The DDH and DLIN assumptions can be seen as special cases of the K-LIN assumption
for K = 1 and K = 2, respectively. The difficulty of the problem is believed to increase
with the dimension K. In the generic group model, it was shown [235, 143] that, for each
K > 1, the K-linear problem remains hard in the presence of an oracle solving (K — 1)-linear
instances.

The SDP assumption as a similar generalization, which is implied by the K-linear as-
sumption in the same way as SDP is implied by DLIN.

Assumption 9. The Simultaneous K-wise Pairing (K-SDP) problem is, given a random tuple

(gl,Z/ - s 8Kz, 81,rs - - - /gK,I’) €R GZK!

to find a non-trivial vector (z,r1,...,rg) € GKT! such that

e(8jz2) - e(gjr i) = log je{l,....K} (1.3)
and z # 1g.
Given a K-linear instance (g1, - - -, k' &1y - - - » s 1) € GZF1, for any non-trivial tuple
(z,11,...,7rK) satisfying e(g?’jr,z) -e(gjr 1j) = 1g, foreachj € {1,...,k}, we have

K
p=g"1" & eg][r) ez =1,
j=1
Hence, any algorithm solving K-SDP with non-negligible probability implies a K-linear dis-
tinguisher.

All the above assumptions can be classified in the category of simple assumptions [249].
By “simple assumption”, we mean an assumption which is simultaneously falsifiabl{] [206]
and with a description made of a constant number of group elements. In particular, the
number of input elements does not depend on the number of queries made by the adversary
or any feature (such as the maximal number of users in a system) of a specific cryptographic
scheme. Simple assumptions are usually deemed more reliable than so-called g-type as-
sumptions, which are parametrized and variable-length assumptions.

In some applications, more efficient schemes may be obtained by relying on a family of
g-type assumptions. While these assumptions are usually falsifiable, the number of group
elements in a problem instance depends on a parameter q determined by the cryptographic
system (e.g., the maximal number of members in a group of users) or the power of adver-
sary (via the number of queries). The strength of the assumption thus depends on the de-
sired scalability of the considered protocol or the resources made available to the adversary.
However, the assumptions described in this section all resist generic adversaries [237].

INamely, it should be possible to publicize a problem instance as a challenge and efficiently check the cor-
rectness of any candidate solution to this challenge.
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g-type assumptions We also rely on assumptions that can be seen as non-interactive vari-
ants of “one-more” problems, where the goal of the problem solver is to find a new solution
given g initial solutions. However, a difference between g-type problems and one-more prob-
lems is that, in in the former, the solver is given g inputs at once at the beginning instead of
dynamically interacting with an oracle. Still, the length and the strength of the assumption
are determined by a parameter g, which usually depends on the scalability of the system
or the power of the adversary. For example, in the first use of the g-Strong Diffie-Hellman
assumption [41], ¢ was the number of signing queries made by the adversary.

Assumption 10 (g-SDH [41]). The g-Strong Diffie-Hellman problem (3-SDH) in a group

(p,G,g) is, given (g,8",...,8"")), for some a & Z,, to find a pair (gV/*9),s) € G x Z,,.
The g-Strong Diffie-Hellman Assumption asserts the hardness of the q-SDH problem.

In [56], Boyen and Waters considered the following variant of the g-SDH assumption.

Assumption 11 ([56]). The g-Hidden Strong Diffie-Hellman problem (3-HSDH) in G con-
sists in, given (g, Q) = g%, u) & @3 and triples { (g'/(«“+si), g6, us) Y, withcy, ..., c & Z,,
finding another triple (g'/(“*9), ¢¢, u¢) such thatc # c; fori =1,...,q.

While stronger than the -SDH assumption, the -HSDH assumption was shown [56] to
hold in generic bilinear groups.

The following assumption has been used to prove the security of a constant-size structure-
preserving signature [4, 6] scheme that allows signing vectors of group elements. It will also
serve as a building block for some of our constructions in the forthcoming chapters.

Assumption 12 (g-SFEP [6]). The g-Simultaneous Flexible PairingNProblem (g-SFP) in a sym-
metric bilinear group (p,G,Gr,e¢,g) is, given gz, h, gr, hy,a,d,b,b € G and g € poly(A) tu-
ples (er 1i,Sj, tj, Uj, vj, w]') € G’ such that

(1.4)

to find a new tuple (z*,r*,s*, t*, u*, v*, w*) € G’ satisfying relation and such that z* #
1g and z* # zj forj € {1,...,q}. The g-Simultaneous Flexible Pairing assumption states
that the g-SFP problem is intractable in G.

Assumption 13 (7-DHE [49])). The g-Diffie-Hellman Exponent Problem (7-DHE) in a cyclic
group (p,G,g) is, given (g, 81,---,84,85+2/-- -, §2q) € G? such that g; = g("") for each i and

where & < Z,, to compute the missing element g1 = g(”‘“l). The hardness of the g-DHE
problem is referred to as the g-Diffie-Hellman Exponent assumption in G.

The latter assumption and the g-SDH assumption are somewhat incomparable. On one
hand, the g-DHE assumption is stronger as the adversary is given more input elements for
the same parameter 4. On the other hand, unlike the g-SDH problem, any instance of the
g-DHE problem has only one possible answer.

As observed in [66], the g-DHE problem is not easier than the g-Bilinear Diffie-Hellman
Exponent (3-BDHE) problem defined by Boneh, Gentry and Waters [49], which is to compute
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e(g h) (@) on input of the same values and the additional element i € G. The generic hard-
ness of g-DHE thus follows from the generic security of the family of assumptions analyzed
by Boneh, Boyen and Goh [43].

We also appeal to a stronger variant of Assumption[13, which was defined in [145], where
its generic hardness was proved. While the Flex-CDH assumption relaxes the resolution of
the CDH problem, the following assumption relaxes the g-DHE problem in a similar way:.

Assumption 14 (g-Flex-DHE). In a cyclic group G = (g) of prime order p, the Flexible g-
Diffie-Hellman Exponent (7-FlexDHE) problem is, given (8,81, --,8q,8q+2/ - - -, 82q) € G*I

where g; = g®) for each i and with « & Z;, to find a triple (g”,gsﬂ,g;q) € (G\{1g})3, for

some non-zero i € Z, and where g5+1 = g("‘w). The Flexible g-Diffie-Hellman Exponent
assumption is the hardness of the q-FlexDHE problem for any PPT adversary.

1.2 Non-Interactive Zero-Knowledge and Witness Indistinguish-
able Proofs

Zero-knowledge proofs [127,[126] allow a prover to convince a verifier that a given statement
x belongs to some specific language £ without revealing anything beyond the fact that x € L.
In a proof system for an NP language, the prover uses an additional private input w, called
the witness, which allows efficiently generating a convincing proof. This witness is generally
hard-to-compute for the verifier since, otherwise, the latter could get convinced without any
help from the prover.

1.2.1 Definition and Security Notions

Let V be a set whose elements are efficiently recognizable. A family of relations R defines
a hard-to-invert NP language £ C V if, for a security parameter A, given the description of
a relation R - R(A), there exists an efficient algorithm for sampling a pair (x, w), made of
a statement x and a witness w, such that R(x, w) = 1. Moreover, given only the statement
x € L:={x € V|Iw: R(x,w) = 1}, it is computationally hard to compute a witness w
such that R(x, w) = 1.

A language £ C V is said hard-to-decide if no PPT algorithm can distinguish random
elements of £ from random elements of V\ L. When speaking of a hard language, we mean
a language which is hard-to-decide. For example, for fixed generators (g, 1) € G? in a cyclic
group G, the Diffie-Hellman relation R((g1,$2), w) := ((g1,82) = (g%, h")) defines a hard-
to-decide language in V = G? as long as the DDH assumption holds in G.

Proving a statement x € L can be done by demonstrating the existence of w such that
that R(x, w) = 1. Also, the relation R can be defined so as to take as input a set of public
parameters pp < Setup(A), so that R is generated as R <— R(pp) rather than simply from
the security parameter.

In non-interactive zero-knowledge proof systems, there is no online conversation be-
tween the prover and the verifier: each proof consists of a single message from the former to
the latter. In addition to common public parameters pp, the prover and the verifier both take
as input a common reference string crs which can be seen as another set of public parame-
ters generated by a trusted party. In some cases, the public parameters pp can be part of the
common reference string crs but it will be useful to separate them.
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Definition 2 (NIZK Proofs [38,137]). A non-interactive zero-knowledge (NIZK) proof system
I1p for a family of hard relations R is a tuple of algorithms (Setupp, CRS-Genp, Prove, Verifyp).

Setup, (11): from the security parameter A, generates the public parameters pp of the proof
system,

CRS-Genp(pp): takes in pp and outputs the common reference string crs that are public
elements helping performing a proof for R <— R (pp)

Prove(crs, x, w): computes a proof 7t for x using the public crs and the private witness w.

Verify (crs, x, 77): returns either 1 or 0 if 7t is a valid proof associated to the language Lg.

A NIZK proof system I1p has the following properties:

Perfect Completeness: for any PPT adversary A;,

Pr[pp < Setupp(A); crs < CRS-Genp(pp); (x, w) < Aj(crs);
7T < Prove(crs, x, w) : Verify(crs, x, 1) =0 A R(x,w) =1] =0,

Computational Soundness: for any PPT adversary Aj,

Pr[pp < Setupp(A); crs < CRS-Genp(pp); (x, 71) < Ap(crs) :
Verifyp(crs,x, 1) =1 A (Bw : R(x,w) =1)] € negl(A),

The notion of statistical soundness is obtained by allowing A, to be a computationally un-
bounded adversary. Non-interactive proof systems where the soundness property is only
guaranteed in the computational sense are often called arguments.

Zero-Knowledge: there exists a PPT simulator (S1,S2) such that, for any PPT adversary As,

Pr[pp < Setupp(A); (crs, T) < S1(pp) : AgZ(CrS’T"")(crs) =1]
~ Pr[pp + Setupp(A); crs «+— CRS-Genp(pp) : Ag(crs"")(crs) =1,

- P(crs, .,.) emulates the actual prover. It takes as input a pair (x, w) and outputs a proof
m if (x, w) € R. Otherwise, it outputs L,

- Sy(crs, T,.,.) is an oracle that takes as input (x, w) and outputs a simulated proof 7t <
Sa(ers, T, x) if (x,w) € R and L if (x,w) ¢ R. Importantly, 7t is computed without
using the witness w if (x, w) € R.

In some cases, the public parameters are generated at the same time as the CRS crs by
the CRS-Genp algorithm. The above definition allows them to be generated separately in
order to capture Quasi-Adaptive NIZK proofs, which will be discussed later on.

The above definition of the zero-knowledge (ZK) property is computational since Aj3 is
restricted to be efficient. By removing this restriction and allowing for an all powerful A3,
we can capture statistical or perfect ZK if the distributions are statistically close or perfectly
indistinguishable, respectively.

Intuitively, the zero-knowledge property captures that, for any x € £, the only infor-
mation revealed by an honestly generated proof 7 is the same as a simulated proof that
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is generated without using w. Hence, the verifier learns nothing beyond the truth of the
proven statement x € L. In particular, no information about the witness w is revealed. In
many applications, a weaker notion called witness-indistinguishability suffices. It requires
that, when a given statement x € £ admits at least two distinct witnesses wy, w; such that
R(x,wp) = R(x,w;y) = 1, the distribution of a proof 7 for x does not depend on which wit-
ness is used to compute 7. However, 77 may not be computable by an efficient simulator
(S1,S2) as in the zero-knowledge property.

Definition 3 (Witness Indistinguishability). A non-interactive proof system Ilp = (Setupp,
CRS-Genp, Prove, Verifyp) for a hard language L is witness-indistinguishable (NIW]I) if, for
any PPT adversary (A4, As), for any pp < Setupp(A) and crs <— CRS-Genp (pp),

Pr[(x, wo, w1, st) < As(crs); T < Prove(crs, x, wp) : As(7,st) = 1]
~ Pr[(x,wp,wq,st) < Ag(crs); 7 < Prove(crs, x,wy) : As(7,st) = 1],

where (x,wy), (x,w1) € R.

For hard languages that admit efficient an zero-knowledge simulator, the latter can al-
ways use its simulation trapdoor to compute proof for true statements without knowing
the witnesses. The trapdoor can also be used for computing proofs for false statements,
i. e.proofs that satisfy the verification test although x ¢ L. This property is a very useful the-
oretic tool for building chosen-ciphertext-secure cryptosystems, for example based on the
Naor-Yung/Sahai [208, 231] paradigm. The ability to simulate proofs for false statements
should be used with caution as observing such fake proofs may help the adversary prove
false statements by itself. The notion of simulation-soundness, as introduced by Sahai [231]]
captures that seeing a polynomial number of fake proofs should not break the soundness

property.

Definition 4 (Simulation-Soundness [231]). A non-interactive proof system Ilp = (Setupp,
CRS-Genp, Prove, Verifyp) for a hard language L is simulation-sound if there exists a PPT
simulator (S1,S;) such that, for any PPT adversary As,

Pr[pp < Setupp(A); (crs, T) + S1(pp); (x, 1) ASZ(CrS’T"")(crs) :
Verifyp(crs,x, 1) =1 A =(Jw : R(x,w) =1) A (x,71) & Q] € negl(A)

where the adversary is granted access to an oracle Sy(crs, T, .) that takes as input a statement
x (where x may be outside L) and outputs a simulated proof 7= <— Sy(crs, T, x) before setting
Q := QU{(x, )}, which is initially empty.

The proof system is said unbounded simulation-sound if it provides simulation-soundness
against adversaries which are allowed to invoke the oracle S;(crs, 7, .) an a priori unbounded
(but polynomial) number of times. In the strictly weaker notion of one-time simulation-
soundness, the adversary is restricted to query Sy(crs, T,.) only once.

Note that, since proofs for false statements do exist in simulation-sound proof systems,
the soundness property can only hold in the computational sense.
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1.3 Groth-Sahai Proof Systems

In their seminal paper published in 2008, Groth and Sahai gave efficient non-interactive wit-
ness indistinguishable proof systems allowing to efficiently prove algebraic statements in
groups with a bilinear map e : G; X G — Gr. Their techniques build on earlier ideas
suggested by Groth, Ostrovsky and Sahai [137,[136] in that they rely on homomorphic com-
mitments that can be either perfectly hiding or perfectly binding depending on how the
commitment key is generated. A difference with [137,[136], however, is that the Groth-Sahai
methods directly demonstrate the validity of algebraic statements without proving the satis-
fiability of a circuit. While this restricts the range of provable languages, it allows for a much
better efficiency as it avoids the need for an expensive NP reduction.

In Groth-Sahai proofs, the statements to be proved involve witnesses that can be either
exponents in Z, or group elements in G; or G,. One caveat is that these NIWI proofs can
only be used as proofs of knowledge when the witnesses are all group elements.

The Groth-Sahai (GS) proof systems can be instantiated using the K-linear assumption
for any K > 0. In their instantiation based on the DLIN assumption (with K = 2) in
symmetric pairing configurations (i.e., with G; = G), the Groth-Sahai (GS) proof systems
[138] use a common reference string (CRS) consisting of three vectors g1, 82,83 € G3, where
g1 = (91,1,9), 8 = (1,%,9) for some g1,$ € G. In order to commit to a group element

X € G, the prover computes C = (1,1, X) - g1" - g2° - g3’ withr, s, ¢ & Z,. When the proof
system is configured to provide perfectly sound proofs, gs is set as g3 = g1° - g2 with

¢1,C ﬁ Z,. In this case, commitments can be written as

C (g;+€1t’g;+€2t X X gr+5+t(t§1+t§2))’

so that they can be interpreted as Boneh-Boyen-Shacham (BBS) ciphertexts. Moreover, the
committed X € G can be recovered by running the BBS decryption algorithm using the pri-
vate key (aq,a2) = (logg( gl),logg (g2)). When the CRS is set up to give perfectly witness
indistinguishable (WI) proofs, g1, g2 and gz are linearly independent vectors, so that Cis a
perfectly hiding commitment to X € G: a typical choice is g3 = g1 - g2 - (1,1,¢) . Under
the DLIN assumption, the two distributions of CRS are computationally indistinguishable.

To commit to an exponent x € Zj, the prover computes C = ¢* - g1" - g2°, with 7, s ﬁ Zy,
using a CRS containing ¢, g1, g2. In the perfect soundness setting ¢, g1, 82 are linearly in-
dependent (typically ¢ = g3 - (1,1,g) where g3 = gl‘fl . gzgz) whereas, in the perfect WI
setting, choosing @ = g;°! - g,% yields perfectly hiding commitments since C is statistically
independent of x.

To prove that committed variables satisfy a set of relations, the GS techniques replace
variables by the corresponding commitments in each relation. The entire proof consists of
one commitment per variable and one proof element (made of a constant number of ele-
ments) per relation.

Efficient NIWI proofs are available for pairing-product relations, which are equations of
the type

He (Aj, X)) H He X;, X)) = tr, (1.5)
i=1 j=1

for constants tr € Gr, Ay,..., Ay € G, a;; € Zp, fori,j € {1,...,n}, and variables X,
., Xy € G. Efficient proofs also exist for multi-exponentiation equations, which are of the
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form

m vi n b] m n ylr)/l]
(1 110 LT o
j= i=1 j=

i=

for constants T, Ay, ..., Ay € G, by, ..., by € Zyand v € Zp,foric {1,...,m},j € {1,...,n}
and variables X1,..., X, € G, y1,...,Ym € Zp.

Multi-exponentiation equations always admit non-interactive zero-knowledge (NIZK)
proofs at no additional cost. On a perfectly witness indistinguishable CRS, a trapdoor (such
as the hidden exponents (&1,&2) € Z% when g3 = g1% - 2,2 - (1,1,¢)!) makes it possible
to simulate proofs without knowing witnesses and simulated proofs are perfectly indistin-
guishable from real proofs. As for pairing-product equations, zero-knowledge proofs are
often possible — this is usually the case when the right-hand-side member tr of is a
product of pairings involving known group elements — but the number of group elements
per proof may not be constant anymore. Here, when using such NIZK simulators, we just
introduce a constant number of extra group elements in the proofs.

In both cases, proofs for quadratic equations cost 9 group elements. Linear pairing-
product equations (when a;; = 0 for all i,j) take 3 group elements each. Linear multi-
exponentiation equations of the type [Ti; /'\,’]-bj = T (resp. [1"; A" = T) demand 3 (resp. 2)
group elements.

Groth-Sahai proofs can also be instantiated under the SXDH assumption. This instan-
tiation uses prime order groups and a common reference string containing two vectors
fi,f, € G2, where f; = (g, f1), f2 = (h, f2), for some ¢,h, f1,f» € G. To commit to a
group element X € G, the prover chooses 7, s & Z, and computes C = (1,X) - f1" - f,°. Ona
perfectly sound common reference string, we have f, = £,%, for some ¢ € Zy. Commitments

C= (g%, f s X)) are extractable as their distribution coincides with that of an Elgamal
ciphertexts [103] and the committed X can be extracted using f = log, (f1). In the witness
indistinguishability (WI) setting, the vector £, is chosen so that (f1, f,) are linearly indepen-
dent vectors and C is a perfectly hiding commitment. Under the DDH assumption in G, the
two kinds of CRS can be exchanged for one another without the adversary noticing.

To convince the verifier that committed variables satisfy a set of relations, the prover
computes one commitment per variable and one proof element per equation.

In pairing-product equations, proving a linear equation of the form

ﬁe(Xi,Ai) = tT, (16)
i=1

where X;,..., X, € Gand A, ..., A, € G, costs two elements of G. If variables are in G,
proofs must live in G? instead of G?. Quadratic equations are somewhat more expensive
to prove and they main contain elements of both G and G. Multi-exponentiation equations
have similar proof sizes.

In [28], Belenkiy et al. showed that Groth-Sahai proofs are perfectly randomizable. Given
commitments {Cy, }""_; and a NIWI proof 7rppg that committed {X'}7 ; satisfy (L.5), anyone
can publicly compute re-randomized commitments {C X/}?:l and a re-randomized proof
Ttppg, of the same statement. Moreover, {Cy/}_; and 7tppy, are distributed as freshly gener-
ated commitments and proof.
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Groth-Sahai proofs are also malleable [83] in that it is often possible to publicly modify
a proof 7t of a given statement x and turn it into a proof 77’ of another statement x” which
is related to x. This malleability property — which appears unique to GS proofs — can be a
useful property in certain situations. For example, Belenkiy et al. used it to construct dele-
gatable anonymous credentials [28]. More recently, Chase et al. [83] took advantage of the
malleability of Groth-Sahai proofs to build homomorphic encryption schemes satisfying a
relaxed form of chosen-ciphertext security [222], efficient non-interactive proofs for shuffles
and elections systems [83} 84].

In the design of non-malleable protocols like chosen-ciphertext-secure public-key en-
cryption, however, this malleability property is usually undesirable. Groth [133] showed an
elegant technique, inspired by earlier ideas due to Lindell [192], for tweaking Groth-Sahai
proofs and obtain unbounded simulation-soundness. The upcoming chapters will present
more efficient methods for obtaining one-time and unbounded simulation-sound variants of
Groth-Sahai proofs.

1.4 Quasi-Adaptive NIZK Proofs

While much more efficient than general NIZK proofs, the GS techniques remain more expen-
sive than non-interactive proofs obtained from the Fiat-Shamir heuristic [107] in the random
oracle model [32]: for example, proving that ¢ variables satisfy a system of # linear equations
demands O(t + n) group elements where X-protocols allow for @(t)-size proofs.

For languages consisting of linear subspaces of a vector space, Jutla and Roy [151] showed
how to significantly improve upon the GS paradigm in the quasi-adaptive setting. In quasi-
adaptive NIZK proofs (QA-NIZK) for a class of languages { £, } parametrized by p, the com-
mon reference string (CRS) is allowed to depend on the particular language £, of which
membership must be proved. At the same time, a single simulator should be effective for
the whole class of languages {£,}. As pointed out in [151], QA-NIZK proofs are sufficient
for many applications of Groth-Sahai proofs. In this setting, Jutla and Roy [151] gave very
efficient QA-NIZK proofs of membership in linear subspaces. If A € Z;X” is a matrix or
rank t < 1, in order to prove membership of £ = {v € G" | Ix € Z), st. v = g**}, the
Jutla-Roy proofs only take O(n — t) group elements — instead of @(n + t) in [138] — at the
expense of settling for computational soundness.

Quasi-Adaptive NIZK (QA-NIZK) proofs are NIZK proofs where the CRS is allowed to
depend on the specific language for which proofs have to be generated. The CRS is divided
into a fixed part I', produced by an algorithm Ky, and a language-dependent part ip. How-
ever, there should be a single simulator for the entire class of languages.

Let A be a security parameter. For public parameters I' produced by K, let Dr be a prob-
ability distribution over a collection of relations R = {R,} parametrized by a string p with
an associated language £, = {x | 3w : Ry(x, w) = 1}.

We consider proof systems where the prover and the verifier both take a label Ibl as ad-
ditional input. For example, this label can be the message-carrying part of an Elgamal-like
encryption. Formally, a tuple of algorithms (Ko, Kj, P, V) is a QA-NIZK proof system for R
if there exists a PPT simulator (S1, Sy) such that, for any PPT adversaries 4;, A; and A3, we
have the following properties:
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Quasi-Adaptive Completeness:

Pr[I' <~ Ko(A); p < Dr; ¢ < Ky (T, p);
(x,w,Ibl) <= A1 (T, ¢, p); T < P(¢,x,w,1bl) : V(ip, x, 7r,Ibl) =1 if Ry(x,w) = 1] = 1.

Quasi-Adaptive Soundness:

Pr[l <~ Ko(A); p < Dr; ¢ «+ Ky (T, p); (x, 7, 1bl) < A (T, 9, p) :
V(g,x,m,1bl) =1 A =(Fw : Ry(x,w) = 1)] € negl(A).

Quasi-Adaptive Zero-Knowledge:

Pr[I < Ko(A); p + Dr; ¢ + Ky(T,p) : ALY (T, y,0) = 1]
~ PI‘[F < ]Ko()\); p <— Dr} (lp, Tsim) < Sl (F,p) : Ag(wlmm""")(r, lp,p) = 1],

where

- P(y,.,.,.) emulates the actual prover. It takes as input (x, w) and Ibl and outputs
a proof 7t if (x, w) € R,. Otherwise, it outputs L.

- S(¢, Tsim, -, -, -) is an oracle that takes as input (x, w) and Ibl. It outputs a simulated
proof Sz (¢, Tsim, x, Ibl) if (x,w) € R, and L if (x,w) € R,.

We assume that the CRS ¢ contains an encoding of p, which is thus available to V. The def-
inition of Quasi-Adaptive Zero-Knowledge requires a single simulator for the entire family
of relations R.

It is often useful to have a property called simulation-soundness, which requires that the
adversary be unable to prove false statements even after having seen simulated proofs for
possibly false statements.

Unbounded Simulation-Soundness: For any PPT adversary Ay, it holds that

Pr[T + Ko(A); p < Dr; (§, Tsim) < S1(T, p); (x, 71, 1bl) = AW m) (T o)
V(,x,m,Ibl) =1 A =(Fw: Ry(x,w) =1) A (x,7,Ibl) € Q] € negl(A),

where the adversary is allowed unbounded access to an oracle S, (¥, 7,.,.) that takes as
input statement-label pairs (x, Ibl) (where x may be outside £,) and outputs simulated
proofs 7T < Sy(, Teim, X, Ibl) before updating the set Q = Q U {(x, 7, Ibl) }, which is
initially empty.

In the weaker notion of one-time simulation-soundness, only one query to the S, oracle is
allowed.

In some applications, one may settle for a weaker notion, called relative soundness by
Jutla and Roy [150], which allows for more efficient proofs, especially in the single-theorem
case. Informally, relatively sound proof systems involve both a public verifier and a private
verification algorithm, which has access to a trapdoor. For hard languages, the two veri-
fiers should almost always agree on any adversarially-created proof. Moreover, the private
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verifier should not accept a non-trivial proof for a false statement, even if the adversary has
already seen proofs for false statements.

A labeled single-theorem relatively sound QA-NIZK proof system is comprised of a
quasi-adaptive labeled proof system (Kp, K3, P,V) along with an efficient private verifier
W and an efficient simulator (S1,S;). Moreover, the following properties should hold for
any PPT adversaries (A1, Ay, A3, As).

Quasi Adaptive Relative Single-Theorem Zero-Knowledge:

Pr[T + Ko(A); p < Dr; ¢ < Ki(T,p); (x,w,1bl,5) A" (T, 9,p);
T < P(y,p,x,w,Ibl) : A;/(Ip"")(n,s) =1]
~ Pr[T + Ko(A); p < Dr; (,7) < Si(T,p); (x,,1bl,5) « AVP™)(T 4 o);
7+ Sa(1p, 0,7, x, bl) : AW T (7, 6) = 1),

Here, A, is restricted to choosing (x, w) such that R, (x, w) = 1.

Quasi Adaptive Relative Single-Theorem Simulation-Soundness:

Pr[l < Ko(A); p < Dr; (,7) < S1(T,p); (x,1bl,5) < AY ™) (T, p,p);
/

(
7T+ Sa(¢,p, 7, x,1bl) : (&, 1bl, ") AXV(V)’T"")(S, )
(x, 7t,1bl) # (x', 7', IbI') A Aw's.t. Ry(x', w') =1 A W(p, T, %, Ibl', ©') = 1] € negl(A)

Note that the definition of relative simulation-soundness does not require the adversary
to provide a witness but the definition of single-theorem zero-knowledge does.

1.5 Structure-Preserving Cryptography

Many anonymity-related cryptographic protocols (e.g., [81, 16, 4, 112,15, 2]) build on Groth-
Sahai proofs in order to prove security in the standard model of computation. In order to
guarantee the extractability of witnesses for proofs generated on a perfectly sound CRS, it is
convenient to have signature schemes which allow one to sign elements of bilinear groups
while maintaining the feasibility of conveniently proving that a committed signature is valid
for a committed message.

Signature schemes where messages only consist of group elements appeared for the first
time as ingredients of Groth’s construction [133]] of group signatures in the standard model.
The scheme of [133] was mostly a proof of concept, with signatures consisting of thousands
of group elements. More efficient solutions were described by Fuchsbauer [112] and, inde-
pendently, in a paper of mine [81]. While the scheme of [112] is somewhat more efficient, it
only allows signing messages with a particular structure (typically, Diffie-Hellman tuples).
The construction of Cathalo, Yung and myself [81] does not have this restriction but its dis-
advantage resides in the linear length O(n) of signatures if G" is the message space. Abe,
Haralambiev and Ohkubo [6, 4] — who introduced the “structure-preserving” terminology —
subsequently showed how to sign messages of n group elements at once using O(1)-size sig-
natures. Lower bounds on the size of structure-preserving signatures were given in [5] while
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Abe et al. [5] provided evidence that optimally short SPS necessarily rely on interactive as-
sumptions. As an ingredient for their tightly secure cryptosystems, Hotheinz and Jager [142]
gave constructions based on the Decision Linear assumption [44] while similar results were
independently achieved in [63} 82]. Quite recently, Abe et al. [2, 3] obtained constant-size
signatures without sacrificing the security guarantees offered by security proofs under sim-
ple assumptions.

In the context of symmetric pairings, the description below assumes public parameters
pp = ((G,Gr), §) consisting of bilinear groups (G, Gr) of prime order p > 2}, where A € N
and a generator g € G.

Keygen(pp, n): given an upper bound n € IN on the number of group elements per signed
message, choose generators G,, H, i G. Pick v, 6, <i Zpand v;, ; <i Y fori=1to
n. Then, compute G, = G/)*, H, = H% and G; = G, H; = HY for each i € {1,...,n}.
Finally, choose a,, oy, & Z, and define A = ¢(G,,g") and B = e(H,, g"*). The public
key is defined to be
pk = (G,, Hy, G, H;, {G;, H;}!";, A, B) € G*"™ x G}

while the private key is sk = (&g, a5, 7z, 62, {7i, 6 11 ;).

Sign(sk, (My, ..., My)): to sign (My,...,M,) € G" using sk = (&a, &p, Yz, 0z, {7i, 0i}1 1),

choose Z, pa, pp, Wa, Wy & Z., and compute 01 = gg as well as
n
Oy =gf E TIM™,  03=Grr, 6y =gler/en
i=1

n
05 = ng*@g . HMi—tSi’ 0 = H;Ub, 0, = g(vcbfph)/wb’
i=1

The signature consists of ¢ = (601, 62,63, 64, 65, 6, 07).

Verify(pk, o, (M, ..., M,)): parse o as (01,02,03,04,05,06,07) € G’ and return 1 iff these
equalities hold:

n

A = E(GZ, 91) . e(Gr, 92) . 6(93, 94) . He(Gi, Ml'),
i=1

=

B = E(HZ, 91) . e(Hr, 95) . 6(96, 97) . HE(HZ', Mi).
i=1

The scheme was proved [6, 4] existentially unforgeable under chosen-message attacks
under the ¢g-SFP assumption, where g is the number of signing queries.

As shown in [6} 4], Signatures components {6;}7_, can be publicly randomized to obtain
a different signature {6’ 17:1 < ReRand(pk,o) on (Mj, ..., M,). After randomization, we
have 0] = 6; whereas other signature components {6/}7_, are uniformly distributed among
the values satisfying the relations

e(Gy,05) -e(05,05) = e(G,,0) e(63,04)
e(H,,0%) -e(6;,05) = e(H,, 05)-e(0,07).



1.5 Structure-Preserving Cryptography 31

Moreover, {91{}1'6{3,4,6,7} are statistically independent of the message and the rest of the sig-
nature. This implies that, in privacy-preserving protocols, re-randomized {6} }c (34,7, can
safely appear in clear as long as (M, ..., M) and {6 },c(1,55 are given in committed form.

In [5], Abe, Groth, Haralambiev and Ohkubo described shorter structure-preserving
signatures based on interactive assumptions (or, alternatively, in the generic group model
[237]). In the forthcoming chapters, we only rest on non-interactive and falsifiable assump-
tions, so that the above scheme will be preferred to those of [5]].

In [2, 3], Abe et al. described constant-size structure-preserving signatures based on
the standard DLIN assumption. While these constructions allow for the modular design of
many privacy-enhancing protocols (e.g., group signatures) based on simple assumptions,
they are somewhat less efficient than the original AHO signature [6]. While several of our
results build on the latter system (as they were published before [2, 3]), they can often be
modified by using the DLIN-based structure-preserving signatures of [2} 3] so as to avoid
non-standard g-type assumption.

Regarding primitives beyond signature schemes, Camenisch et al. [65] showed a structure-
preserving variant of the Cramer-Shoup cryptosystem [88] and used it to implement obliv-
ious third parties [64]. Groth [135] described length-reducing trapdoor commitments (i. e.,
where the commitment is shorter than the committed message) to group elements whereas
[7] showed the impossibility of realizing such commitments when the commitment string
lives in the same group as the message. Sakai et al. [233] recently suggested to use structure-
preserving identity-based encryption [236] systems to restrict the power of the opening au-
thority in group signatures.






CHAPTER

Applications of Structure-Preserving
Cryptography and NIZK Proofs to
Privacy-Enhancing Primitives

This chapter presents two applications of structure-preserving cryptography and Groth-
Sahai proofs in the setting of privacy-preserving protocols where users can retain anonymity
while taking certain actions within a group they belong to.

The first application is the design of a non-interactive group encryption system [156],
where anyone can encrypt a message for a certified but anonymous member of a group of
users. At the same time, the sender can convince anyone that a ciphertext is a valid encryp-
tion intended for some group member which an authority can identify if necessary.

The second application deals with the revocation problem in group signatures. Group
signatures [85] are signatures schemes where group users can sign messages while hiding
their identify within a group of members. Again, in order to deter abuses of the system, an
authority is capable of identifying the author of any signature.

In this chapter, although group signatures are an older primitive than group encryption,
our result on group encryption will be presented first since it makes use of our realization of
structure-preserving signatures [81], which is less efficient than the one of Abe et al. [6] that
we use in our revocable group signatures [180, [179].

2.1 Non-Interactive Group Encryption

Introduced by Kiayias, Tsiounis and Yung [156], group encryption (GE) is the encryption
analogue of group signatures [85]. The latter primitives allow a group member to sign mes-
sages in the name of a group without revealing his identity. In a similar spirit, GE systems
aim to hide the identity of a ciphertext’s recipient and still guarantee that he belongs to a
population of registered members in a group administered by a group manager (GM). A
sender can generate an anonymous encryption of some plaintext m intended for a receiver
holding a public key that was certified by the GM (message security and receiver anonymity
being both in the CCA2 sense). The ciphertext is prepared while leaving an opening author-
ity (OA) the ability to “open” the ciphertext (analogously to the opening operation in group
signatures) and uncover the receiver’s name. At the same time, the sender should be able to
convince a verifier that: (1) The ciphertext is a valid encryption under the public key of some
group member holding a valid certificate; (2) If necessary, the opening authority will be able
to find out who the receiver is; (3) The plaintext is a witness satisfying some public relation.
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MOTIVATIONS. As a natural use case, group encryption allows a firewall to block all en-
crypted emails attempting to enter a network unless they are generated for some certified
organization member and they carry a proof of malware-freeness. Group encryption also
enables oblivious retriever storage mechanisms in the cloud. Namely, when encrypting
datasets on a remote storage server, the sender can convince this server that the data is
intended for some legitimate certified user (who paid a subscription for storing his data)
without disclosing the latter’s identity. The GE primitive was also motivated by various pri-
vacy applications such as anonymous trusted third parties. Many cryptographic protocols
such as fair exchange, fair encryption or escrow encryption, involve trusted third parties that
remain offline most of the time and are only involved to resolve problems. Group encryption
allows one to verifiably encrypt some message to such a trusted third party while hiding his
identity among a set of possible trustees. For instance, a user can encrypt a key (e.g., in an
“international key escrow system”) to his own national trusted representative without let-
ting the ciphertext reveal the latter’s identity, which could leak information on the user’s
citizenship. At the same time, everyone can be convinced that the ciphertext is heading for
an authorized trustee.

Group encryption also finds applications in ubiquitous computing, where anonymous
credentials must be transferred between peer devices belonging to the same group. Asyn-
chronous transfers may require to involve an untrusted storage server to temporarily store
encrypted credentials. In such a situation, GE schemes may be used to simultaneously guar-
antee that (1) the server retains properly encrypted valid credentials that it cannot read; (2)
credentials have a legitimate anonymous retriever; (3) if necessary, an authority will be able
to determine who the retriever is.

By combining cascaded group encryptions using multiple trustees and according to a se-
quence of identity discoveries and transfers, one can also implement group signatures where
signers can flexibly specify how a set of trustees should operate to open their signatures.

PRIOR WORKS. Kiayias, Tsiounis and Yung (KTY) [156] formalized the concept of group
encryption and gave a suitable security modeling. They presented a modular design of GE
system and proved that, beyond zero-knowledge proofs, anonymous public key encryption
schemes with CCA2 security, digital signatures, and equivocal commitments are necessary
to realize the primitive. They also showed how to efficiently instantiate their general con-
struction using Paillier’s cryptosystem [216]. While efficient, their scheme is not a single
message encryption, since it requires the sender to interact with the verifier in a X-protocol
to convince him that the aforementioned properties are satisfied. Interaction can be removed
using the Fiat-Shamir paradigm [107] (and thus the random oracle model [32]), but only
heuristic arguments [128] (see also [72]) are then possible in terms of security.

Independently, Qin et al. [224] considered a closely related primitive with non-interactive
proofs and short ciphertexts. However, they avoid interaction by employing a random ora-
cle and also rely on strong interactive assumptions. As we can see, none of these schemes is
a truly non-interactive encryption scheme without the random oracle idealization.

OUR CONTRIBUTION. As already noted in various contexts such as anonymous credentials
[29], rounds of interaction are expensive and even impossible at times as, in some appli-
cations, proofs should be verifiable by third parties that are not present when provers are
available. In the setting of group encryption, this last concern is even more constraining as it
requires the sender, who may be required to repeat proofs with many verifiers, to maintain a
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state and remember the random coins that he uses to encrypt every single ciphertext. In the
frequent situation where many encryptions have to be generated using independent random
coins, this becomes a definite bottleneck.

Together with Julien Cathalo and Moti Yung [81], we solved the above problems and
described the first realization of fully non-interactive group encryption with CCA2-security
and anonymity in the standard model. In our scheme, senders do not need to maintain a
state: thanks to the Groth-Sahai [138] non-interactive proof systems, the proof of a cipher-
text can be generated once-and-for-all at the same time as the ciphertext itself. Furthermore,
using suitable parameters and for a comparable security level, we can also shorten cipher-
texts by a factor of 2 in comparison with the KTY scheme. As far as communication goes, the
size of proofs allows decreasing by more than 75% the number of transmitted bits between
the sender and the verifier.

Since our goal is to avoid interaction, we also design a joining protocol (i.e., a protocol
whereby the user effectively becomes a group member and gets his public key certified by
the GM) which requires the smallest amount of interaction: as in the Kiayias-Yung group
signature [157], only two messages have to be exchanged between the GM and the user and
the latter need not to prove anything about his public key. In particular, rewinding is not
necessary in security proofs and the join protocol can be safely executed in a concurrent en-
vironment, when many users want to register at the same time. The join protocol uses a non-
interactive public key certification scheme where discrete-logarithm-type public keys can be
signed as if they were ordinary messages (and without knowing the matching private key)
while leaving the ability to efficiently prove knowledge of the certificate/public key using
the Groth-Sahai techniques. To certify users without having to rewin in security proofs,
the KTY scheme uses groups of hidden order (and more precisely, Camenisch-Lysyanskaya
signatures [68]). In public order groups, to the best of our knowledge, our construction is
the first certification method that does not require any form of proof of knowledge of pri-
vate keys. We believe it to be of independent interest as it can be used to construct group
signatures (in the standard model) where the joining mechanism tolerates concurrency in
the model of [157] without demanding more than two moves of interaction.

2.1.1 Model and Security Notions

Syntax. Group encryption schemes involve a sender, a verifier, a group manager (GM) that
manages the group of receivers and an opening authority (OA) which is able to uncover the
identity of ciphertext receivers. A GE system is formally specified by the description of a rela-
tion R as well as a collection GE = (SETUP, JOIN, (G,, R, sampler ), ENC, DEC, OPEN, (P, V))
of algorithms or protocols. Among these, SETUP is a set of initialization procedures that
all take (explicitly or implicitly) a security parameter A as input. They can be split into
one that generates a set of public parameters params (a common reference string), one for
the GM and another one for the OA. We call them SETUP;ui:(A), SETUPGum(params) and
SETUPoa (params), respectively. The latter two procedures are used to produce key pairs
(pkgm. skam), (Pkoa, skoa) for the GM and the OA. In the following, params is incorporated
in the inputs of all algorithms although we sometimes omit to explicitly write it.

JOIN = (Juser, Jom) is an interactive protocol between the GM and the prospective user.

! Although the simulator does not need to rewind proofs of knowledge in [156], users still have to interactively
prove the validity of their public key.
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As in [157], we will restrict this protocol to have minimal interaction and consist of only
two messages: the first one is the user’s public key pk sent by Jyser to Jom and the latter’s
response is a certificate certpy for pk that makes the user’s group membership effective. We
do not require the user to prove knowledge of his private key sk or anything else about it.
In our construction, valid keys will be publicly recognizable and users do not need to prove
their validity. After the execution of JOIN, the GM stores the public key pk and its certificate
certpk in a public directory database.

Algorithm sample allows sampling pairs (x,w) € R (made of a public value x and a
witness w) using keys (pkg, skg) produced by G,. Depending on the relation, skx may be
the empty string (as will be the case in our scheme). The testing procedure R (x, w) returns
1 whenever (x,w) € R. To encrypt a witness w such that (x,w) € R for some public x,
the sender fetches the pair (pk, certpk) from database and runs the randomized encryption
algorithm. The latter takes as input w, a label L, the receiver’s pair (pk, certyk) as well as
public keys pkgy and pkoa. Its output is a ciphertext ¢ <— ENC(pkgwm, Pkoa, Pk, certpk, w, L).
On input of the same elements, the certificate certp, the ciphertext 1 and the random coins
coinsy that were used to produce it, the non-interactive algorithm P generates a proof 7ty
that there exists a certified receiver whose public key was registered in database and that is
able to decrypt ¢ and obtain a witness w such that (x, w) € R. The verification algorithm V
takes as input ¢, pkgm, pPkoa, 7Ty and the description of R and outputs 0 or 1. Given ¢, L and
the receiver’s private key sk, the output of DEC is either a witness w such that (x,w) € R
or a rejection symbol L. Finally, OPEN takes as input a ciphertext/label pair (i, L) and the
OA’s secret key skoa and returns a receiver’s public key pk.

Security notions. The security model of Kiayias, Tsiounis and Yung [156] considers three
notions called message security, anonymity and soundness. The first one captures the CCA2-
security of messages encrypted under the receiver’s public key, even if the adversary con-
trols both the group manager and the opening authority. The notion of anonymity subsumes
the anonymity of group encryption ciphertexts (in particular, the inability to tell apart en-
cryptions of ciphertexts encrypted under pk, from those encrypted under pk;), even given
access to an opening oracle (run on behalf of the opening authority) and decryption oracles
for both pky and pk;. The notion of soundness captures the security of the group manager
against malicious encryptors colluding with a dishonest opening authority. In short, no ma-
licious sender (even with the help of a corrupted opening authority) can create a valid proof
for a ciphertext whose receiver cannot be traced to a certified group member. Detailed defi-
nitions are given in [156, 81]

2.1.2 Building Blocks: Structure-Preserving Commitments and Signatures
Our structure-preserving signature uses a trapdoor commitment to group elements as an
important ingredient to dispense with proofs of knowledge of users” private keys.

A Strictly Structure-Preserving Trapdoor Commitment

We need a trapdoor commitment scheme that allows committing to elements of a group G
where bilinear map arguments are taken. The scheme has to be structure-preserving in the
strict sense in that commitments will have to be themselves elements of G, which prevents
us from using Groth’s scheme [135] where commitments live in the range Gr of the pairing.



2.1 Non-Interactive Group Encryption 37

Such commitments can be obtained using the perfectly hiding Groth-Sahai commitment
based on the linear assumption recalled in section This commitment scheme uses a
common reference string describing a prime order group G and a generator f € G. The
commitment key consists of vectors (f1, {5, f3) chosen as f1 = (f1,1, f), f2 = (1, f2, f) and

f3 = £,°1 . £,%2. (1,1, £)%, with f1, f> & G, ¢1,82,C3 & Z;. To commit to a group element
X € G, the sender picks ¢1, 2, ¢3 & Z and sets Cx = (1,1, X) - ;- £, - £3, which, if f5

is parsed as (f31, f32, f33), can be written Cx = (£ - gb?i, . ;32,}( - forten f;’g) Due to
the use of GS proofs, commitment openings need to only consist of group elements (and no
scalar). To open Cx = (C1, Cy, C3), the sender reveals (Dy, Dy, D3) = (f%1, f%2, f#3) and X.
The receiver is convinced that the committed value was X by checking that

e(C1, f) = e(f1,D1) -e(f31,D3)
e(Co, f) = e(f2, D2) - e(f32, D)
e(Cs, f) = e(X D1 Dy, f) - e(f33, D3).

If a cheating committer can produce distinct openings of Cx, we can solve a SDP instance
(81,82, 81,c,82,4)- Namely, the commitment key is set as (f1, f2, f31, f32) = (81,82, 81,c,$2.4)
and f, f33 are chosen at random. When the adversary outputs openings (X, (D1, Dy, D3))
and (X', (D3, D5, D})), these openings must simultaneously satisfy the equalities

e(f1,D1/D}) = e(fs1, D5/Ds), e(f2, D2/ D) = e(f3p2, D5/ D3)

and e((XD1D,)/(X'D|D}), f) = e(f33, D}/ D3). A solution to the SDP instance is obtained
as (u,v,w) = (D1/D}, D,/ D}, D}/ D3), which is a non-trivial triple as long as X’ # X.

We also observe that, using the trapdoor (&1, {2, {3), the receiver can equivocate commit-
ments. Given a commitment Cx and its opening (X, (D1, D,, D3)), one can trapdoor open
Cx to any other X’ € G (and without knowing logg(X’ )) by computing

Dy =D;-(X'/X)%/%,  D)=D, - (X'/X)%/%,  Di=(X/X)V%.Ds.

Unlike Groth’s trapdoor commitment to group elements [135], the above construction is
not length-reducing in that the commitment string is longer than the message. In strictly
structure-preserving commitments (i.e., where the commitment lives in the source group
G instead of the target group Gr), however, Abe, Haralambiev and Ohkubo showed [7]
that this is inevitable. A slightly more efficient construction of strictly structure-preserving
trapdoor commitment was given in [7].

A Structure-Preserving Signature Scheme

In [81], we first described a structure-preserving signature scheme in order to certify pub-
lic keys for the DLIN-based variant [235, 143] of the Cramer-Shoup cryptosystem [88), 90].
These keys should be signed while retaining algebraic properties that make it possible to
prove knowledge of a public key and its corresponding certificate in an efficient way. In
particular, signing hashed public keys is proscribed as it would destroy their algebraic struc-
ture. In the interactive setting, several papers (e.g., [39,[134]) described efficient interactive
protocols where a public key is jointly generated by a user and a certification authority in
such a way that the user eventually obtains a certified public key and no one else learns the
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underlying private key. In our construction, we aim at minimizing the amount of interaction
and let users generate their public key entirely on their own before requesting their certifi-
cation. Ideally, we would like to be able to sign public keys without even requiring users
to prove knowledge of their private key and, in particular, without having to first rewind a
proof of knowledge so as to extract the user’s private key in the security proof. This is where
structure-preserving signatures come in handy.

In the description, we assume common public parameters cp consisting of bilinear groups

(G, Gr) of prime order p > 2%, for a security parameter A, and a generator g & G. We also
assume that certified public keys always consist of a fixed number n of group elements (i.e.,
PK =G").

The scheme borrows from the Boyen-Waters group signature [56] in the use of the Hid-
den Strong Diffie-Hellman assumption. A simplified version of this scheme involves a signer
that holds a publickey PK = (QQ = ¢, A = (g, 9)“, u, up, U = gﬁl, R T gﬁ" ), for private
elements SK = (w, &, B1, ..., Bn), where n denotes the number of groups elements that certi-
fied public keys consist of. To certify a public key pk = (X3 = ¢1,..., X,, = g™), the signer

$
chooses an exponent czp <= Z, and computes S5; = (g wtezp) | 5, = gf1p, G5 = yIp,

Sy = (uo- [T, Xfi)CID and S5 = (Ss1,...,S5) = (X{*?, ..., X;P). Verification then checks
whether (51, Q) - S2) = A and e(Sy, u) = e(g,S3) as in [56]. It must also be checked that
e(Ss,8) = e(uo, S2) - TTiq e(u;, Ss;) and e(Ss,;,8) = e(X;, S2) fori=1,...,n.

The security of this simplified scheme can only be proven if, when answering certification
queries, the simulator can control the private keys (x, ..., x,) and force them to be random
values of its choice. To allow the simulator to sign arbitrary public keys without know-
ing the private keys, we modify the scheme so that the signer rather signs commitments
(calculated using our structure-preserving trapdoor commitment) to public key elements
X1, ..., Xy In the security proof, the simulator first generates a signature on n fake commit-
ments C; = (C;1,Cio, Ci3) that are all generated in such a way that it knows logg(Cl-,j) for
i=1,...,nand j = 1,2,3. Using the trapdoor of the commitment scheme, it can then open
C; to any arbitrary X; € G without knowing log, (X;).

This use of the trapdoor commitment is reminiscent of a technique (notably used in
[89]) to construct signature schemes in the standard model using chameleon hash functions
[162]: the simulator first signs messages of its choice using a basic signature scheme and
then “equivocates” the chameleon hashes to make them correspond to adversarially-chosen
messages.

Keygen(pp, n): given common public parameters pp = {g, G, Gr}, select u, 1 ﬁ G as well
as @, w & Z; and set A = e(g,8)", A = g“. Then, pick B;1, Bi2, Bi3 & Z;, and define

iy = (w1, uip,wi3) = (8P, gPi2, gPis)

fori = 1,...,n. Choose f, fi, f2, f31, f32, f3,3 & G that define a commitment key
consisting of vectors f1 = (f1,1,f), f2 = (1, fo, f) and f3 = (f31, f32, f33). Define

-----

PK = (f = (f1,£2,£3), A=¢e(g,9)", Q=g%, u, up, {ﬁi}izl,...,n)-
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Sign(pp, SK, M): parse SK as (x, w, {B;}i=1,.n), Mas (X1, ..., X,) and do the following.

1. Foreachi € {1,...,n}, pick ¢i1, pia, $is & Z;, and compute a commitment
Ci = (Ci,l/ Ci,2/ Ci,3) = ( {Pi,l : éliii3/ ;Pilz : éliiz,?:, Xl . f¢i,1+¢i’2 ' f;flé?))
and the matching de-commitment (D; 1, D;o, D;3) = (f%i1, f#i2, f9i3).

2. Choose crp & Z; and compute S; = (g“)l/(“’”w), Sy = g7P, S3 = u‘TP as well
as

n ) ) ) cIp
s1= (wo- TT(cly -l i)
i=1

.....

.....

Verify(pp, PK, M, certpr): parse M as (X, ..., X,) and certy as above. Return 1 if, for indices
i=1,...,n,itholds that X; € G and

e(Ci1, f) = e(fi,Di1)-e(fs1,Dig) 2.1)
e(Cio, f) = e(f2,Dip)-e(f32,Di3) (2.2)
e(Cia, f) = e(Xi-Di1-Dip, f)-e(fs3, Di3), (2.3)

and if the following checks are also satisfied. Otherwise, return 0.

e(S1,Q-5) = A (2.4)

e(Sy,u) =e(g,S3) (2.5)
n

e(S4,8) = e(uo, S2) - [ | (e(ui, Ssi1) - e(uiz, Ss,i2) - e(ui3, Ss,i3)),  (2.6)
i=1

6(55,i,j,g) ZE(Ci,J‘,Sz) fori = 1,...,1’[, j: 1,2,3 (2.7)

A signature on (Xj,...,X,) € G" is comprised of 91 + 4 group elements. Subsequently to
our work, Abe et al. 6] 4] showed how to sign messages in G" using O(1) group elements.
We note that the scheme is not structure-preserving in the strict sense since the public
key component A = e(g,g)” lives in the group Gr. However, everything goes through
if A = e(g,g)" is replaced by a pair of public group elements (A;, A;) € G? such that
e(Ay, Az) = e(3,)".
Regarding the security of the scheme, the following theorem is proved in [81].

Theorem 1 ([81]). The scheme is secure under chosen-message attacks if the HSDH, FlexDH
and SDP problems are all hard in G.

The scheme can also be used to construct non-frameable group signatures that are se-
cure in the concurrent join model of [157] without resorting to random oracles. To the best
of our knowledge, before 2009, the Kiayias-Yung construction [157] was the only scalable
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group signature where joining supports concurrency at both ends while requiring the small-
est amount of interaction. In the standard model, our signature scheme thus provided the
firs way to achieve the same result. In this case, we have n = 1 (since prospective group
members only need to certify one group element if non-frameability is ensured by signing
messages using Boneh-Boyen signatures [42] in the same way as in Groth’s group signature
[134]) so that membership certificates comprise 13 group elements and their shape is fully
compatible with GS proofs.

2.1.3 A Group Encryption Scheme with Non-Interactive Proofs

In [81], we built a non-interactive GE scheme for the Diffie-Hellman relation R = {(X,Y), W}
where e(g, W) = e(X,Y), for which the keys are pkr = {G, G, g} and skg = ¢. While our
example is for the Diffie-Hellman relation, it can be easily generalized to any relation that
can be expressed in terms of pairing-product equations for which NIZK proofs are available.

The construction slightly departs from the modular design of [156] in that commitments
to the receiver’s public key and certificate are part of the proof (instead of the ciphertext),
which simplifies the proof of message-security. The security of the scheme eventually relies
on the HSDH, FlexDH and DLIN assumptions. All security proofs are available in the full
version of [81].

The group manager uses a key pair for our structure-preserving signature of Section2.1.2]
to sign public keys of the DLIN-based version [143] 235] of the Cramer-Shoup cryptosystem
[88]. In the latter system, if we assume public generators g1, g2, ¢ that are parts of public
parameters, each receiver’s public key is made of n = 6 group elements

X1 = &'§" X3 =g,°8" X5 =81°8°
X; = 8" Xy = gy'g" Xs = 8,°8"-

To encrypt a plaintext m € G under the labe]rf] L (see [238] for a definition of encryption

schemes with labels), the sender picks 7, s & Z;; and computes

Yes = (U, Un, Us, Us, Us) = (g}, g3, g%, m- XEX5, (XaX3)' - (XxX§)°),

where &« = H(Uy, Uy, Uz, Uy, L) € Z;isa collision-resistant has}ﬂ Given (cs, L), the re-

ceiver computes a. He returns L if Us # U ™2™ and m = U,/ (UP UL US)
otherwise.
Our GE scheme goes as follows.

ZNon-frameable group signatures described in [95,54] achieve concurrent security by having the prospective
user generate an extractable commitment to some secret exponent (which the simulator can extract without
rewinding using the trapdoor of the commitment) and prove that the committed value is the discrete log. of
a public value. In the standard model, this technique requires interaction and the proof should be simulatable
in zero-knowledge when proving security against framing attacks. Another technique [113] requires users to
prove knowledge of their secret exponent using Groth-Sahai non-interactive proofs. It is nevertheless space-
demanding as each bit of committed exponent requires its own extractable GS commitment.

3 A label is basically a set of public data that is bound to the ciphertext in a non-malleable manner.

4The proof of CCA2-security [88, 235] only requires a universal one-way hash function (UVOWHF) [207] but
collision-resistance is required when the scheme uses labels.
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SETUP;,it(A): choose bilinear groups (G, Gr) of order p > 24, ¢ & Gand Q1 =8, g = g™
with aq, ap & Z;,. Define g1 = (g1,1,8), g2 = (1,82,8) and g3 = g1 - g2% with

¢1,Co & Z;;, which form a CRS g = (g1, 82, g3) for the perfect soundness setting. Select
a strongly unforgeable (as defined in [12]) one time signature scheme ¥ = (G, S, V)
and a random member H : {0,1}* — Z, of a collision-resistant hash family. Public
parameters consists of param = {A,G,Gr, g,8,%, H}.

SETUPgm(params): runs the setup algorithm of the certification scheme described in section
with n = 6. The obtained public key consists of

-----

SETUPoa (params): generates pkoa = (Y1, Y2, Y3, Ya) = (g¥1, %2, %3, ¢¥*), as a public key for
Kiltz’s tag-based encryption (TBE) scheme [160], and the corresponding private key as
skoa = (Y1, Y2, Y3, Ya)-

JOIN: the user sends a linear Cramer-Shoup public key pk = (X, ..., Xs) € G° to the GM
and obtains a certificate

.....

ENC(pkgm, Pkoa, Pk, certpr, W, L): to encrypt W € G such that ((X,Y), W) € R (for public
elements X, Y € G), parse pkgy, pkoa and pk as above and do the following.
1. Generate a one-time signature key pair (SK, VK) < G(A).

2. Choose 7, s & Z,, and compute a linear CS encryption of W, the result of which
is denoted by tcs, under the label L; = L||VK (and using the collision-resistant
hash function specified by params).

3. Fori =1,...,6, choose w;1,w; & ZI’; and encrypt X; under pkoa using Kiltz’s
TBE scheme [160] with the tag VK. Let

IIJK,' — (Ylwi,ll Yzwigl (gVKY3)ZUi’1, (gVKY4)wf'2, Xi . gw,'ﬂrw,-,z)

be the ciphertexts.
4. Set the GE ciphertext ¢ as ¢ = VK||¢cs||Pk,|| - - - ||¢k,||c where o is a one-time
signature obtained as o = S(sk, (Ycs||Pk, || - - - [|¥k |IL)).

.....

of [133] is used, VK and ¢ take 3 and 2 group elements, respectively, so that ¢y comprises
40 group elements.

P (pkam, Pkoa, Pk, certpy, (X, Y), W, §, L, coinsy): parse pkgy, pkoa, pk and ¢ as above. Con-
duct the following steps.
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. Generate commitments (as explained in section[I.3) to the 9n + 4 = 58 group ele-

ments that cert,, consists of. The resulting overall commitment COMicert,, contains
184 group elements.

. Generate GS commitments to the public key elements pk = (Xj, ..., X¢) and ob-

tain the set compx = {comy, }i—1,.. 6, which consists of 18 group elements.

. Generate a proof 7cern,, that comcern,, is a commitment to a valid certificate for the

public key contained in comp,. For eachi = 1,...,6, relations 2.1)-(2.3) cost 9
elements to prove (and thus 54 elements altogether). The quadratic equation
takes 9 elements and linear ones (2.5)-(2.6) both require 3 elements. Finally,
is a set of 18 linear equations which demand 54 elements altogether. The whole
proof 7teert,, thus takes 123 group elements.

. Fori=1,...,6, generate a NIZK proof 77, k., that comy, (which is part of com )

and 1k, are encryptions of the same X;. If i, comprises
(Vin, Vip, Vis) = (Y[, Y52, X, - gUin i)

: _ (0 G0 bn . O . o0+ 0i3
and comy; is parsed as (cx;,Cx,, Cxs) = (81" 831/ 8" - 832 Xi- 872 - g33),
where w; 1, w; € coinsy, 0n,0n,0;3 € Z}, and gz = (31,932, 93,3), this amounts
to prove knowledge of values w; 1, w; 5,61, 0, 0i3 € Z;‘, such that

Vian Via Vis ) 05 Wiz —6; 0; ,

1 Vip Vi 1t - 2 gt - a0 —00—6 | O

(7’ RS 7) — (Yl il g] i, g3 113/ YZI . gz i, g3’213/ gw1,1+w,,2 in1—0in . g3,313)‘

CXn CXp CXj ’

ommitting to the encryption exponents w; 1, w; », 6:1, 012, 0;3 introduces rou
C tting to th ypt P ts w; 1, w; 2,01, 05, 03 introd 90 group
elements whereas the above relations only require two elements each. Overall,
proof elements 7o key,1/ - - -  Teg-key,6 iINCUr 126 elements.

. Generate a NIZK proof mygj.enc that Pcs = (U, Up, U3, Uy, Us) is a valid CS en-

cryption. This requires to commit to underlying encryption exponents r,s €
coinsy and prove that Uy = g, U, = g, Us = g'*° (which only takes 3 times
2 elements as base elements are public) and Us = (X1X5)" - (X2X§)® (which takes
9 elements since base elements are themselves variables). Including commitments
com, and com; to exponents r and s, 7410, demands 21 group elements overall.

. Generate a NIZK proof 7t that the ciphertext ¢cs encrypts a group element W €

G such that ((X,Y), W) € R. To this end, generate a commitment

_ B 0 6 B 0,46, 0
comw = (cw,1,cwo, cws) = (81" 831 82 832 W81 g3%)

and prove that the underlying W is the same as the one for which Uy = W - Xt - X¢
in 1Pcs. In other words, prove knowledge of exponents 7, s, 01, 6, 03 such that

g g 8 g, 8T g XEXE). (28)

(U1 U, U4)_(r791
cwa’ ewa’ cwga

Commitments to r,s are already part of 7y40n.. Committing to 01,6, 03 takes
9 elements. Proving the first two relations of requires 4 elements whereas
the third one is quadratic and its proof is 9 elements. Proving the linear pairing-
product relation e(g, W) = ¢(X,Y) in NIZKﬂ demands 9 elements. Since 7t in-

cludes comyy, it entails a total of 34 elements.

5Tt requires to introduce an auxiliary variable X’ and prove that e(g, W) = e(X,Y) and X = X, for variables

W, X and constants g, X, Y. The two proofs take 3 elements each and 3 elements are needed to commit to X'.
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The entire pI‘OOf Tty = COMlcerty, | ‘Compk| ‘ Tleerty, ’ | TCeq-key,1 ’ | T | ‘ neq-key,6| ’nvul-enc | | TR even-
tually takes 516 elements.

V(params, ¢, L, Ty, PKGMm, pkoa): parse pkgwm, Pkoa, Pk, P and Ty as above. Return 1 if and
only if V(VK, o, (¢cs||wr, || - - - ||¢¥xs||L)) = 1, all proofs verify and if ¢k, ..., Pk, are
all valid tag-based encryptions w.r.t. the tag VK.

DEC(sk, i, L): parse the ciphertext ¢ as VK||cs||¢k, || - - - ||k, ||o. Return L in the event
that V(VK, o, (Ycs||k, || - - - ||¥k,||L)) = 0. Otherwise, use sk to decrypt (¢cs, L).

OPEN(skoa, 9, L): parse ¢ as VK||¢cs|| Pk, || - - - ||k, ||o. Return L if ¢k, ..., Pk, are not
all valid TBE ciphertexts w.r.t. the tag VK or if V(VK, 7, (Ycs| |9k, || - - - [|¢k ||L)) = O.
Otherwise, decrypt ¢k, . - ., Pk, using skoa and return the resulting pk = (X, ..., X¢).

The following security result was proved in [81].

Theorem 2 ([81]). The above group encryption system provides message privacy, anonymity
and soundness assuming that H is a collision-resistant hash function and that the HSDH,
FlexDH, and DLIN problems are all hard in G.

From an efficiency standpoint, the length of ciphertexts is about 4.5 kB in an implementa-
tion using symmetric pairings with a 512-bit group order. Moreover, our proofs only require
32.250 kB. This is significantly cheaper than in the original GE scheme [156] where, for 1024-
bit RSA moduli, interactive proofs reach a communication cost of 70 kB to achieve a 27>
knowledge error.

Of course, the above construction can be made significantly more efficient if our structure-
preserving signature is replaced by the construction of Abe et al. [6], which was recalled in
Section In [176], we used the latter SPS system to build a group encryption scheme
where, as in traceable signatures [155], the tracing authority can release a user-specific trap-
door that allows tracing all ciphertexts encrypted for a given user.

2.2 Group Signatures with Efficient Revocation in the Standard
Model

Group signatures are a central cryptographic primitive, suggested by Chaum and van Heyst
[85], which allows members of a population of users managed by some authority to sign
messages in the name of the group while hiding their identity. At the same time, a tracing
authority is capable of identifying the signer if necessary. A crucial problem is the revocation
of the anonymous signing capability of users when they are banned from or intentionally
leave the group.

2.2.1 Related Work

GROUP SIGNATURES. The first efficient and provably coalition-resistant group signature
dates back to the work of Ateniese, Camenisch, Joye and Tsudik [15]. By the time their
scheme appeared, the security of the primitive was not appropriately formalized yet. Suit-
able security definitions remained lacking until the work of Bellare, Micciancio and Warin-
schi [31] (BMW) who captured all the requirements of group signatures in three properties.
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In (a variant of) this model, Boneh, Boyen and Shacham [44] obtained very short signatures
using the random oracle methodology [32].

The BMW model assumes static groups where no new member can be introduced af-
ter the setup phase. The setting of dynamically changing groups was analyzed later on by
Bellare-Shi-Zhang [33] and, independently, by Kiayias and Yung [158]. In the models of
[33, 158], constructions featuring relatively short signatures were proposed in [210, 95]. A
construction in the standard model was also suggested by Ateniese et al. [14] under interac-
tive assumptions. At the same time, Boyen and Waters gave a different solution [55] without
random oracles using more standard assumptions. By improving upon their own scheme,
they managed [56] to obtain signatures of constant size. Their constructions [55, 56] were
both presented in the BMW model [31] and provide anonymity in the absence of signature
opening oracle. In the dynamic model [33], Groth [133] showed a system in the standard
model with O(1)-size signatures but, due to very large hidden constants, his scheme was
mostly a feasibility result. Later on, Groth came up with an efficient realization [134] (and
signatures of about 50 group elements) with the strongest anonymity level.

REVOCATION. As in ordinary PKIs, where certificate revocation is a critical issue, member-
ship revocation is a complex problem that has been extensively studied [57, (17,168} 52] in the
last decade. Generating a new group public key and distributing new signing keys to unre-
voked members is a simple solution. In large groups, it is impractical to update the public
key and provide members with new keys after they joined the group. Bresson and Stern sug-
gested a different approach [57] consisting of having the signer prove that his membership
certificate does not belong to a list of revoked certificates. Unfortunately, the length of sig-
natures grows with the number of revoked members. In forward-secure group signatures,
Song [240] chose a different way to handle revocation but verification takes linear time in
the number of excluded users.

Camenisch and Lysyanskaya [68] proposed an elegant method using accumulatorsﬂ [34].
Their technique, also used in [243} 66]], allows revoking members while keeping O(1) costs
for signing and verifying. The downside of this approach is its history-dependence: it re-
quires users to follow the dynamic evolution of the group and keep track of all changes: each
revocation incurs a modification of the accumulator value, so that unrevoked users have to
upgrade their membership certificate before signing new messages. In the worst case, this
may require up to O(r) exponentiations, if 7 is the number of revoked users.

Another drawback of accumulator-based approaches is their limited applicability in the
standard model. Indeed, for compatibility reasons with the central tool of Groth-Sahai
proofs, pairing-based accumulators are the only suitable candidates. However, in known
pairing-based accumulators [209, 66], public keys have linear size in the maximal number of
accumulations, which would result in linear-size group public keys in immediate implemen-
tations. To address this concern in delegatable anonymous credentials, Acar and Nguyen [8]
chose to sacrifice the constant size of proofs of non-membership but, in group signatures,
this would prevent signatures from having constant size. Boneh, Boyen and Shacham [44]
managed to avoid linear dependencies in a revocation mechanism along the lines of [68]].
Unfortunately, their technique does not seem to readily interac with Groth-Sahai proofs

® An accumulator is a kind of “hash” function mapping a set of values to a short, constant-size string while
allowing to efficiently prove that a specific value was accumulated.

7In [44], signing keys consist of pairs (g'/(“*%),5) € G x Z,, where w € Z, is the secret key of the group
manager, and the revocation method relies on the availability of the exponent s € Z;. In the standard model,
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[138] so as to work in the standard model. Moreover, like the Camenisch-Lysyanskaya tech-
nique [68], the Boneh-Boyen-Shacham method may require up to O(r) exponentiations to
update unrevoked users’ private keys if r is the cardinality of the processed revocation list.

In [58]], Brickell considered the notion of verifier-local revocation group signatures, for
which formal definitions were given by Boneh and Shacham [52] and other extensions were
proposed in [203} 251} [185]. In this approach, revocation messages are only sent to verifiers
and the signing algorithm is completely independent of the number of revocations. Verifiers
take as additional input a revocation list (RL), maintained by the group manager, and have
to perform a revocation test for each RL entry in order to be convinced that signatures were
not issued by a revoked member (a similar revocation mechanism is used in [59]]). The veri-
fication cost is thus inevitably linear in the number of expelled users.

In 2009, Nakanishi, Fuji, Hira and Funabiki [202] came up with a revocable group sig-
nature with constant complexities for signing/verifying. At the same time, group members
never have to update their keys. On the other hand, their proposal suffers from linear-size
group public keys in the maximal number N of users, although a variant reduces the group
public key size to O(N1/2).

In anonymous credentials, Tsang et al. [241), 242] showed how to prevent users from
anonymously authenticating themselves without compromising their anonymity or involv-
ing a trusted third party. Their schemes either rely on accumulators (which may be prob-
lematic in our setting) or have linear proving complexity in the number of revocations. Ca-
menisch, Kohlweiss and Soriente [67] dealt with revocations in anonymous credentials by
periodically updating users credentials in which a specific attribute indicates a validity pe-
riod. In group signatures, their technique would place an important burden on the group
manager who would have to generate updates for each unrevoked individual credential.

2.2.2 Our Results

For various reasons, none of the previously mentioned constructions conveniently supports
large groups, especially if we restrict ourselves to constructions without random oracles.

Together with Moti Yung and Thomas Peters [180], we described a novel revocation
mechanism, borrowed from the literature on broadcast encryption, which is truly scalable
and well-suited to constructions in the standard model. Using the Subset Cover framework
of Naor, Naor and Lotspiech [205] (NNL), we provided two distinct constructions [180, [179]
of history-independent revocable group signatures in the standard model. Our technique
[180] blends well with structure-preserving signatures and Groth-Sahai proofs.

Constructions with polylog-size private keys

As in the NNL Subset Cover framework [205], our first revocable group signature assigns
each group member to a leaf of a binary tree and, at any time, the set {1,..., N}\R of unre-
voked group members is partitioned into a collection Sy, . .., S;; of disjoint subsets of leaves,
for some m € IN. Each unrevoked member should belong to exactly one subset S; in the
cover of authorized leafs determined by the group manager. In order to sign a message, an
authorized member thus has to demonstrate that he is not revoked by proving his mem-
bership of one of the subsets S; without revealing which one. In its best tradeoff, our first

the Groth-Sahai techniques would require to turn the membership certificates into triples (g/(@+5), g5, 1), for
some 1 € G (as in [56]), which is not compatible with the revocation mechanism.
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construction [180] builds on the public-key variant, due to Dodis and Fazio [99], of the Sub-
set Difference (SD) method [205], where unrevoked group members {1,..., N}\R = U, S;
are partitioned into a collection of m = O(|R|) subsets, each of which is the difference be-
tween two sub-trees.

Like the Dodis-Fazio construction [99], our first group signature builds on hierarchical
identity-based encryption (HIBE) and uses the property that, in the broadcast encryption
system of [99]], each ciphertext can be seen as a collection of m = O(|R|) HIBE ciphertexts
(one for each subset S; of the partition), which is turned into a revocation list. In short, our
group signature can be seen as having authorized group members prove that they are not re-
voked by showing their ability to decrypt a HIBE ciphertext contained in the revocation list.
Of course, for anonymity purposes, the signer should not reveal which HIBE ciphertext he
is able to decrypt since it would leak information on his position in the tree. For this reason,
the relevant entry of the revocation list only appears in committed form in the group signa-
ture. In order to prove that he is using a legal entry of the revocation list, the user generates
a set membership proof [61] and proves knowledge of a signature from the group manager
on the committed RL entry. It is worth noting that RLs are not part of the group public key:
verifiers only need to know the number of the latest revocation epoch and they should not
bother to read RLs entirely.

This method features constant signature size and verification time, O(log N)-size group
public keys, revocation lists of size O(r) (as in standard PKIs and group signatures with
verifier-local revocation) and membership certificates of size O(log® N). In a different trade-
off of the same high-level construction, we can reduce the private key size to O(log N) using
the Complete Subtree method [205]. In this case, however, revocation lists are inflated by a
factor of O(log N/r). While the Layered Subset Difference method [140] allows for notice-
able improvements, the constructions of [180] still suffer from relatively large membership
certificates. We remark, however, that some logarithmic dependency is expected when bas-
ing revocation on a tree-like NNL methodology.

For groups of N members, our first constructions thus feature constant-size signatures
and verification time at the cost of membership certificates of size O(log®> N) (or O(log*> N)
using the Layered Subset Difference method). In many applications, this can become rather
expensive even for moderately large groups: for example, using the Subset Difference method
with N = 1000 ~ 219, users may have to privately store thousands of group elements. In
order to be competitive with other group signatures in the standard model such as [134] and
still be able to revoke members while keeping them “stateless”, it is desirable to avoid this
storage complexity.

Constructions with Short Private Keys

In our second main construction of revocable group signature [179], we managed to get rid of
the polylogarithmic complexity in the private key size and obtained constant-size member-
ship certificates while retaining the same complexities in other metrics. This improvement
was achieved at the expense of relying on a somewhat stronger (but still falsifiable) hardness
assumption in the security proofs.

Our improved construction [179] also builds on the NNL Subset Cover framework [205]
to partition the subset of authorized users using the Subset Difference method. However,
instead of relying on a broadcast encryption system, it leverages the properties of a special
kind of commitment schemes introduced by Moti Yung and myself in 2010 [188]. These com-
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mitments yield private keys of constant size without degrading other performance criteria.
This may sound somewhat surprising since, in the SD method, (poly)logarithmic complexi-
ties inherently seem inevitable in several metrics. Indeed, in the context of broadcast encryp-
tion [205], it requires private keys of size O(log” N) (and even O(log® N) in the public key
setting [99] if the result of Boneh-Boyen-Goh [43] is used). Here, we reduce this overhead to
a constant while the only dependency on N is a O(log N)-size group public key.

Instead of relying on hierarchical identity-based encryption [45,144}[123] as in the public-
key variant [99] of NNL, our improved construction employs concise vector commitment
schemes [188, 75], where each commitment can be opened w.r.t. individual coordinates in a
space-efficient manner (namely, the size of a coordinate-wise opening does not depend on
the length of the vector). These vector commitments interact nicely with the specific shape
of subsets — as differences between two subtrees — in the SD method. Using them, we com-
pactly encode as a vector the path from the user’s leaf to the root. To provide evidence of
their inclusion in one of the SD subsets, group members successively prove the equality and
the inequality between two coordinates of their vector (i.e., two nodes of the path from their
leaf to the root) and specific node labels indicated by an appropriate entry of the revocation
list. This is where the position-wise openability of concise commitments is very handy.

The use of concise commitments allows making the most of the Subset Cover approach
[180] by reducing the size of membership certificates to a small constant: at the cost of length-
ening signatures by a small constant factor (roughly 1.5), we obtain membership certificates
consisting of only 9 group elements and a small integer. For N = 1000, users’ private keys
are thus compressed by a multiplicative factor of several hundreds and this can only become
more dramatic for larger groups. At the same time, our main scheme retains all the useful
properties of [180]: like the construction of Nakanishi et al. [202], it does not require users to
update their membership certificates at any time but, unlike [202], our group public key size
is O(log N). Like the SD-based construction of [180], our improved system uses revocation
lists of size O(r), which is on par with Certificate Revocation Lists (CRLs) of standard PKIs.

Eventually, we thus obtain revocable group signatures that become competitive with the
regular CRL approach in PKIs: signature generation and verification have constant cost, sig-
natures and membership certificates being of O(1)-size while revocation lists have size O(r).
It is conceivable that our improved revocation technique can find applications beyond group
signatures.

2.2.3 Definition of Group Signatures with Revocation

We consider group signature schemes that have their lifetime divided into revocation peri-
ods at the beginning of which group managers update their revocation lists. The syntax and
the security model are built on those defined by Kiayias and Yung [158]. Like the Bellare-
Shi-Zhang model [33], the Kiayias-Yung (KY) model assumes an interactive join protocol
whereby a prospective user becomes a group member by interacting with the group man-
ager. This protocol provides the user with a membership certificate and a membership secret.

Syntax. We denote by N € poly(A) the maximal number of group members. At the begin-
ning of each revocation period t, the group manager publicizes an up-to-date revocation list
RL; and we denote by Ry C {1, ..., N} the corresponding set of revoked users (we assume
that R; is part of RL;). A revocable group signature (R-GS) scheme consists of the following
algorithms or protocols.
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Setup(A, N): given a security parameter A € IN and a maximal number of group members
N € N, this algorithm (which is run by a trusted party) generates a group public key
Y, the group manager’s private key Sgm and the opening authority’s private key Soa.
Keys Sgm and Soa are given to the appropriate authority while Y is publicized. The
algorithm also initializes a public state St comprising a set data structure Stysers = @
and a string data structure Stans = €, which are initially empty.

Join: is an interactive protocol between the group manager GM and a user ; who becomes
a group member. The protocol involves two interactive Turing machines Jyser and Jgm
that both take ) as input. The execution ends with user U; obtaining a membership
secret sec;, that no one else knows, and a membership certificate cert;. If the protocol is
successful, the GM updates the public state St by setting Stysers := Stusers U {i} as well
as Stirans := Stirans|| (i, transcript;).

Revoke: is a (possibly randomized) algorithm allowing the GM to generate an updated re-
vocation list RL; for the new revocation period t. It takes as input a public key YV
and a set Ry C Stysers that identifies the users to be revoked. It outputs an updated
revocation list RL; for period t.

Sign: given a revocation period t with its revocation list RL;, a membership certificate cert;,
a membership secret sec; and a message M, this algorithm outputs L if i € R; and a
signature ¢ otherwise.

Verify: given a signature ¢, a revocation period ¢, the corresponding revocation list RL;, a
message M and a group public key ), this algorithm returns either 0 or 1.

Open: takes as input a message M, a valid signature o w.r.t. ) for the indicated revocation
period t, the opening authority’s private key Soa and the public state St. It outputs
i € Stusers U {L}, which is the identity of a group member or a symbol indicating an
opening failure.

In our extension of the Kiayias-Yung model [158], a R-GS scheme must satisfy three se-
curity notions.

The first one is called security against misidentification attacks. It requires that, even
if the adversary can introduce and revoke users at will, it cannot produce a signature that
traces outside the set of unrevoked adversarially-controlled users. As in ordinary group sig-
natures, the notion of security against framing attacks captures that under no circumstances
should an honest user be held accountable for messages that he did not sign, even if the
whole system conspired against him. Finally, the notion of anonymity is also defined by
granting the adversary access to a signature opening oracle as in the models of [33}[158].

These security properties are formalized using experiments which are described in the
articles in appendices. In short, they can be outlined as follows.

In a misidentification attack, the adversary can corrupt the opening authority. Moreover,
he can also introduce malicious users in the group and revoke users at any time. His purpose
is to come up with a signature ¢* that verifies w.r.t. RL;, where t* denotes the current
revocation period. He is deemed successful if the produced signature c* does not open to
any unrevoked adversarially-controlled. The definition extends the usual definition [158] in
that A also wins if his forgery ¢* verifies w.r.t. RLi but opens to an adversarially-controlled
user that was revoked during the revocation period t*.
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Framing attacks consider the situation where the entire system, including the group man-
ager and the opening authority, is colluding against some honest user. The adversary can
corrupt the group manager as well as the opening authority. He is also allowed to intro-
duce honest group members, observe the system while these users sign messages and create
dummy users. In addition, before the possible corruption of the group manager, the adver-
sary can revoke group members at any time. As a potentially corrupted group manager, A
is allowed to come up with his own revocation list RL;+ at the end of the game. We assume
that anyone can publicly verify that RLs is correctly formed so that the adversary does not
come up with an ill-formed revocation list.

The notion of anonymity is formalized by means of a game involving a two-stage ad-
versary. The first stage allows the adversary A to open arbitrary signatures by probing a
signature opening oracle. When this stage ends, A chooses a message-period pair (M*, t*)
as well as two pairs (secj, cert}), (sect, cert]), consisting of a valid membership certificate
and a corresponding membership secret. Then, the challenger flips a coin d < {0,1} and
computes a challenge signature c* using (secj, cert}). The adversary is given c* with the
task of eventually guessing the bit d € {0,1}. Before doing so, he/she is allowed further
oracle queries throughout the second stage, called guess stage, but is restricted not to query
the opening oracle for (M*, o*, t*).

2.24 Our Construction with Short Private Keys

Our construction [179] with short private keys relies on concise vector commitment schemes,
where commitments can be opened with a short de-commitment string for each individual
coordinate. Such commitments based on ideas from [49, 66] were described by Libert and
Yung [188] and, under weaker assumptions, by Catalano and Fiore [75]. In [188], the com-
mitment key is ck = (,81,---,80,Se42,---,820) € G, where g; = ¢(*) for each i. The
trapdoor of the commitment is gy.1, which does not appear in ck. To commit to a vector

(my,...,my), the committer picks r & Z, and computes C = ¢ - T, Sit1_ A single

group element W; = g7 - Hﬁzll,{#i 80+ 1_«s; Provides evidence that m; is the i-th component
of the vector as it satisfies the relation e(g;, C) = e(g, W;) - e(g1,g¢)™. The infeasibility of
opening a commitment to two distinct messages for some coordinate i relies on the /-DHE
assumption. For our purposes, we only rely on the position-wise binding property of vector
commitments and do not need them to be hiding. The randomizer r will thus be removed
from of C.

Intuition

The number of users is assumed to be N = 2¢-1 ¢ poly(A), for some integer ¢, so that each
group member is assigned to a leaf of the tree. Each node is assigned a unique identifier.
For simplicity, the root is identified by ID(e) = 1 and, for each other node x, we define the
identifier ZD(x) € {1,...,2N — 1} to be ID(x) = 2 - ID(parent(x)) + b, where parent(x)
denotes x’s father in the tree and b = 0 (resp. b = 1) if x is the left (resp. right) child of its
father. The root of the tree is assigned the identifier Z7D(e) = 1.

At the beginning of each revocation period t, the GM generates an up-to-date revoca-
tion list RL; containing one entry for each generic subset Sy, ,,,..., Sk, 4, produced by the
Subset Difference method. These subsets are encoded in such a way that unrevoked users
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can anonymously prove their membership of one of them. Our technique allows doing this
using a proof of constant size.

The intuition is as follows. In the generation of RL;, for each i € {1,...,m}, if xi, (resp.
xy,) denotes the primary (resp. secondary) root of Sy, ,,,, the GM encodes Sy, . as a vector of
group elements R; that determines the levels of nodes x;, and x,;, in the tree (which are called
¢; and 1; hereafter) and the identifiers ZD(xy,) and ZD(xy,). Then, the resulting vector R; is
authenticated by means of a structure-preserving signature ®;, which is included in RL; and
will be used in a set membership proof.

During the join protocol, users obtain from the GM a structure-preserving signature on
a compact encoding C, — which is computed as a concise commitment to a vector of node
identifiers (I, ..., Iy) — of the path (I3, ..., I;) between their leaf v and the root e. This path
is encoded as a single group element.

The group manager uses two key pairs for the AHO structure-preserving signature. The
first one is used during the join protocol to bind a group element X chosen by the user, who
knows x = logg(X ), to the path from the user’s leaf v to the root e.

In order to anonymously prove his/her non-revocation, a group member U/; uses RL; to
determine the generic subset Sy, ,, with I € {1,...,m}, where his/her leaf v; lies. He/she
commits to the corresponding vector of group elements R; that encodes the node identifiers
ID(xy,) and ZD(x,,) of the primary and secondary roots of Sy, ,, at levels ¢; and v, re-
spectively. If (I, ..., I) identifies the path from his/her leaf v; to €, the unrevoked member
U; generates a membership proof for the subset Sy, ,, by proving that ZD(xy,) = Iy and
ID(xy,) # Iy, (in other words, that x;, is an ancestor of v; and x,, is not). To succinctly prove
these statements, U/; uses the properties of the LY concise vector commitment schemﬂ Fi-
nally, in order to convince the verifier that he used a legal element of RL;, U; follows the
technique of [61] and proves knowledge of a signature ®; on the committed vector of group
elements R;. By doing so, {; thus provides evidence that his/her leaf v; is a member of some
authorized subset Sy, , without revealing I € {1,...,m}.

In order to obtain the strongest flavor of anonymity (i.e., where the adversary has ac-
cess to a signature opening oracle), the scheme uses Kiltz’s tag-based encryption scheme
as in Groth’s construction [134] exactly as we did in the previous construction. In non-
frameability concerns, the group member U; also generates a weak Boneh-Boyen signature
(which yields a fully secure signature when combined with a one-time signature) using
X = logg(X), where X € G is a group element certified by the GM and bound to the path

(L, ...,I;) during the join protocol.

Description

As in standard security models for group signatures, we assume that, before joining the
group, user U; chooses a long term key pair (usk[i], upk[i]) and registers it in some PKI.

Setup(A, N): given a security parameter A € IN and the number of users N = 2¢~1,

1. Choose bilinear groups (G, Gr) of prime order p > 2}, with ¢ < G.

2. Define np = 2 and n; = 5. Generates key pairs (skﬁj’,ﬂo, pk(&o) and (sk(Alllo, pk(Allzo)

for the AHO signature in order to sign messages of ng and n; group elements,

8Note that no randomness is needed here since we do not rely on the hiding property of the commitment.
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respectively. These key pairs are
(d)
pkao = (G, 1,610 = 61, 1l = i,

() (@)

{GIV =G H® =}, A9, B)
and sk%}lo = (ocgd), oc;(]d), 'ygd), (52@, {%_(d)/ 51.(”1)}21), where d € {0,1}. These will be
used to sign messages consisting of 2 and 5 group elements, respectively.

3. Generate a public key ck = (g1,.-.,80, 8012, ---,82¢) € G*~1 for (-dimension
vectors of the LY concise vector commitment scheme. The trapdoor gy, is not
needed and can be discarded.

4. Asa Groth-Sahai CRS for the NIWI proof system, select three vectors f = (fy, {5, f3)
such that f; = (f1,1,¢) € G3, f2 = (1, f5,¢) € G?, and f3 = £,° - £,°2, where
fi= gﬁl,fz = g/32 in G and random B4, B2, 81, G2 <+ Z;‘,. We also define the vector
¢=1f-(11g)

5. Choose random (U, V) <« G? that, together with generators f, f,,¢ € G, will
form a public encryption key.

6. Select a strongly unforgeable one-time signature £ = (G, S, V).

7. Sets Sgum = (skgo,ao, sk(Al,zo), Soa := (B1, B2) as authorities’ private keys and the
group public key is

0 1
Y= (81 Pk(A&O, pk(AIEIO' ck, £, @, (u’ V)’ Z).

Join(GM); the GM and the prospective user U; run the following protocol:

1. U; draws x < Z, at random and computes X = ¢* which is sent to the GM. If
X € G already appears in some entry transcript; of the database Stians, Jom halts
and returns 1 to Uf; .

2. The GM assigns to the user U; an available leaf v of identifier ZD(v) in the tree
T. Let x1,...,x, be the path from the chosen leaf x; = v to the root x; = € of
T. Letalso (Lt,...,Iy) = (ZD(x1),...,ZD(x;)) be the corresponding vector of
identifiers (with I} = 1 and I, = ZD(v) € {N,...,2N — 1}). Then, the GM does
the following.

(a) Compute a compact encoding C, = [T4_; gé"H_K = gél x -gif of (I, ..., Iy).
(b) Using sk&o,lo, generate an AHO signature 0, = (0y1,...,0,7) on the pair
(X,Cy) € G? s0 as to bind C, to the value X that identifies ;.

3. The GM sends ZD(v) € {N,...,2N — 1} and C, to U; that halts if ZD(v) ¢
{N,...,2N — 1} orif C, is found incorrect. Otherwise, U; sends an ordinary digi-
tal signature sig; = Sign, gy ; (X[|(L, - .., Ir)) to the GM.

4. The GM checks that Verify, ., (X[|(f1, ..., I)),sig;) = 1. If not, the GM aborts.
Otherwise, it returns the structure-preserving signature ¢, to the user U; and
stores transcript; = (X, ZD(v), Cy, 0w, 51g;) in the database Stygps.
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5. The user U; defines his membership certificate cert; as

cert; = (ZD(v), X, Co,00) € {N,...,2N — 1} x G,

where X will serve as the tag identifying i;. The membership secret sec; is defined
assec; = x € Z,.

Revoke(), Sgm, t, Rt): Parse Sgm as §gm := (sk(p?,zlo, sk&l&o) and do the following.

1. Using the covering algorithm of the SD method, find a cover of the unrevoked

userset {1,..., N}\R; as the union of disjoint subsets of the form Sy, ,,,, ..., Sk, u,,,

2. Fori =1 to m, do the following.

(a) Consider Sy, ,, as the difference between sub-trees rooted at an internal node
xx, and one of its descendants x,,,. Lets ¢;, ; € {1,..., ¢} be the depths of x,
and x,,, respectively, in T assuming that the root € is at depth 1. Encode Sy,

TD(xy,
as a vector (g¢,, $; (x"l), Qi §EP ).

(b) In order to authenticate S, ,, and bind it to the revocation period ¢, use Sk,(A1|2|O

to generate a structure-preserving signature ®; = (0, 1,...,0;7) € G’ on the
ID(x,

message R; = <gt,g¢i,g1 O

t is interpreted as an element of Z,,.

, S gID("w)) € G°, where the period number

Returns the revocation data

RL; = (t, Re, {¢i, i, ID(xy,), ID(xy,), ©; = (®i,1r-~/®z‘,7)};n:1>' (2.9)

Sign(), t, RL, cert;, sec;, M): returns L if i € R;. Otherwise, to sign M € {0,1}*, gener-

ates a one-time signature key pair (sk, VK) < G(A). Parse the membership certifi-
cate cert; as cert; = (ZD(v;), X, Cy,, 0,) € {N,...,2N — 1} x G’ and sec; as x € Z,,.
Let € = x1,...,x; = v; denote the path connecting v; to the root € of T and let

1) = (ID(x1),...,ZD(xy)) be the vector of node identifiers. First, U; gen-

erates a commitment comc, to the encoding C,, of the path (I, ..., I;) from v; to the
root. Then, he does the following.

1. Using RL;, find the set Sy, ,,, with ! € {1, ..., m}, that contains the leaf v; identified

by ID(v;). Let xy, and x,, denote the primary and secondary roots of Sy, ,, at
depths ¢; and 1, respectively. Since xy, is an ancestor of v; but x,, is not, it must
be the case that I, = ZD(xy,) and Iy, # ZD(xy,).

. In order to prove that v; belongs to Sy, ,, without leaking I, re-randomize the /-

th AHO signature ©; contained in RL; as {®;,i}i7:1 — ReRand(kaﬁ,o, ©)). Then,

commit to the /-th revocation message

ID(xy,)
Rl = (Rl,ll ey RI,S) = (gt/ 84;,, g] kl /glpl;gID(x“’)) (210)
and its signature @ = (@) ,...,0;,) by computing Groth-Sahai commitments
{compg, }3_, and {C0m®§,,-}]'€ 1125y to {Ri,c}3_5 and {©] ;}jc(125) respectively.
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(a) To prove that I, = ZD(x, ), compute Wy, = Hﬁ:l, Ky gé“ﬂf v+, that satisfies

the equality e(gy,, Co;) = e(g1,8¢) - (g, Wy,). Then, generate a Groth-Sahai
commitment comy, to Wy,. Compute a NIWI proof that committed variables
(Ri2, Ry 3,Cy,, Wsz) satisfy

e(Rl,Z/ Cv,-) == e(Rl,?)/gf) : e(g/ W(P[) (211)
We denote by 7., € G’ the proof for the quadratic equation (2.11)).
(b) To prove that Iy, # ZD(xy,), compute Wy, = TTe_; o gé’ﬁH_K 4y, that satis-

fies e(gy,, Co,) = e(g1,8¢)" - e(g, Wy, ). Then, compute a Groth-Sahai commit-
ment comy, to Wy, as well as commitments comr, and {comy, }reqo,0 tO
the group elements

N Iy, I
(T, Y10, Y11, Yi20) = (gl/(l”’l ID(X“’))Igl"”,glw’rgz?)-

The next step is to generate a NIWI proof that the committed group elements
(Rias Ri5, Co, T, W0, W11, Wi 20) satisfy

(R4, Co;) = e(¥11,80) - (8, Wy,), (2.12)
e(Y10/Ri5,T1) = e(g,8), (2.13)
e(¥11,8) = e(g1,¥10), (2.14)
e(¥i20,8) = e(g20, ¥10)- (2.15)

We denote this NIWI proof by 7ue; = (7Tneq,1, Tneq,2s Tneq3, Tneqa)- Since the
first two equations (2.12) and (2.13) are quadratic, 7eq,1 and 7Tye2 consist of
9 elements each. The last two equations (2.14) and (2.15) are linear and both
cost 3 elements to prove.

3. Provide evidence that the tuple R; of (2.10) is a certified revocation message for
period t: namely, compute a NIWI proof 7g, that committed message elements
{R, +}>_, and signature components {©];}je(1,25) satisfy the equations

AW . e(@]5,0],) (G, g T = oGV, 0] ) - e(G, 0] ,) - He WoR,),
(2.16)

BU - ¢(0],0],) 7 e(H, 8" = e(H,0],) -e(H",0]5) He W Riz).

Since {©; j} je{3,4,6,7) are constants, equations 1} are both linear and thus re-
quire 3 elements each. Hence, 71, takes 6 elements altogether.

4. Let O'U = (04,1, ..,00,7) be the AHO signature on (X, Cy,). Re-randomize oy, as
{9 - ReRand(pkg&O,le) and generate commitments {COT]’ZQI }]6{125} to

, as well as a commitment comyx to X. Then, generate a NIWI roof
sz ]6{1,2,5} g P
7o, that committed variables satisfy the verification equations

AO - e(0]5,0,) 1 =e(G,07,) - e(G”,0],) - e(G”, X) -e(GY, Cy,),
BO - e(6]¢,0,) " = e(H,0,1) -e(H",0]5) - e(H, X) - e(H”, Co).

Since these equations are linear, 77, requires 6 group elements.
1
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5. Using VK as a tag, compute a tag-based encryption [160] of X by drawing random
exponents z1, 2, < Z, at random and setting

(Y1, Yo, Yo, Yo, Ys) = (F 57, X 8772, (8% L), (V% )™).

6. Generate a NIZK proof that comx = (1,1, X) - £;“%1 - £,7%2 - £3%% and (Y1, Y2, Y3)
are BBS encryptions of the same value X. If we write f5 = (f31, f32, f33), the
commitment conx canbe writtenas (f;*" - 317, f, - f35°, X - gox1twxa. £0),

so that we have
comy - (Y1,Y2,Y3) "1 = (f- ﬁ, e 'f'ﬁ/ ghitx fé%) (2.17)

with x1 = wx1 — 21, X2 = Wx2 — 22, X3 = Wx,3. Compute commitments to {Xf}?:l

as comy, = ¢ - £, - £,"%2 with Wy 1, Wy & Z, for j € {1,2,3} and generate
proofs {neq_wm,j}?:l that x1, x2, x3 satisfy the three linear relations 1i These
latter proofs {neq_com,j};’zl cost 2 elements each.

7. Compute a Boneh-Boyen signature ok = ¢*/**VK) on VK and a commitment

comg,, to oyk. Then, generate a NIWI proof 7ty = (7o 1, Toyk 2, Toyk,3) € G
that the committed variables (ovk, X) € G satisfy e(ovk, X - gVK) = e(g, g)-

8. Compute a one-time signature oo = S(sk, (M, RLt, Y1, Y2, Y3, Y4, Y5, (), com, IT))
where Q = {0} ,,0] ;}ic(34,67) and

com = (COmcU,./ comy, {comRh}i:Z, com, , comy, , comr,, {comy, }reqon,00)/
{comey Yieq1,51 {comy Y1251 {comy, }iq, comayc),

3
IT = (neq/ TCneq, TCRy s Tory, s {ﬂeq—com,j}jzlz TCU'VK)'
Return the signature

g = (VK,Yl,Yz,Y3,Y4,Y5,Q,C0m, H/(Tots)- (218)

Verify(c, M, t,RL, Y): parse ¢ as in (2.18). If (Y1,Y2,Y3,Ys, Ys) is not a well-formed tag-
based encryption (that is, if e(Y1, gVK - U) # e(f1, Ys) or e(Y2, VK - V) # e(f2,Y5)) or
if V(VK, (M, RLt, Y1,Y2,Y3,Ys,Ys5,Q, com,IT), 0s) = 0, return 0. Then, return 1 if all
proofs properly verify. Otherwise, return 0.

Open(M, t,RL;, 0, Soa, Y, St): parse o as above and return _L if Verify(c, M, t,RL;, V) = 0.
Otherwise, given Soa = (B1, B2), compute X = Y3 - Y;l/ﬁl . Y;l/ﬁz. In the database
Sttrans, find a record (i, transcript; = (X;, ZD(v;), Cy,, 0v,,5igi)) such that X; = X. If no

such record exists in Stirans, returns L. Otherwise, return i.

At first glance, the variable ¥;,, and the proof of the second equality may seem
unnecessary in step 2.b of the signing algorithm. However, this element plays a crucial role
when it comes to proving the security under the /-FlexDHE assumption. Indeed, the proof
of security against misidentification attacks ceases to go through if we remove ¥, ,, and its
corresponding proof.
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Efficiency

As far as efficiency goes, each entry of RL; contains 7 group elements and two node identi-
fiers of O(log N) bits each. If Ag is the bitlength of a group element, we have log N < Ag/2
(since A < Ag and N is polynomial), so that the number of bits of RL; is bounded by
2-|R¢|-(7-Ag+2log N +2loglog N) < 2-|R¢|- (9A¢) bits. The size of RL; is thus bounded
by that of 18 - | R;| group elements.

Unlike our first scalable construction [180], group members only need to store 9 group
elements in their membership certificate. As far as the size of signature goes, com and II
require 66 and 60 group elements, respectively. If the one-time signature of [133] is used,
VK and oys consist of 3 elements of G and 2 elements of Z,, respectively. The global size
o amounts to that of 144 group elements, which is about 50% longer than [180]. In com-
parison with [134] (which does not natively support revocation), signatures are only longer
by a factor of 3. At the 128-bit security level, each group element should have a 512-bit
representation and a signature takes 9 kB.

Verifying signatures takes time O(1). The signer has to compute 2/ = O(log N) exponen-
tiations to obtain Wy, and Wy, at the beginning of each period. Note that these exponentia-
tions involve short exponents of O(log N) bits each. Hence, computing Wy, and Wy, requires

O(log® N) multiplications in G. For this reason, since log? N < A (as long as N < 2N,
this cost is dominated by that of a single exponentiation in G.

Security

The security of the scheme relies on the same assumptions as in our first revocable group sig-
nature [180] (namely, the g-SFP, g-SDH and DLIN assumptions) and the /-FlexDHE assump-
tion. While we need an addition non-standard assumption, we only need the /-FlexDHE
assumption to hold for small values of the parameter ¢/ = log N, where N is the maximal
number of users.

In the article [179, Appendix C], we suggest a variant of the scheme where the /-FlexDHE
assumption is replaced by an assumption of constant size, introduced by Laguillaumie et al.
[167], at the expense of increasing the group public key size from O(log N) to O(log” N).
This is achieved by replacing the concise vector commitment of Libert and Yung [188] by the
one of Catalano and Fiore [75], which relies on the CDH assumption instead of the /-DHE
assumption but has a longer commitment key. By applying the results of Abe et al. [2] to
our modified scheme [179, Appendix C], it is further possible to construct a revocable group
signature with O(log® N)-size group public keys which only relies on simple assumptions
in the standard model.

In a follow-up work, Attrapadung et al. [20] used a different mechanism from the broad-
cast encryption literature — due to Attrapadung, Libert and de Panafieu [24, 21] - to achieve
an efficiency tradeoff which is exactly dual to ours. While we obtain membership certificates
and revocation lists made of O(1) and O(r) group elements, respectively, Attrapadung et al.
[20] perform the other way around with O(1)-size revocation lists and O(R)-size member-
ship certificates, where R is an upper bound on the number of revoked users. However, the
maximal number R of revoked users must be fixed in advance even if it is much smaller than
the total number of users N. Similar results were obtained by Nakanishi and Funabiki [204].
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2.3 Conclusion

This chapter presented two important applications of structure-preserving cryptographic
primitives in the design of anonymity-related cryptographic mechanisms. One of our contri-
butions was the first reasonably efficient construction [81] — which was proposed at the same
time as (and independently of) Fuchsbauer’s automorphic signatures [112] — of the primi-
tive, initially introduced by Groth [133]], that was subsequently named “structure-preserving
signature” by Abe et al. [6, 4]. This construction allowed us to obtain the first fully non-
interactive group encryption system in the standard model and also immediately implied
the first group signatures with concurrent join in the standard model [157]. Together with
other techniques (such as the NNL framework [205] and our construction of concise vector
commitments [188])), the optimized SPS scheme of Abe et al. [6] also enabled the design of a
new revocation mechanism for group signature schemes in the standard model.

Structure-preserving signatures were also used in other results of mine [176, 173] on
privacy-preserving primitives which are not discussed in this manuscript. In collaboration
with Marc Joye, Moti Yung and Thomas Peters, we built on the Abe et al. [6] system to
construct a group encryption scheme [176] with refined tracing capabilities similar to those
of traceable signatures [155]: specifically, the opening authority can disclose a user-specific
trapdoor that makes it possible to trace all ciphertexts encrypted for a given suspicious user
without affecting the privacy of well-behaved users. Together with Marc Joye, we also de-
signed a partially structure-preserving identity-based encryption (IBE) scheme [173] — where
“partially” means that identities are still encoded as bitstrings (rather than group elements)
but encrypted messages live in the source group G of the bilinear map e : G x G — Gr
instead of the target group Gr as in most IBE schemes in the standard model [248] — and
used it to construct the first efficient standard model realization of group signatures with
message-dependent opening (GS-MDO) [233]]. In short GS-MDO schemes, as introduced by
Sakai et al. [233], are group signatures where the opening authority can only open signa-
tures for which a separate authority has released a message specific trapdoor. Sakai et al.
[233] showed that GS-MDO implies identity-based encryption, which raised the intuition
that realizing GS-MDO schemes in the standard model requires a structure-preserving IBE.
In [173], we showed that a partially structure-preserving IBE suffices for this purpose and
we built a GS-MDO scheme with logarithmic signature size in the standard model.



CHAPTER

Constructions of Non-Malleable
Primitives from Structure-Preserving

Cryptography

In the last three years, a large body of work has analyzed the feasibility and the efficiency
of structure-preserving signatures (SPS) [133, 181} 112} 16, 4} 5] 163} 182, 142} 2, [3], public-key
encryption [65] and commitments schemes [135)[7].

In this chapter, we consider applications of structure-preserving signatures in the design
of non-malleable protocols such as non-interactive non-malleable commitments or chosen-
ciphertext-secure public-key encryption. Paradoxically, this is achieved by first considering
structure-preserving signatures which are intentionally made malleable. We consider SPS
schemes with linearly homomorphic properties and argue that such primitives have many
applications, even independently of Groth-Sahai proofs.

3.0.1 Linearly Homomorphic Structure-Preserving Signatures

The concept of homomorphic signatures can be traced back to Desmedt [97] while proper
definitions remained lacking until the work of Johnson et al. [148]]. Since then, constructions
have appeared for various kinds of homomorphisms (see [11] and references therein).

Linearly Homomorphic Schemes. Linearly homomorphic signatures are an important class
of homomorphic signatures for arithmetic functions, whose study was initiated by Boneh,
Freeman, Katz and Waters [48]. While initially motivated by applications to network coding
[48], they are also useful in proofs of storage [13, [16] or in verifiable computation mecha-
nisms, when it comes to authenticate servers” computations on outsourced data (see, e. g.,
[11]). The recent years, much attention was given to the notion and a variety of constructions
[120, 23,147, 46| 77, 78,111}, 25, 26] based on various assumptions have been studied.

Structure-Preserving Signatures Made Homomorphic. In collaboration with Thomas Pe-
ters, Marc Joye and Moti Yung [177], we put forth the notion of linearly homomorphic
structure-preserving signatures (LHSPS). While structure-preserving signatures and linearly
homomorphic signatures have both been studied before, simultaneously combining the ho-
momorphic and structure-preserving properties turns out to be useful and non-trivial. Aswe
will see in this chapter, such a combination has unexpected applications that are not known
to be possible with only one of these two properties individually. In particular, we describe
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applications of LHSPS schemes beyond their compatibility with the Groth-Sahai techniques.
These signature schemes function exactly like ordinary homomorphic signatures with the
additional restriction that signatures and messages only consist of (vectors of) group ele-
ments whose discrete logarithms may not be available. We describe three constructions and
prove their security under well-established assumptions in bilinear groups.

Our first scheme’s starting point is the one-time (regular) SPS scheme of Abe et al. [6].
By removing certain public key components, we obtain the desired linear homomorphism,
and prove the security using information-theoretic arguments as in [6]. The key observation
here is that, as long as the adversary does not output a signature on a linear combination of
previously signed vectors, it will be unable to sign its target vector in the same way as the
reduction would, because certain private key components will remain perfectly hidden.

Our initial scheme inherits the one-time restriction of the scheme in [6] in that only one
linear subspace can be safely signed with a given public key. Nevertheless, we can extend it
to build a full linearly homomorphic SPS system. To this end, we suitably combine our first
scheme with Waters signatures [248]]. Here, Waters signatures are used as a resting ground
for fresh random exponents which are introduced in each signed vector and help us refresh
the state of the system and apply each time the same argument as in the one-time scheme. We
also present techniques to turn the scheme into a fully randomizable one, where a derived
signature has the same distribution as a directly signed message.

3.0.2 Applications

Verifiable computation on encrypted data. First, we show that the primitive enables ver-
ifiable computation mechanisms on encrypted dataE] Specifically, it allows a client to store
encrypted files on an untrusted remote server. While the dataset is encrypted using an ad-
ditively homomorphic encryption scheme, the server is able to blindly compute linear func-
tions on the original data and provide the client with a short homomorphically derived sig-
nature vouching for the correctness of the computation. This is achieved by having the client
sign each ciphertext using a homomorphic SPS scheme and handing the resulting signatures
to the server at the beginning. After this initial phase, the client only needs to store a short
piece of information, no matter how large the file is. Still, he remains able to authenticate
linear functions on his data and the whole process is completely non-interactive.

Non-malleable commitments to group elements. As a more surprising application, we
show that LHSPS schemes generically yield non-malleable [102] trapdoor commitments to
group elements. We actually construct a simulation-sound trapdoor commitment [116] —a
primitive known (by [116, 195]) to imply re-usable non-malleable commitments with re-
spect to opening [94] — from any linearly homomorphic SPS satisfying a relatively mild
condition. To our knowledge, we thus obtain the first constant-size trapdoor commitments
to group elements providing re-usable non-malleability with respect to opening. Previous
non-interactive commitments to group elements were either malleable [138, [135] or inher-
ently length-increasing [108]: if we disregard the trivial solution consisting of hashing the
message first (which is not an option when we want to allow for efficient proofs of knowl-

10ur goals are very different from those of [119], where verifiable computation on homomorphically en-
crypted data is also considered. We do not seek to outsource computation but rather save the client from storing
large datasets.
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edge of an opening), no general technique has been known, to date, for committing to many
group elements at once using a short commitment string.

In the structure-preserving case, our transformation is purely generic as it applies to
a template which any linearly homomorphic SPS necessarily satisfies in symmetric bilin-
ear groups. We also generalize the construction so as to build simulation-sound trapdoor
commitments to vectors from any pairing-based (non-structure-preserving) linearly homo-
morphic signature. In this case, the conversion is only semi-generic as it imposes conditions
which are only met by pairing-based systems for the time being: essentially, we need the
underlying signature scheme to operate over groups of finite, public order. While only par-
tially generic, this construction of non-malleable commitments from linearly homomorphic
signatures is somewhat unexpected considering that the terms “non-malleability” and “ho-
momorphism” are antagonistic, and thus may be considered incompatible.

Constant-Size Quasi-Adaptive NIZK Proofs for Linear Subspaces. Our LHSPS schemes
also allowed us [178] to construct constant-size QA-NIZK arguments of linear subspace
membership. Given a t X n matrix of group elements of rank ¢t < n, the QA-NIZK proofs
of Jutla and Roy [151] save Q(t) group elements compared to Groth-Sahai. In [178], we
gave QA-NIZK arguments for proving the same statement using a constant number group
elements, regardless of the number of equations or the number of variables. Our one-time
LHSPS system immediately gives QA-NIZK arguments of linear subspace membership com-
prised of only 3 group elements under the DLIN assumption (and 2 group elements under
the SXDH assumption). While our constant-size QA-NIZK arguments are malleable in their
simplest version, they readily extend — at minimal cost — to provide a form of one-time
simulation-soundness defined by Jutla and Roy [150]. Moreover, we describe a construc-
tion of unbounded simulation-sound QA-NIZK argument based on our randomizable LH-
SPS system. Unlike previous unbounded simulation-sound Groth-Sahai-based proofs, our
construction does not involve quadratic pairing product equations and does not rely on a
chosen-ciphertext-secure encryption scheme.

Our constant-size QA-NIZK argument systems allowed us [178] to design new and im-
proved CCA2-secure encryption schemes. In particular, we could significantly optimize
the adaptively secure non-interactive threshold versions of the Cramer-Shoup cryptosystem
given by Libert and Yung [191]. We also built an efficient CCA2-secure keyed-homomorphic
encryption scheme. Keyed-homomorphic encryption is a primitive, suggested by Emura
et al.[104], which allows reconciling homomorphism and IND-CCA2 security. The idea of
Emura et al.[104] is that homomorphic operations can only be carried out using a dedi-
cated evaluation key. A keyed homomorphic scheme should be designed so as to be chosen-
ciphertext-secure against any adversary that is withheld access to the evaluation key. At the
same time, the evaluation key does not enable decryption and IND-CCA1 security should
be preserved even if this evaluation key is made available to the adversary. The keyed
homomorphic constructions of Emura et al.[104] are only known to satisfy a relaxed def-
inition of security where the adversary is only given access to a restricted homomorphic
evaluation oracle. Using our unbounded simulation-sound QA-NIZK proofs, we were able
[178] to build a keyed homomorphic encryption scheme satisfying the strongest definition
of chosen-ciphertext security given in [104]. At the same time, our construction enables
threshold decryption, as shown in [178], which is a useful capability in many applications of
homomorphic encryption. Our results were recently improved by Jutla and Roy [153} [152]
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who gave even shorter QA-NIZK proofs [153] of linear subspace membership and improved
unbounded simulation-sound constructions [152].

3.1 Linearly Homomorphic Structure-Preserving Signatures

3.1.1 Definitions for Linearly Homomorphic Signatures

Let (G,Gr) be a configuration of (multiplicatively written) groups of prime order p over
which a bilinear map e : G x G — Gr is efficiently computable.

We consider linearly homomorphic signatures for which the message space M consists
of pairs M := T x G", for some n € IN, where 7 is a tag space. We remark that, in the
applications considered in this paper, tags do not need to be group elements. We thus allow
them to be arbitrary strings.

Definition 5. A linearly homomorphic structure-preserving signature (LHSPS) over (G, Gr)
is a tuple of efficient algorithms ¥ = (Keygen, Sign, SignDerive, Verify) for which the message
space is M := T x G", for some n € poly(A) and some set T, and such that:

Keygen(A,n): is a randomized algorithm that takes in a security parameter A € IN and an
integer n € poly(A) denoting the dimension of vectors to be signed. It outputs a key
pair (pk, sk) and the description of a tag (i.e., a file identifier) space T .

Sign(sk, T, M): is a possibly probabilistic algorithm that takes in a private key sk, a file iden-
tifier T € T and a vector M € G". It outputs a signature ¢ € G™, for some ns € poly(A)
determined by pk.

SignDerive(pk, T, { (w;, ) }£_,): is a (possibly probabilistic) signature derivation algo-
rithm. It takes as input a public key pk, a file identifier T as well as ¢ pairs (w;, O'(i)),
each of which consists of a weight w; € Z,, and a signature o) € G". The output is a
signature o € G" on the vector M = []_, M., where ol!) is a signature on M;.

Verify (pk, T, M, 0): is a deterministic algorithm that takes in a public key pk, a file identifier
T € T, a signature o and a vector M. It outputs 1 if o is deemed valid and 0 otherwise.

Correctness is expressed by imposing that, for all security parameters A € IN, all integers
n € poly(A) and all triples (pk, sk, 7)) < Keygen(A, n), the following holds:

1. For all identifiers T € 7 and all n-vectors M € G", if ¢ = Sign(sk, T, M), then we have
Verify(pk, T,M, o) = 1.

2. For all identifiers T € T, any £ > 0 and any set of triples {(w;, o), M;) le, if we have
Verify(pk, T, Mz-,cr(i)) = 1foreachi € {1,...,¢}, then

[ .
Verify (pk, T, ] [ M,*", SignDerive(pk, T, {(w;, o) le)) =1.
i=1

In our constructions, n; will be a constant which does not depend on the dimension n of
signed vectors. This will play a crucial role in certain application like short quasi-adaptive
NIZK proofs of linear subspace membership.
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Security. At first, the very name of the primitive may sound almost self-contradictory
when it comes to formally define its security. Indeed, the security of a linearly homomorphic
scheme [48] notably requires that it be infeasible to publicly compute a signature on a vector
outside the linear span of originally signed vectors. The problem is that, when vector entries
live in a discrete-logarithm hard group, deciding whether several vectors are independent
or not is believed to be a hard problem. Yet, this will not prevent us from applying new
techniques and constructing schemes with security proofs under simple assumptions. In the
security proof of our first construction, the reduction will be able to detect when the adver-
sary has won using the private key of the system.

In linearly homomorphic signatures, we use the same definition of unforgeability as
in [25]. This definition implies security in the stronger model used by Freeman [111] since
the adversary can interleave signing queries for individual vectors belonging to distinct sub-
spaces. Moreover, file identifiers can be chosen by the adversary (which strengthens the
definition of [48]) and are not assumed to be random. As a result, a file identifier can be a
low-entropy, easy-to-remember string such as the name of the dataset’s owner.

Definition 6. A linearly homomorphic SPS scheme % = (Keygen, Sign, SignDerive, Verify) is
secure if no PPT adversary has non-negligible advantage in the game below:

1. The adversary A chooses an integer n € IN and sends it to the challenger who runs
Keygen(A, n) and obtains (pk, sk) before sending pk to A.

2. On polynomially-many occasions, A can interleave the following kinds of queries.

e Signing queries: A chooses a tag T € T and a vector M € G". The challenger
picks a handle h and computes o < Sign(sk, T,M). It stores (h, (T,M),0) in a
table T and returns h.

e Derivation queries: A chooses a vector of handles h = (hy, ..., hy) and a set of co-
efficients {w; }¥_,. The challenger retrieves the tuples {(h;, (t;, M;),c®)}¥_, from
T and returns L if one of these does not exist or if there existsi € {1,...,k} such
that T; # T. Otherwise, it computes the linear combination M = [T5_, M;" and
runs o’ < SignDerive(pk, T, { (w;j, O'(i))}le). It also chooses a handle h', stores
(W, (t,M),c’) in T and returns h’ to A.

* Reveal queries: A chooses a handle h. If no tuple of the form (h, (t,M), ¢’) exists
in T, the challenger returns . Otherwise, it returns ¢’ to A and adds ((t,M), ¢’)
to the set Q.

3. A outputs an identifier T*, a signature c* and a vector M* € G". The adversary A
wins if Verify(pk, T, M*, 0*) = 1 and one of the conditions below is satisfied:
o (Typel): ™ # 7; for any entry (7;,.) in Q and M* # (1g, ..., 1g).

o (Type II): v = 1; for k; > 0 entries (T;,.) in Q and M* ¢ V;, where V; denotes
the subspace spanned by all vectors My, ..., My, for which an entry of the form
(t*,M;), withj € {1,...,k;}, appears in Q.

A’s advantage is its probability of success taken over all coin tosses.

In our first scheme, we will consider a weaker notion of one-time security. In this notion,
the adversary is limited to obtain signatures for only one linear subspace. In this case, there



Chapter 3. Constructions of Non-Malleable Primitives from Structure-Preserving
62 Cryptography

is no need for file identifiers and we assume that all vectors are assigned the identifier T = e.
In the following, the adversary will be said independent if

* For any given tag T, it is restricted to only query signatures on linearly independent
vectors.

¢ Each vector is only queried at most once.

Non-independent adversaries are not subject to the above restrictions. It will be necessary
to consider these adversaries in our construction of non-malleable commitments. Neverthe-
less, security against independent adversaries suffices for many applications —including
encrypted cloud storage — since the signer can always append unit vectors to each newly
signed vector.

At first, one may wonder how Definition|6|can be satisfied at all given that the challenger
may not have an efficient way to check whether the adversary is successful. Indeed, in cryp-
tographically useful discrete-logarithm-hard groups G, deciding whether vectors {M;}; of
G" are linearly dependent is believed to be difficult when n > 2. However, it may be possible
using some trapdoor information embedded in pk, especially if the adversary additionally
outputs signatures on {M; };.

In some applications, it makes sense to consider a weaker attack model where a Type II
adversary is only deemed successful if it outputs a convincing proof that its target vector
M* is indeed independent of the vectors that were signed for the tag 7*. The proof can be
either a NIZK proof or, alternatively, a vector in the kernel of the matrix whose rows are the
vectors that were signed for 7. We call such an adversary a targeting adversary.

3.2 Constructions of Linearly Homomorphic Structure-Preserving
Signatures

As a warm-up, we begin by describing a one-time homomorphic signature, where a given
public key allows signing only one linear subspace.

3.2.1 A One-Time Linearly Homomorphic Construction

The construction is based on a one-time structure-preserving signature described by Abe et
al. [6, Appendix C.1] and the observation that this system can be made homomorphic by
removing certain public key components.

In the description hereunder, since only one linear subspace can be signed for each public
key, no file identifier T is used. We thus set T to be the empty string ¢ in all algorithms.

Keygen(A, n): given a security parameter A and the dimension 1 € IN of the subspace to be
signed, choose bilinear group (G, Gr) of prime order p > 2*. Then, choose generators
h,Qz, 8 hz & G. Pick Xi, Yis Oi & Z,, fori = 1to n. Then, for eachi € {1,...,n},
compute g; = ¢3¢/, h; = h¥'h%. The private key is sk = {x;, 7, 6; }/_, while the public
key is defined to be

pk = (gZ/ hy, h;, h, {gi/ hi}?:l) c GZn+4.
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Sign(sk, T, (My, ..., M,)): tosigna vector (M, ..., M,) € G" associated with the identifier
T = e using sk = {x;, i, 6i}/_,, compute the signature consists of ¢ = (z,r,u) € G3,
where

n n
z=[[M", r= f[M;%, u=T]Mm7
i=1 i=1 i=1

SignDerive(pk, T, { (w;, ¢?)}¢_,): given the public key pk, a file identifier T = ¢ and ¢
tuples (w;, ()) parse each o) as ¢li) = (zz,rl, ) e Gifori=1to/. Compute and
return the derived signature o = (z,7,u) = (TTi_; 2%, TTi_q 7}, Ty us™).

Verify(pk, o, T, (My,...,M,)): given a signature o = (z,1,u) € G2, a vector (My,..., M,)
and a file identifier T = ¢, return 1 iff (M, ..., M,) # (1g,...,1g) and (z,r, u) satisfy

lg, = e(gz,2) -e(gr, 1) He gi, M), lg, = e(hz,z) -e(h,u) - Je(hi, My).  (3.1)
i=1

The security proof relies on the fact that, while the signing algorithm is deterministic,
signatures are not unique as each vector has an exponential number of valid signatures.
However, the reduction can compute exactly one signature for each vector. At the same time,
an adversary has no information about which specific signature the legitimate signer would
compute on a vector outside the span of already signed vectors. Moreover, by obtaining two
distinct signatures on a given vector, the reduction can readily solve a given instance of the
SDP problem [81].

Theorem 3 ([177]). The scheme is unforgeable if the SDP assumption holds in (G, Gr).

The scheme can be modified so as to work in asymmetric pairing configurations and the
Double Pairing assumption.

One particularity of this scheme is that, even if the private key is available, it remains
difficult to find two distinct signatures on the same vector if the SDP assumption holds: by
dividing out the two signatures, one obtains the solution of an SDP instance (g, g, hz, 1)
contained in the public key.

3.2.2 A Full-Fledged Linearly Homomorphic SPS Scheme

Our one-time construction can be upgraded to obtain a scheme allowing to sign an arbi-
trary number of linear subspaces. Here, each file identifier T consists of a L-bit string. The
construction builds on the observation that, in the scheme of Section signatures (z,7,u)
could be re-randomized by computing (z-¢%,7-¢-%, u-h; o8y (g,)-e)’ with & Zy,ifh, log; (3r)

: . T . Sy
were available. Since publicizing h, %" ®) would render the scheme insecure, our idea is to

use Waters signatures as a support for introducing extra randomizers in the exponent.
In the scheme, the u component of each signature can be seen as an aggregation of the

one-time construction with a Waters signature (h on(sr) Hg(t)~?, h*) [248] on the tag 7.

Keygen(A,n): given a security parameter A and the dimension n € IN of the subspace to
be signed, choose bilinear group (G, Gr) of prime order p > 2*. Then, conduct the
following steps.
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1. Choose h <i G and «az, a;, B; ﬁ Z,. Define g; = h*:, ¢, = h" and h, = hP=.

2. Fori = 1ton, pick x, 7i, 6; <& Z, and compute g; = g¥'g}', h; = h¥'ho.

3. Choose a random vectorw = (wp, w1y, ..., wr) <i GLt1 and define a hash function
Hg : {0,1}}* — G which maps the L-bit string T = 7[1]...7[L] € {0,1}* to
He(t) = wo - [Ty wy .

The private key is sk = (3", {xi, i, 0i}'_;) while the public key consists of
pk = (82, & hz, h, {gi i}y, W) € G x G

Sign(sk, T, (My,...,My)): to sign (M, ..., M,) € G" wr.t. the file identifier T using the

private key sk = (h%", {xi, 7, di}!,), choose 6, p & Z, and output 0 = (z,1,u,v),

where
6 TT \mXi 6 TT A7
= = g [Im" r=gt TIM "
i=1 i=1
n
u = (b)) TTM;™ Ho(r)™* 0=H

i=1

SignDerive(pk, T, { (w;, ¢(?)}£_,): given pk, a file identifier T and ¢ tuples (w;, o)), parse
o ag o) = (zi,ri, ui,vi) € G*fori = 1to ¢. Then, choose o’ <i Z., and compute and
return o = (z,7,u,0), where z = [T/_; 2%, r = [T, %, u = TT_y ul” - Hg(t)* and
v =TI 0" h.

Verify(pk, o, T, (My, ..., M,)): givenc = (z,r,u,v) € G*, afileidentifier tand (My, ..., M,),
return 1 if and only if (M, ..., M,) # (1g,...,1g) and (z, 7, u, v) satisfy

lg; = e(8z2)-e(grr) ] Je(gi M), (3.2)
i=1

n

lg, = e(hz,z)-e(hu)-e(Hg(t),v) [ [e(hi, M;).
i=1

The security of the scheme against non-independent Type I adversaries is proved under
the SDP assumption. In the case of Type II forgeries, we need to assume the adversary to be
independent because, at some point, the simulator is only able to compute a signature for a
unique Valueﬂ of 0.

Theorem 4 ([177]). The scheme is unforgeable against independent adversaries if the SDP
assumption holds in (G, Gt). Moreover, the scheme is secure against non-independent Type
I adversaries.

Since the signature component u cannot be publicly randomized, the scheme does not
have fully randomizable signatures. In Section [3.2.3} we describe a fully randomizable vari-
ant. In applications like non-malleable commitments to group elements, the above scheme
is sufficient however.

2Note that this is not a problem since the signer can derive 8 as a pseudorandom function of T and
(M, ..., My) to make sure that a given vector is always signed using the same 6.
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3.2.3 A Fully Randomizable Construction

We show that our scheme of Section can be modified so as to become strongly context-
hiding in the sense of [11, 25]. Namely, signatures produced by the SignDerive algorithm
should be statistically indistinguishable from signatures freshly generated by Sign, even
when the original signatures are given.

The difficulty is that, in the scheme of Section we cannot re-randomize the un-
derlying 6 without knowing hZ". To address this problem, it is tempting to include in each
signature a randomization component of the form (k3" - Hg(7) ¢, h%), for some { € Z,,
which can be seen as a signature on the vector (1g,...,1g). Unfortunately, the security
proof ceases to go through as the reduction finds itself unable to generate a well-formed
pair (hf" - Hg(T)~¢, h®) at some step of its interaction with the adversary. Our solution actu-
ally consists in committing to the signature components that cannot be re-randomized and
provide evidence that committed group elements satisfy the verification equations. This
is achieved using Groth-Sahai non-interactive arguments on a perfectly NIWI Groth-Sahai
CRS, as in the linearly homomorphic construction of Attrapadung et al. [26]. A slight dif-
ference with [26], however, is that signature components (Hg(7) *,h ) are no longer used
and replaced by the technique of Malkin et al. [196], which yields slightly shorter signatures.

In the following notations, for each i € G and any vector g = (g1,$2,93) € G, we
denote by E(h, g) the vector (e(h, g1),e(h, g2),e(h, g3)) € G3.

Keygen(A,n): given a security parameter A and the dimension n € IN of the subspace to be
signed, choose bilinear group (G, Gr) of order p > 2*. Then, do the following.

1. Choose h <i G and a;, a;, B2, <i Z,. Define g, = h*:, ¢, = h* and h, = hP=.
2. Fori = 1ton, pick x;, 7i,6; & Z, and compute g; = g¥' - g}, h; = h¥' - %,

3. Generate L + 1 Groth-Sahai CRSes by choosing fi, f> & Gand defining vectors
f1=(f1,1,8) €G3 f2=(1,f,¢) € G®and f3; & G, foreachi € {0,...,L}.

The private key is sk = (hZ", {xi, 7i,6;}!_,) while the public key consists of
pk = (820 & Bl {31 Yy, £ = (B0, £ {£5,:} ) )-

Sign(sk, T, (M, ..., My)): tosignavector (M, ..., M,) € G" using sk = (h", {xi, vi, 0i}",)
with the file identifier T, conduct the following steps.

1. Choose 6 & 7, and compute

n

n n
z = g [IM™ r=st IIMT w=h T M
L

i=1 = i=1

2. Using the bits 7[1]... T[L] of T € {0, 1}, define the vector f; = f3¢ - [T-, f;i[i] SO
as to assemble a Groth-Sahai CRS f; = (fy, fp, f;).
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3. Using f:, compute Groth-Sahai commitments

CZ = (1G/ 1G, Z) . flvz,l . fZVZ,Z . fi{_z,?)/
Cr - (16’ 1G/ 1’) * flv"/l . fzvr,Z . f?,SI
Cu = <1G' 1GI M) . f1Vu,1 . fZVu,z . f;/_u,B

to z, r and u, respectively. Then, generate NIWI proofs 7r1 = (7111, 712, T13) € G®
and 7y = (7121, 722, T23) € G that (z, 7, u) satisfy the pairing-product equations
16, = e(g2,2) - e(g7,7) - T 11y e(gi, My) and g, = e(hs, z) - e(h, u) - [T e(hi, My).
These proofs are obtained as

—Vz1 —Vp1 —Vz2 —Vr2 —Vz3 V3
m = (mamems) =8 & "8 & 78 g )

Yzl v —Vz2 v V23 v
Ty = (M, M, M) = (B TV, R pTVeR, R gl

and satisfy the verification equations

n
TTE(si (1(;,1(;,Mi))_1 = E(g:,C.)-E(g,Cs) E(ma, 1) - E(mtip, £5) - E(mi3, fr)
i=1

(3.3)
n
TTE(h, (16, 16, M) o E(hz,C:) - E(h,Cy) - E(m21, £1) - E(72,2, £2) - E(712,3, £1).
i=1
The signature consists of
o= (C,,C,,C,, m,m) € GP. (3.4)

SignDerive(pk, T, { (wi, a(i))}le): given pk, a file identifier T and ¢ tuples (w;, a(i)), parse
each signature o) asa tuple of the form o) = (Ci, Cpi, Cui, 71,3, T2i) € GPfori=1
to £. Otherwise, the derivation process proceeds in two steps.

1. Compute
! ! ¢
i wi — Wi — Wi
CZ - ch,i Cr - HCr,i C“ - HCu,i
I4 V4
— wi I wi
mo =[] Ty, =] T i
i=1 i=1

2. Re-randomize the above commitments and proofs using their homomorphic prop-
erty and return the re-randomized version o = (C;, C,, C,, 71, 7).

Verify(pk, o, T, (My,...,M,)): given a pair (t,(Mj,..., M,)) and a purported signature
o parse the latter as (C;, C;, Cy, 7t1, 7t2). Then, return 1 if and only if it holds that
(My,...,My) # (1g, ..., 1g) and equations are satisfied.

We believe this construction to be of interest even if we disregard its structure-preserving
property. Indeed, if we compare it with the only known completely context-hiding linearly
homomorphic signature in the standard model [26]], its signatures are shorter by one group
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element. Moreover, we can prove the security under the sole DLIN assumption whereas the
scheme of [26] requires an additional assumption.

The scheme is clearly completely context hiding because signatures only consist of per-
fectly randomizable commitments and NIWI arguments.

As for the unforgeability of the scheme, the proof of the following theorem is along the
lines of [196, Theorem 5]. However, we can only prove unforgeability in a weaker sense as
we need to assume that the adversary is targeting. Namely, in the case of Type II attacks,
the adversary must also output a proof that it actually broke the security of the scheme and
that its vector M* = (Mj, ..., My) € G" is indeed independent of the vectors for which it
obtained signatures for the target tag 7*.

If {M; = (Mj31,...,M;,)}", denote the linearly independent vectors that were signed
for t*, the adversary could simply output a vector W = (Wj,...,W,) € G" such that
[Ty e(M]-*, Wj) # lg, and [T, e(M;j, W;) = 1g, for each i € {1,...,m}. The latter test
guarantees that the adversary’s output is a non-trivial Type II forgery.

Theorem 5 ([177]). The above scheme provides unforgeability against independent targeting
adversaries if the DLIN assumption holds in G.

3.2.4 Application to Verifiable Computation on Encrypted Data

Linearly homomorphic schemes are known (see, e. g., [11]) to provide verifiable computation
mechanisms for outsourced data. Suppose that a user has a dataset consisting of n samples
S1,.--,5n € Zp. The dataset can be encoded as vectors v; = (e;[s;) € Z';,“, where e; € Z’;
denotes the i-th unit vector for each i € {1,...,n}. The user then assigns a file identifier
T to {v;}' ;, computes signatures 0; < Sign(sk, T, v;) on the resulting vectors and stores
{(vi,0i)}1_, at the server. When requested, the server can then evaluate a sums = Y ;s;
and provide evidence that the latter computation is correct by deriving a signature on the
vector (1,1,...,1,s) € ZZH. Unless the server is able to forge a signature for a vector
outside the span of {v;}"_,, it is unable to fool the user. The above method readily extends
to authenticate weighted sums or Fourier transforms.

One disadvantage of the above method is that it requires the server to retain the dataset
{si}I_; in the clear. Using LHSPS schemes, the user can apply the above technique on en-
crypted samples using the Boneh-Boyen-Shacham (BBS) cryptosystem [44].

The BBS cryptosystem involves a public key (g,§, f = g%, h = ¢¥) €r G*, where (x,y) €
Z% is the private key. The user (or anyone else knowing his public key) can first encrypt
his samples {s;}"_; by computing BBS encryptions (Cy ;, Cai, C3,i) = (f"i, h'i, §% - g"i*!), with

i, ti <i Z,, for each i € {1,...,n}. If the user holds a LHSPS key pair for vectors of di-
mension 7 + 3, he can generate 1 signatures on vectors ((Cy;, Cp;,C3;)|E;) € G"*3, where
Ei= (1g,-..,1¢,8 1G,..-,1g) = g% foreach i € {1,...,n}, using the scheme of Section
The vectors {((C1,i, Co, C3,)|E;) }1; and their signatures {(z;,r;, u;, v;)}! , are then
archived in the cloud in such a way that the server can publicly derive a signature on the
vector (fLi’i, hkiti, glisi. oXilith) ¢ ¢ .. ¢) € G"*3 in order to convince the client that the
encrypted sum was correctly computed. Using his private key (x,y), the client can then
retrieve the sum ) ; s; as long as it remains in a sufficiently small range.

The interest of the above solution lies in that the client can dispense with the need for
storing the O(n)-size public key of his linearly homomorphic signature. Indeed, he can
simply retain the random seed that was used to generate pk and re-compute private key
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elements { ()i, 7i, 6;) }'_, whenever he wants to verify the server’s response. In this case, the
verification equations (3.2) become

n n

1g, = e(gz,z - HM?G) -e(gr, 7 HM?’) =e(hy,z- HM?“) ce(h,u -HMfi) -e(Hg(T1),0),
i—1 i=1 i—1 i—1

so that the client only has to compute O(1) pairings. Moreover, the client does not have
to determine an upper bound on the size of his dataset when generating his public key.
Initially, he only needs to generate {(gj, /) ;’:1. When the i-th ciphertext (Cy ;, C 5, C3,) has
to be stored, the client derives (Xii3,7Vi+3,0i+3) and (g;+3,hiv3) by applying a PRF to the
index i. This will be sufficient to sign vectors of the form ((Cy;, C2;, C3)|E;).

Complete and security models for “verifiable computation on encrypted data” are be-
yond the scope of this work. Here, they would naturally combine the properties of secure
homomorphic encryption and authenticated computing. It should be intuitively clear that a
malicious server cannot trick a client into accepting an incorrect result (i.e., one which differs
from the actual defined linear function it is supposed to compute over the defined signed ci-
phertext inputs) without defeating the security of the underlying homomorphic signature.

3.3 Non-Malleable Trapdoor Commitments to Group Elements from
Linearly Homomorphic Structure-Preserving Signatures

This section shows that, under a certain mild condition (fulfilled by our constructions), LH-
SPS imply length-reducing non-malleable structure-preserving commitments to vectors of
group elements.

As a result, we obtain the first length-reducing non-malleable structure-preserving trap-
door commitment. Our scheme is not strictlyﬁ structure-preserving (according to the ter-
minology of [7]) because the commitment string lives in Gt rather than G. Still, openings
only consist of elements in G, which makes it possible to generate efficient NIWI proofs that
committed group elements satisfy certain properties. To our knowledge, the only known
non-malleable commitment schemes whose openings only consist of group elements were
described by Fischlin et al. [108]. However, these constructions cannot be length-reducing
as they achieve universal composability [70, 71].

Our schemes are obtained by first constructing simulation-sound trapdoor commitments
(SSTC) [116}[195] to group elements. SSTC schemes were first suggested by Garay, MacKen-
zie and Yang [116] as a tool for constructing universally composable zero-knowledge proofs
[70]. MacKenzie and Yang subsequently gave a simplified security definition which suffices
to provide non-malleability with respect to opening in the sense of the definition of re-usable
non-malleable commitments [94].

In a SSTC, each commitment is labeled with a tag. The definition of [195] requires that,
even if the adversary can see equivocations of commitments to possibly distinct messages
for several tags tagy, ..., tag,, it will not be able to break the binding property for a new tag

tag & {tagi, ..., tagy}.

3We recall that strictly structure-preserving commitments cannot be length-reducing, as shown by Abe et
al. [7], so that our scheme is essentially the best we can hope for if we aim at short commitment stings.
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Definition 7 ([195]]). A simulation-sound trapdoor commitment (SSTC) (Setup, Com, FakeCom,
FakeOpen, Verify) is a tuple where (Setup, Com, Verify) forms a non-interactive commitment
scheme and (FakeCom, FakeOpen) are PPT algorithms with the following properties

Trapdoor: foranytag and any message Msg, the following distributions are computationally
indistinguishable:

Dake := {(pk, tk) < Setup(A); (com,aux) < FakeCom(pk, tk, tag);
dec + FakeOpen (aux, tk, com, Msg) : (pk, tag, Msg, com, dec)}

Dyeqr := {(pk, tk) < Setup(A); (com,dec) <— Com(pk, tag, Msg) : (pk, tag, Msg, com, dec) }

Simulation-sound binding: for any PPT adversary A, the following probability is negligi-
ble

Pr[(pk, tk) < Setup(A); (com, tag, Msgy, Msg,, deci, decy) < A% (pk) : Msg; # Msg,
A Verify(pk, tag, Msg;, com, decy ) = Verify(pk, tag, Msg,, com,decy) = 1 A tag € Q],

where Oy, is an oracle that maintains an initially empty set Q and operates as follows:

e On input (commit, tag), it runs (com, aux) < FakeCom(pk, tk, tag), stores the triple
(com, tag, aux), returns com.

* On input (decommit, com, Msg): if a tuple (com, tag, aux) was previously stored, it
computes dec <— FakeOpen(aux, tk, tag, com, Msg), adds tag in Q and returns dec.
Otherwise, Oy, i returns L.

While our SSTC to group elements will be proved secure in the above sense, a non-
adaptive flavor of simulation-sound binding security is sufficient for the construction of
non-malleable commitments. Indeed, Gennaro used [[118] such a relaxed notion to achieve
non-malleability from similar-looking multi-trapdoor commitments. In the non-adaptive
notion, the adversary has to choose the set of tags tagy, ..., tag, for which it wants to query
the Oy px oracle before seeing the public key pk.

3.3.1 Template of Linearly Homomorphic SPS Scheme

We first remark that any constant-size linearly homomorphic structure-preserving signature
necessarily complies with the template below. Indeed, in order to have a linear homomor-
phism, each verification equation necessarily computes a product of pairings which should
equal 1g, in a valid signature. In each pairing of the product, one of the arguments must
be a message or signature component while the second argument is either part of the public
key or an encoding of the file identifier.

For simplicity, the template is described in terms of symmetric pairings but generaliza-
tions to asymmetric configurations are possible.

Keygen(A,n): given A and the dimension n € IN of the vectors to be signed, choose con-
stants n;,n,, m. Among these, n, and n, will determine the signature length while
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.....

-----

while sk consists of information about the representation of public elements w.r.t. spe-
cific bases.

Sign(sk, T, (My,...,M,)): Outputsatuplec = (Zy,...,Zy,, V4,..., V,,) € G=1",

SignDerive(pk, T, { (w;, o)) }¢_,): parseseach o) as (ZY), ey Z,(fz), Vl(i), ey V,S?) and com
putes

ne{l,... n},ve{l,... ny}.

After a possible extra re-randomization step, it outputs (Zl, oL, V1,00, an).

Verify(pk, o, T, (My,..., My)): given a signature 0 = (Z1,...,Z,,V1,...,Vy,) € G"=1", a
tag T and (M, ..., M,), return 0 if (My,...,M,) = (1g,...,1g). Otherwise, do the
following.

1. Foreach j € {1,...,m} and v € {1,...,n,}, compute one—to—onq'i‘-] encodings
T, € G of the tag T as a group element.

2. Return 1if and only if ¢; = 1g, for j = 1 to m, where
1z Ny n
¢ = [leFuzZy)-11eT Vo) T1e(Gji Mi) je{1,...,m}. (35)
u=1 v=1 i=1

In the following, we say that a linearly homomorphic SPS is regular if, for each file iden-
tifier T, any non-trivial vector (M, ..., M,) # (1g, ..., 1g) has a valid signature.

3.3.2 Construction of Simulation-Sound Structure-Preserving Trapdoor Commit-
ments

Let IT5PS = (Keygen, Sign, SignDerive, Verify) be a linearly homomorphic SPS. We construct a
simulation-sound trapdoor commitment as follows.

SSTC.Setup(A, n): given the desired dimension n € IN of committed vectors, choose public
parameters pp for the linearly homomorphic SPS scheme. Then, run IT5P°.Keygen (A, n)
constants 1, 1,,m, and a sk. The cor/;l.,mitment key is pk = pk and the trapdoor tk
consists of sk. Note that the public key defines a signature space G"=", for constants
n, and ny.

4This condition can be relaxed to have collision-resistant deterministic encodings. Here, we assume injectivity
for simplicity.
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SSTC.Com(pk, tag, (M, ..., M,)): to commit to (My,..., M,) € G" with respect to the

tag tag = T, choose (Z1,...,Zy,, V1,..., Vu,) & Gt in the signature space. Then,
run step 1 of the verification algorithm and evaluate the right-hand-side member of

(3.5). Namely, compute

1z Ny n
C]' = H e(F]‘,‘u,Zy) . HE(T]',V, Vv) . HE(G]',Z‘, Mi) ] c {1, - ,m} (36)
],[:1 v=1 1

i=

where {T;,},, form an injective encoding of tag = T as a set of group elements. The
commitment string is defined to be com = (cy,...,c,) whereas the decommitment
consists of dec = (Z1,...,Zy,, V4,..., V).

SSTC.FakeCom(pk, tk, tag): proceeds like SSTC.Com with (Mj, ..., M,) &gt (com, dec)
denotes the resulting pair, the algorithm outputs com = cdm and the auxiliary infor-
mation aux, which consists of the pair aux = ((My,...,M,), déc) for tag = .

SSTC.FakeOpen(aux, tk, tag, com, (M, ..., M,)): the algorithm parses com as (¢1,...,Cm)
and aux as ((]\7[1, e M), (24, 20,V an)). It first generates a homomorphic
signature on (M / Mi,...,M,/ Mn) for the tag tag = 7. Namely, using tk = sk, com-
pute o’ = (Z3,...,2Z, ,Vi,..., V) + IT5PS Sign (sk, T, (My/M,, ... ,Mn/Mn)). Since
o’ is a valid signature and aux = ((Ml, e, Mn), (Z4,..., an, Vi,..., an)) satisfies

n

1, 1y
C~j = HE(F]',H,Zy) 'H@(lev, Vv) 'He(Gj,i/Mi) ] € {1,...,7’}1}, (37)
u=1 =1 i=1

the algorithm can run (Z1,..., 2., V1,..., V) < SignDerive(pk, T, {(1,0"),(1,6)}),

where & = (Z4,..., an, Vi, ..., an), and output dec = (Z4,...,Z,., V1,...,Vy,) which
is a valid de-commitment to the vector (M, ..., M, ) with respect to tag = 7.

SSTC.Verify(pk, tag, (M, ..., M,),com,dec): parse com as (c1,...,¢n) € GJ and the de-
commitment dec as (Zl, coisZn, V1, e, an) € G"™" (if these values do not parse

properly, return 0). Then, compute a one-to-one encoding {7, };, of tag = T. Return
1 if relations (3.6) hold and 0 otherwise.

In the full version of [177], we generalize the above construction so as to build simulation-
sound trapdoor commitment to vectors from any linearly homomorphic signature that fits a
certain template. This template captures essentially all known pairing-based constructions,
including LHSPS schemes. As a result, we obtain a modular construction of constant-size
non-malleable commitment to vectors which preserves the feasibility of efficiently proving
properties about committed values. In particular, our generalized construction can be instan-
tiated using the CDH-based (non-structure-preserving) linearly homomorphic signature of
Attrapadung, Libert and Peters [25]. Unlike the CDH-based simulation-sound commitment
of Fujisaki [114], our realization is non-interactive and allows committing to vectors with
a constant-size commitment string. Unlike the solution consisting in committing to a short
string obtained by hashing the vector, our solution allows the sender to prove properties
(using X protocols or Groth-Sahai proofs) about committed vectors in an efficient way:.

For vectors of dimension n = 1, we obtain a simplification of existing multi-trapdoor (or
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identity-based) trapdoor commitments [100} 214] based on Waters signatures. Our general-
ized construction of simulation-sound commitments [177] can also be instantiated under the
Strong Diffie-Hellman assumption using the homomorphic signature of Catalano et al. [78].
For vectors of dimension 1, the obtained non-malleable commitment is a variant of the one
of [118} Section 4.2].

Theorem 6 ([177]). Assuming that the underlying linearly homomorphic SPS is regular and
secure against non-independent Type I adversaries, the above construction is a simulation-
sound trapdoor commitment to group elements.

A standard technique (see, e.g., [116,[118]) to build a re-usable and non-interactive non-
malleable commitment (assuming a CRS) from a SSTC scheme is as follows. To commit
to Msg, the sender generates a key-pair (VK, SK) for a one-time signature and generates
(com,dec) < SSTC.Commit(pk, VK, MSg) using VK as a tag. The non-malleable commit-
ment string is the pair (com, VK) and the opening is given by (dec, o), where ¢ is a one-time
signature on com, so that the receiver additionally checks the validity of ¢. This construc-
tion is known to provide independence [93, 121] and thus non-malleability with respect to
opening, as proved in [93, 121]].

In our setting, we cannot compute ¢ as a signature of com, as it consists of Gt elements.
However, we can rather sign the pair (Msg, dec) —whose components live in G — as long
as it uniquely determines com. To this end, we can use the one-time structure-preserving
of [6, Appendix C.1] since it allows signing messages of arbitrary length using a constant-
size one-time public key. Like our scheme of Section it relies on the SDP assumption
and thus yields a non-malleable commitment based on this sole assumption. Alternatively,
we can move 0 in the commitment string (which thus consists of (com, VK, ¢)), in which
case the one-time signature does not need to be structure-preserving but it has to be strongly
unforgeable (as can be observed from the definition of independent commitments [93]]) while
the standard notion of unforgeability suffices in the former case.

3.4 (Constant-Size) Simulation-Sound Quasi-Adaptive NIZK Ar-
guments from LHSPS Schemes

Earlier sections showed that structure-preserving signatures with additive homomorphic
properties have unexpected applications in the design of non-malleable structure-preserving
commitments. In this section, we extend their range of applications and demonstrate that
they can surprisingly be used (albeit non-generically) in the design of simulation-sound
quasi-adaptive NIZK (QA-NIZK) proofs and chosen-ciphertext-secure cryptosystems.

Concretely, our one-time LHSPS scheme of Section already allows showing mem-
bership of a t x n linear subspace (of rank ¢ < n) using only 3 group elements under the
SDP assumption. Moreover, we show how to extend this construction to get unbounded
simulation-soundness while retaining constant-size proofs. The length of a proof does not
depend on the number of equations or the number of variables, but only on the underly-
ing assumption. Like those of [151], our proofs are computationally sound under standard
assumptions. Somewhat surprisingly, they are even asymptotically shorter than random-
oracle-based proofs derived from X-protocols.

Under the DLIN assumption, we obtain QA-NIZK arguments consisting of 15 group el-
ements and a one-time signature with its verification key. As it turns out, it is also the first
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unbounded simulation-sound proof system that does not involve quadratic pairing prod-
uct equations or a CCA2-secure encryption scheme. Efficiency comparisons show that we
only need 20 group elements per proof where the best USS extension [62] of Groth-Sahai
costs 6t + 2n + 52 group elements. Under the k-linear assumption, the proof length becomes
O(k?) and thus avoids any dependency on the subspace dimension.

For applications, like CCA2 security [208}231], where only one-time simulation-soundness
is needed, we further optimize our proof system and obtain a relatively simulation-sound
QA-NIZK proof system, as defined in [150], with constant-size proofs. Under the DLIN as-
sumption (resp. the k-linear assumption), we achieve relative simulation-soundness with
only 4 (resp. k + 2) group elements!

As the first application of USS proofs, we construct a chosen-ciphertext-secure keyed-
homomorphic encryption scheme with threshold decryption. Keyed-homomorphic encryp-
tion is a primitive, suggested by Emura et al. [104], where homomorphic ciphertext ma-
nipulations are only possible to a party holding a devoted evaluation key SKj which, by
itself, does not enable decryption. The scheme should provide IND-CCA2 security when
the evaluation key is unavailable to the adversary and remain IND-CCA1 secure when SKj,
is exposed. Other approaches to reconcile homomorphism and non-malleability were taken
in [221), 222, 223,51, 83] but they inevitably satisfy weaker security notions than adaptive
chosen-ciphertext security [226]]. The results of [104] showed that CCA2-security does not
rule out homomorphicity when the capability to compute over encrypted data is restricted.

Emura et al. [104] gave realizations of CCA2-secure keyed-homomorphic schemes based
on hash proof systems [90]. However, these do not readily enable threshold decryption —
as would be desirable in voting protocols — since valid ciphertexts are not publicly recog-
nizable, which makes it harder to prove CCA security in the threshold setting. Moreover,
these solutions are not known to satisfy the strongest security definition of [104]. The rea-
son is that this definition seemingly requires a form of unbounded simulation-soundness.
Our QA-NIZK proofs fulfill this requirement and provide an efficient CCA2-secure thresh-
old keyed-homomorphic system where ciphertexts are 65% shorter than in instantiations of
the same high-level idea using previous simulation-sound proofs.

Using our relatively simulation-sound QA-NIZK proofs, we then build adaptively secure
non-interactive threshold cryptosystems with CCA2 security and improved efficiency. The
constructions of Libert and Yung [191] were improved by Escala et al. [105]. So far, the most
efficient solution is obtained from the Jutla-Roy results [150, [151] via relatively sound proofs
[150]. Using our relatively sound QA-NIZK proof system, we shorten ciphertexts by ®(k)
elements under the k-linear assumption.

3.4.1 Construction with Unbounded Simulation-Soundness

In the following, vectors are considered as row vectors. If A € Z;X” is a matrix, we denote
by ¢* € G the matrix obtained by exponentiating ¢ using the entries of A.

We consider public parameters I' = (G, Gr, §) consisting of bilinear groups (G, Gr) with
a generator ¢ € G. Like [151], we will consider languages £, = {¢** € G" | x € Z}} that
are parametrized by p = ¢ € G'*", where A € ZQX" isat x n matrix of rank t < n.

As in [151], we assume that the distribution Dr is efficiently samplable: there exists a PPT
algorithm which outputs a pair (p, A) describing a relation R, and its associated language
L, according to Dr. One example of such a distribution is obtained by picking a uniform

matrix A & Z;,X " — which has full rank with overwhelming probability —and setting p = g”.
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Our construction builds on the homomorphic signature recalled in Section Specif-
ically, the language-dependent CRS 3 contains one-time linearly homomorphic signatures
on the rows of the matrix p € G"*". For each vector v € L, the prover can use the witness
X € Z; to derive and prove knowledge of a one-time homomorphic signature (z,7,u) on v.
This signature (z,r,u) is already a QA-NIZK proof of membership but it does not provide
simulation-soundness. To acquire this property, we follow [196] and generate a NIWI proof
of knowledge of (z,r,u) for a Groth-Sahai CRS that depends on the verification key of an
ordinary one-time signature. The latter’s private key is used to sign the NIWI proof so as
to prevent unwanted proof manipulations. Using the private key of the homomorphic one-
time signature as a trapdoor, the simulator is also able to create proofs for vectors v & L,.
Due to the use of perfectly NIWI proofs, these fake proofs do not leak any more information
about the simulation key than the CRS does. At the same time, the CRS can be prepared
so that, with non-negligible probability, it becomes perfectly binding on an adversarially-
generated proof, which allows extracting a non-trivial signature on a vector v ¢ L.

Like [151], our QA-NIZK proof system (Ko, Ky, P, V) is a split CRS construction in that
K; can be divided into two algorithms (Kj9, K11). The first one Kjy outputs some state in-
formation s and a first CRS CRS; which is only used by the verifier and does not depend on
the language £,. The second part K1; of IK; inputs the state information s and the output of
I' of Ko and outputs CRS; which is only used by the prover.

Ko(A): choose symmetric bilinear groups (G, Gr) of prime order p > 2! with ¢ & G. Then,
outputI' = (G,Gr, g)

The dimensions (t, 1) of the matrix A € Z;X” can be either fixed or part of the language, so
that t, n can be given as input to the CRS generation algorithm Kj.

txn
1<i<t, 1<j<n cG :

P )

1. Generate a key pair (pkjys, Skisps) for the randomizable LHSPS of Section to
sign vectors of G". Namely, choose g, g, hz, hy <i G and do the following.

K1(T,p): parseI'as (G,Gr, g) and p as a matrix p = (G; )

a. Fori = 1ton, pick xi, vi, 6i & Z, and compute g; = ;% ¢, " and h; = hXih, o
b. Generate L + 1 Groth-Sahai common reference strings, for some L € poly(A).
To this end, choose f1, f> & G and define the vectors fi = (f1,1,9) € G,
f, = (1, f2,¢) € G>. Then, pick f3; & Gfori=0tolL.
Let skysps = {(Xi, Vi, 0i) }/_; be the private key and the matching public key is

pkhsps = (gZ/ ry hZ/ hu/ {(gi/ hz) ?:1/ f= (fl, f2/ {f3,i}iL:0) )

2. Use skysps to generate one-time linearly homomorphic signatures {(z;, r;, u;) }i_,
on the vectors (Gjy, ..., Giy) € G" that form the rows of p. These are obtained as

n n n
—. . 75 .
(zi,riyu;) = (HGZ-,]»X’, HGZ-’]-%, qGi'j]) Vie{l,...,t}.
j= j= j=

3. Choose a strongly unforgeable one-time signature £ = (G, S, V) with verification
keys consisting of L-bit strings.
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4. The CRS ¢ = (CRS;, CRS;) consists of two parts which are defined as

CRSl — (Pr pkhsps/ {(Zi/ i, ui)}f:l/ Z)/ CRSZ = <pkhsps/ Z)/
while the simulation trapdoor Ty, is sksps = { (Xi, i, 0i) } 11

P(T,¥,v,x,1bl): given a vector v € G" and a witness x = (x1,...,%;) € Z; such that v =
g¥A, generate a one-time signature key pair (VK, SK) < G(A) and do the following.

1. Using {(zj, ri, uj)}jf-:l, derive a one-time linearly homomorphic signature (z, 7, u)
on v. Namely, compute z = []}_; z/", r = [T/_ 7 and u = [T}_ u}".

2. Using VK = VK]1]...VK[L] € {0,1}}, define the vector fyx = f30 -1, f3\§K[i]

and assemble a Groth-Sahai CRS fyx = (fi, f2, fuk). Using fyk, generate com-
mitments C;, C,, C, to the components of (z,r,u) € G* along with NIWI proofs
(7t1, 7T2) that v and (z,r,u) satisfy . Let (C;, C,,C,, 7t1, m2) € G be the
resulting commitments and proofs.

3. Generate 0 = S(SK, (v, C;, C;, Cy, 7r1, 712, Ibl)) and output
= (VK,C,,C,,C,, 71, 712,0) (3.8)

V(T, 9, v, 7, Ibl): parse 7t as per (3.8) and v as (vy,...,v,) € G". Return 1 if and only if

(l) V(VKI (V/ CZ/ Cr, CM/ T[l/ 7T2/ |b|)’ 0-) = 1’

(i) (C;, Cy, Cy, 1, 7r2) forms a valid NIWI proof for the CRS fyx = (fi, f2, fvk), so
that r1 = (71'1,1, 1,2, 7T1,3> and 7T, = (7'[2,1, 7,2, 7'[2/3) satisfy

n
TTE(si (16,1@,01‘))_1 = E(g:,C.)-E(gC) - E(ma, f1) - E(m1,£2) - E(t13, fuk)
i=1

n
TTE (16116,01‘))71 = E(h;,C)-E(h,Cy) - E(m1,£1) - E(722, £2) - E(712,3, fuk).
i=1

To simulate a proof for a given vector v € G", the simulator uses T, = skysps to generate a
fresh one-time homomorphic signature on v € G" and proceeds as in steps 2-3 of P.

The proof 7 only consists of 15 group elements and a one-time pair (VK, o). Remark-
ably, its length does not depend on the number of equations n or the number of variables
t. In comparison, Groth-Sahai proofs already require 3t + 2n group elements in their basic
form and become even more expensive when it comes to achieve unbounded simulation-
soundness. The Jutla-Roy techniques [151] reduce the proof length to 2(n — t) elements —
which only competes with our proofs when t ~ n — but it is unclear how to extend them
to get unbounded simulation-soundness without affecting their efficiency. Our CRS consists
of O(t 4+ n + L) group elements against O(t(n — t)) in [151]]. More detailed comparisons are
given in Section [3.4.3|between proof systems based on the DLIN assumption.

Interestingly, the above scheme even outperforms Fiat-Shamir-like proofs derived from
Y-protocols which would give O(t)-size proofs here. The construction readily extends to
rely on the k-linear assumption for k > 2. In this case, the proof comprises (k + 1)(2k + 1)
elements and its size thus only depends on k, as detailed in the full version of [178]].
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Moreover, the verification algorithm only involves linear pairing product equations whereas
all known unbounded simulation-sound extensions of Groth-Sahai proofs require either
quadratic equations or a linearization step involving extra variables.

We finally remark that, if we give up the simulation-soundness property, the proof length
drops to k + 1 group elements under the k-linear assumption.

Theorem 7 ([178]). The scheme is an unbounded simulation-sound QA-NIZK proof system
if the DLIN assumption holds in G and . is strongly unforgeable.

The above construction is not tightly secure as the gap between the simulation-soundness
adversary’s advantage and the probability to break the DLIN assumption depends on the
number of simulated proofs obtained by the adversary. For applications like tight CCA2
security [142], it would be interesting to modify the proof system to obtain tight security.

3.4.2 Construction with (Single-Theorem) Relative Soundness

In applications where single-theorem relatively sound NIZK proofs suffice, we can further
improve the efficiency. Under the k-linear assumption, the proof length reduces from O(k?)
elements to O(k) elements. Under the DLIN assumption, each proof fits within 4 elements
and only costs 21 + 6 pairings to verify. In comparison, the verifier needs 2(n — t)(t + 2)
pairing evaluations in [151].

As in [150], we achieve relative soundness using smooth projective hash functions [90].
To this end, we need to encode the matrix p € G'*" as a 2t X (2n + 1) matrix.

Ko(A): choose symmetric bilinear groups (G, Gr) of prime order p > 2* with g & G. Then,
outputI' = (G, Gr, ).

Again, the dimensions of A € Z;X” can be either fixed or part of £, so that t, n can be given
as input to the CRS generation algorithm Kj.

K;(T,p): parse I as (G,Gr,g) and p as p = (Gjj) € G and do the following.

1<i<t, 1<j<n

b >

1. Choose two n-vectors d = (dy,...,dy) & Zg and e = (e1,...,ey) & ZZ in order
to define W = (Wy,...,W;) = ¢*4 e G'and Y = (Y3,...,Y;) = g*° e G
These will be used to define a projective hash function.

2. Generate a key pair (pk,ys, skots) for the one-time linearly homomorphic signature
of Section in order to sign vectors in G***. Let the public key be

pkots = ((G/ GT)/gZ/gr/ hZ/ hu/ {(gi/ hl)}?ng)

and let skots = { (X1, Vi, 61) }Zzﬁfl be the corresponding private key.
3. Use skos to generate one-time homomorphic signatures {(z;, 7;, u;) }2* ; on the vec-
tors below, which are obtained from the rows of the matrix p = (Gi i)1<i .
’ i<t, 1<j<n

Il l VAN )

Hy,,_1 = (Gi,lr---/Gi,n/Yirlr ,1)€G2n+1 iE{l,...,t}
H2i = (1, ,1,Wi,Gi,1,...,Gi,n)EGzn+1

4. Choose a collision-resistant hash function H : {0,1}* — Z,.



3.4 (Constant-Size) Simulation-Sound Quasi-Adaptive NIZK Arguments from LHSPS
Schemes 77

5. The CRS ¢ consists of a first part CRS; that is only used by the prover and a
second part CRS; which is only used by the verifier. These are defined as

CRS; = (p, pkoer W, Y, {(zi1, 15 u1) Y2, H) CRS, = (pkots, W, Y, H)

The simulation trapdoor T, is skt and the private verification trapdoor consists
of o, = {d, e}.

P(T, 9, v, x,Ibl): given a candidate vector v € G", a witness x = (x1,...,x;) € Z; such that
v = ¢¥* and a label Ibl, compute « = H(p, v,Ibl) € Z,. Using {(z;,r;, u;)}?,, derive
a one-time homomorphic signature (z,7,u) on ¥ = (01, ey Un, T, U, ., v,";) € G+l
where 79 = [T/_; (W*Y;). Namely, compute and output 77 = (z,7,u, 79) € G*, where

t t t t

z=[1(z2i1-25)"%,  r=]1(r2i1-13)"%,  w=]](ui1-u3)", mo=]T(W'Y;)"

i=1 i=1 i=1 i=1

V(T, 4, v, 7t,Ibl): parse the vector vas (vy,...,v,) € G"and mas (z,1,u, 79) € G* Compute
a = H(p, v, Ibl) and return 1 if and only if the triple (z,r, u) is a valid signature on the
vector V = (vy,...,0,, M, 0%,...,05) € G2l Namely, it should satisfy the equalities

n

lg;, = e(gz2) e(grr) [e(gi &lini1,vi) - e(Qui1, 7o) (3.9)

i=1

lg; = e(hz z) - e(hu,u) ‘He(hi 'hf‘+n+1/Uz’) -e(hyy1, 700).
i=1

W(T, ¢, T, v, ,1bl): given a vector v = (vy,...,v,) € G", parse 7 as (z,r,u,my) € G*
and T, as {d, e}, withd = (dy,...,d,) € Zjand e = (e1,...,en) € Z;,. Compute

a« = H(p,v,Ibl) € Z, and return 0 if the public verification test V fails. Otherwise,

. ei+ad; .
return 1 if 71y = H7:1 v ].’ ’and 0 otherwise.

We note that, while the proving algorithm is deterministic, each statement has many valid
proofs. However, finding two valid proofs for the same statement is computationally hard,
as we proved in [178].

The scheme readily extends to rest on the k-linear assumption with k > 2. In this case,
the proof requires k + 2 group elements — whereas combining the techniques of [150, [151]
demands k(n + 1 — t) elements per proof — and a CRS of size O(k(n +t)). Subsequently to
our work [178], Jutla and Roy [153] and Abdalla, Ben Hamouda and Pointcheval [1] gave
different constructions of one-time relatively-sound or simulation-sound QA-NIZK proofs
made of only 3 group elements under the DLIN assumption.

Theorem 8 ([178]). The above proof system is a relatively sound QA-NIZK proof system if
the SDP assumption holds in (G, Gr) and if H is a collision-resistant hash function.

As an application, we showed in the full version of [178] how the DLIN-based version
[235] of the Cramer-Shoup cryptosystem [88] 90] can be made publicly verifiable (mean-
ing that well-formed ciphertext are recognizable given only the public key) by introducing
only three group elements in the ciphertext. In the threshold setting, the resulting system
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can be distributed — without interaction during the decryption process — and proved secure
against adaptive corruptions. As a result, we obtained [178] a new adaptively secure CCA2-
secure non-interactive threshold cryptosystem based on the DLIN assumption with cipher-
texts comprised of only 8 group elements. In comparison with the best previous variants
[150, [151] of Cramer-Shoup with publicly verifiable ciphertexts, we thus spare one group
element per ciphertext. If we compare our construction [178, Appendix I] with the first
adaptively secure non-interactive threshold version of Cramer-Shoup [189], we shorten ci-
phertexts by 60%. The recent results of Jutla and Roy [153] yield further optimizations, which
allow for ciphertexts made of 7 group elements under the DLIN assumptions (and even 5
group elements under the SXDH assumption).

Under the k-linear assumption, the scheme provides ciphertexts that are @ (k) group ele-
ments shorter than in previous such constructions.

3.4.3 Comparisons

This section compares the various NIZK proofs of linear subspace membership based on the
DLIN assumption. Comparisons are given in terms of CRS size, proof size and the number
of pairing evaluations for the verifier.

In the table, we consider our basic proof system (without any form of simulation-soundness,
where each proof is a one-time linearly homomorphic signature (z,r, 1)), its unbounded
simulation-sound variant and the relatively simulation-sound variant of Section We
compare these with the original Groth-Sahai proofs, their most efficient unbounded simulation-
sound extensions due to Camenisch et al. [62] and the Jutla-Roy techniques [151} [153] with
and without relative soundness.

Table 3.1: Comparison between proof systems for linear subspaces

Proof systems CRS size® * Proof length? # of pairings’
at verification
Groth-Sahai [138] 6 3t +2n 3n(t+3)
Jutla-Roy [151] 4t(n—1t)+3 2(n—1t) 2(n-t)(t+2)
Jutla-Roy RSS [151] + [150] 4tn+1-1t)+3 2n+1—-t)+1 2n+1-t)(t+2)
Groth-Sahai USS [62] 18 6t + 2n + 52% O(tn)
Our basic QA-NIZK proofs 2n+3t+4 3 2n+4
Our RSS QA-NIZK proofs dn+8t+6 4 2n+6
Our USS QA-NIZK proofs 2n+3t+3L+10 20% 2n + 30
Jutla-Roy [153] O(t+n) 2 2n +4
Jutla-Roy RSS [151] + [153] O(t+n) 3 2n+4
Abdalla et al., one-time SS [1]] O(t+n) 3 2n+4
n: number of equations; t: number of variables; L: length of a hashed one-time verification key

< These sizes are measured in terms of number of group elements.

* The description p € G'*" of the language is not counted as being part of the CRS here.

t The table does not consider optimizations using randomized batch verification techniques here.

T We consider instantiations using Groth’s one-time signature [133], where verification keys and signatures consist
of 3 group elements and two elements of Z,, respectively.
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As can be observed in the table, our constructions all yield constant-size arguments.
Moreover, the number of pairing evaluations is always independent of the number of vari-
ables t, which substantially fastens the verification process when t ~ n/2. The last three
rows of the table consider the results that were subsequent to ours, including the impli-
cations of the techniques of Jutla and Roy [153] who independently proposed a different
construction of constant-size QA-NIZK proofs of linear subspace membership. While their
construction of [153] does not provide simulation-soundness, it can be combined with ear-
lier results [150] so as to obtain a (one-time) relatively sound proof system with only 3 group
elements per proof. It is unclear how to extend it into an unbounded simulation-sound proof
system and the same holds for the construction of [1]].

We also note that randomized batch verification techniques can be used to drastically
reduce the number of pairing computations. In our USS system, for example, the number of
pairings drops to n 4 18 if the two verification equations are processed together and further
optimizations are possible.

Our common reference strings always fit within O(t 4 n) group elements (with another
O(L) elements in the USS variant) and thus provide significant savings w.r.t. [151] when

~n/2.

3.5 Conclusion

We gave new and somewhat unexpected applications of structure-preserving signatures in
the construction of non-malleable cryptographic primitives like non-interactive non-malleable
commitments, simulation-sound QA-NIZK proofs and chosen-ciphertext-secure public-key
encryption. Paradoxically, these applications were made possible by first rendering structure-
preserving signatures homomorphic (and thus malleable).

Beyond their applications to non-malleability, our LHSPS primitive is powerful enough
to provide very simple realizations of constant-size QA-NIZK proofs of linear subspace
membership. In fact, it is not hard to see that any one-time LHSPS system can be generically
used to build such a QA-NIZK proof system. Moreover, the specific algebraic properties of
our constructions made it possible to tweak them so as to obtain unbounded simulation-
soundness without sacrificing the constant proof size. Via the technique of Malkin et al.
[196], it is actually possible to combine the Groth-Sahai NIZK proofs with any LHSPS sys-
tems so as to build an USS QA-NIZK argument of subspace membership: the QA-NIZK
proof can consist of a NIZK proof of knowledge of a linearly homomorphic signature. How-
ever, due to the use of Groth-Sahai NIZK proofs for pairing product equations, the resulting
QA-NIZK proofs would not necessarily be of constant size. The constant proof length of our
construction stems from the specific structure of the scheme which, via suitable information
theoretic arguments in the security proof, allows us to only require NIWI (rather than NIZK)
proofs of knowledge for pairing product equations.

Our constant-size QA-NIZK arguments recently allowed us [175] to improve upon the
results of Chen and Wee [86], who gave signature schemes with almost tight security — mean-
ing that the security loss only depends on the security parameter and not on the number of
signing queries made by the adversary —under the K-linear assumption. Under the DLIN as-
sumption, our construction allows reducing the signature length from 8 to 6 group elements.
Our signature scheme [175] crucially relies on the fact that the size of proofs does not depend
of the dimension of the considered subspace. It can be generalized to use any QA-NIZK ar-



Chapter 3. Constructions of Non-Malleable Primitives from Structure-Preserving
80 Cryptography

gument of linear subspace membership. Hence, if the improved Jutla-Roy construction [153]
is plugged into the high-level construction of [175]], the signature length reduces to 5 group
elements under the DLIN assumption and 3 elements under the SXDH assumption. The
QA-NIZK proofs of [153] thus provide our construction with as short signatures as those of
Blazy, Kiltz and Pan [36] with the benefit of shorter private keys.

Finally, together with Marc Joye and Moti Yung [174], we used our LHSPS systems to
design (albeit in a non-generic manner) fully distributed non-interactive adaptively secure
threshold signatures with round-optimal key generation. We expect our LHSPS primitive
to find other applications in the future. For example, Catalano, Marcedone and Puglisi [79]
recently used them to devise linearly homomorphic signatures which can operate in on-
line/offline mode [106], by allowing expensive public-key operations to take place before
the data to be signed is available.



Conclusion and Perspectives

Summary of Results

This manuscript highlighted the importance of structure-preserving cryptographic primi-
tives and pairing-based non-interactive proof systems. Several applications were described
with a focus on privacy-enhancing cryptographic techniques, like group encryption and
group signatures, and non-malleable non-interactive primitives which include non-malleable
commitments, simulation-sound QA-NIZK arguments of linear subspace membership and
CCA2-secure encryption schemes.

Our contributions in the context of anonymity-related cryptography included the first ef-
ficient realization of the structure-preserving signature primitive suggested for the first time
by Groth [133] in 2006. As an application of the more efficient SPS schemes proposed by Abe
et al. [6,4], we gave a novel and efficient solution to the venerable problem of conveniently
revoking users in group signatures. Our most efficient revocable group signature [179] suit-
ably combines structure-preserving signatures with other ingredients like the NNL Subset
Cover [205] framework for broadcast encryption and the concise vector commitment scheme
proposed by Moti Yung and myself in 2010 [188].

Surprisingly, the applications of structure-preserving signatures to non-malleability were
made possible by first tweaking certain existing SPS schemes [6] so as to obtain linearly
homomorphic (and thus malleable) structure-preserving signatures. Our construction of
non-interactive non-malleable commitment to group elements is completely generic and can
be based on any LHSPS realization. In their basic version (i.e., without the simulation-
soundness property), our QA-NIZK arguments can also generically rely on any LHSPS
scheme. In order to achieve unbounded simulation-soundness, our construction is no longer
generic since its security proof relies on information-theoretic arguments which are specific
to our concrete homomorphic LHSPS system.

Our results showed that structure-preserving signatures with homomorphic properties
are a powerful primitive with unexpected applications. In a recent result [175], we also used
them to design a more efficient variant of the Chen-Wee [86] signatures with a nearly tight
security proof under the DLIN assumption (a similar result was independently obtained by
Blazy et al. [36]). By applying techniques suggested in [192, 133, 3], we also obtained a more
efficient construction of CCA2-secure public-key encryption scheme in the multi-challenge,
multi-user settingﬂ [30, 142]. In comparison with the best known construction with tight

5As shown in [30], the multi-user, multi-challenge CCA2 security of a cryptosystem is implied by its secu-
rity in the single-user, single-challenge setting. However, the reduction is linearly affected by the number of
users and the number of challenge ciphertexts per user. Tight multi-user, multi-challenge CCA2 security is thus
generally non-trivial to prove.
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multi-challenge CCA2 security [3], our technique reduces the ciphertext length from 398
to 69 group elements under the DLIN assumption. Together with Marc Joye and Moti Yung
[174], we further used our specific one-time LHSPS scheme of Section 3.2.1]to build fully dis-
tributed non-interactive adaptively secure threshold signatures. We provide two optimally-
resilient constructions — namely, one in the random oracle model and a slightly less efficient
one in the standard model — with a one-round distributed key generation protocol in the
erasure-free setting (meaning that the servers are not assumed to reliably erase all interme-
diate computation results in order to ensure security). To our knowledge, our constructions
are the first non-interactive adaptively secure threshold signatures to simultaneously feature
all these useful properties.

Directions for Future Work

Attribute-Based Encryption from QA-NIZK Proofs

We believe that other applications of linearly homomorphic structure-preserving signatures
have not been explored yet. For example, they allowed us devise an ordinary digital signa-
ture scheme with a nearly tight reduction from a simple assumption in the standard model
[175]. While, at first glance, this signature scheme appears amenable to constructing an
identity-based encryption system (via the standard technique, notably used in [36], of ran-
domizing the verification algorithm), we did not manage to formally prove it. In fact, while
Jutla and Roy managed to construct a fully secure IBE system from their QA-NIZK argu-
ments [151, Appendix H] via the dual system paradigm [249], we have not been able to
build an IBE from our LHSPS schemes yet. One of my future objectives will be to fill this
gap and further extend the realm of applications of the LHSPS primitive.

More generally, it will be interesting to determine the exact extent to which QA-NIZK
proofs can be used to implement the dual system encryption paradigm [249, [171]]. Jutla and
Roy [151] used them in a non-generic way to build a very efficient IBE scheme with full
security (as opposed to selective security [40]) under the SXDH assumption in prime order
groups. Related results were obtained by Blazy et al. [36] via a more generic approach.
However, both articles [151} 36] focus on the (hierarchical) IBE setting and it is unclear how
to apply their techniques to get full security in attribute-based encryption [232}132]. One of
my upcoming goals will be to obtain a framework for building fully securdﬂ attribute-based
encryption schemes (in prime order groups) from QA-NIZK proofs by extending the dual
system encryption method [249] in the same way as in [169, 215]. Ideally, the new frame-
work should use QA-NIZK proofs so as to translate the techniques of Attrapadung [19]
from composite order groups to prime order groups. This should notably provide us with
fully secure unbounded attribute-based encryption systems for large universes [172] 228]
and online/offline efficiency in prime order groups. Finally, extensions of the framework
will be considered in order to use QA-NIZK proofs so as to build attribute-hiding functional
encryption schemes (like inner product encryption [154]. In summary, my hope is to use
QA-NIZK proofs in order to improve upon existing frameworks [170, 215} 87] for building
fully secure IBE and related primitives [50] in prime order groups.

6Full security, as opposed to selective security [40], refers to the strongest security notion where the aversary
can choose the attribute set of the challenge ciphertext in the challenge phase.
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Better Constructions of Functional Encryption from Different Assumptions

In recent years, a renewed attention has been paid to lattice-based cryptography. Break-
through results [122] showed how to safely implement efficient lattice-based signatures and
identity-based encryption. It is even possible [74} 9] to construct hierarchical identity-based
encryption (HIBE) schemes [123]. Despite certain improvements [10], currently available
lattice-based HIBE schemes still have ciphertexts and private keys whose lengths depend
on the depth of the hierarchy. The reason is that the latter always affects the dimension of
underlying lattices in a way or another. In contrast, the world of bilinear maps allows HIBE
schemes [43] with ciphertexts of constant size: their length only depends on the security pa-
rameter and not on the number of levels in the hierarchy or the depth of the receiver.

In the setting of an ongoing project on functional encryption, I am planning to investigate
whether the aforementioned overhead is inherent to lattice-based cryptography. Should the
answer be negative, I hope for a lattice-based analogue of [43] and aim at designing HIBE
schemes with constant-size ciphertexts. This achievement would notably imply lattice-based
forward-secure public-key encryption schemes with ciphertexts of constant (i.e, independent
of the number of time periods) size and also open the way to lattice-based broadcast encryp-
tion with short ciphertexts. This would solve yet another challenging open problem as, for
the time being, all broadcast encryption systems with short ciphertexts and private keys rely
on ad hoc assumptions. In particular, we do not have a realization based on the standard
learning-with-errors (LWE) assumption [227], let alone with adaptive security [124].

Another limitation of all known adaptively-secure lattice-based HIBE schemes [74} 9, [10]
is that hierarchies are restricted to have a constant and small number of levels: indeed, a
polynomial number of levels would translate into a non-polynomial reduction (and thus fail
to provide any security guarantee) as the security bound exponentially declines with the
number of levels. In order to sidestep the latter limitation, I thus hope to adapt suitable
techniques from pairing-based cryptography [249] in the setting of lattices and obtain HIBE
schemes supporting a polynomial number of levels with a polynomial reduction in their
security proof. Ideally, I would like to obtain a fully secure lattice-based HIBE scheme (in
the standard model) where the number of levels in the hierarchy does not need to be fixed
when the system is set up. While such HIBE systems exist under discrete-logarithm-related
assumptions [172], they remain elusive in the lattice world so far. It would also be interest-
ing to extend those results so as to obtain full security in generalizations of (H)IBE such as
attribute-based and functional encryption [50]. For the time being, we do not have a fully
secure attribute-based encryption scheme based on standard lattice assumptions.

Efficient QA-NIZK Proofs for Lattice Problems

The quasi-adaptive setting [151] made it possible to improve upon the efficiency of existing
NIZK proof systems in the standard model [151} [153| 178] for the specific language of linear
subspaces in vector spaces spanned by vectors of group elements. An interesting open ques-
tion is whether QA-NIZK proofs can be more efficiently obtained than regular NIZK proofs
for specific problems involving lattices.

For example, given a random matrix A € Z7*" defined over a prime modulus g and
where m = O(nlogg), it would be interesting to have QA-NIZK proofs for the LWE lan-
guage L = {v € Z' | v= A-s+e s € Z}, where e € Z" is a small-norm noise
vector. This problem can be seen as a “subspace closeness” problem rather than a subspace
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membership problem: instead of putting the entries of A and v in the exponent, one adds
a noise to the entries of v. Unfortunately, our techniques of building QA-NIZK proofs from
homomorphic signatures (described in Section do not seem to carry over here. In partic-
ular, it seems difficult to apply them to the Boneh-Freeman linearly homomorphic signatures
[47, 46]. The main difficulty is seemingly to guarantee the NIZK property while handling
vectors of integers rather than vectors of group elements.

Solving this problem would help fill important gaps in lattice-based cryptography since,
even in the random oracle model, efficient non-interactive zero-knowledge proof systems are
only available for specific languages [200} 194, [146, 193] [141] so far. In the standard model,
the best constructions we are aware of are those of Peikert and Vaikuntanathan [218], which
are not known to apply to the LWE language. In the future, I am thus hoping to take steps
towards filling this gap.
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Abstract. Group encryption (GE) schemes, introduced at Asiacrypt’07, are an encryption analogue of
group signatures with a number of interesting applications. They allow a sender to encrypt a message
(in the CCA2 security sense) for some member of a PKI group concealing that member’s identity (in
a CCA2 security sense, as well); the sender is able to convince a verifier that, among other things, the
ciphertext is valid and some anonymous certified group member will be able to decrypt the message.
As in group signatures, an opening authority has the power of pinning down the receiver’s identity. The
initial GE construction uses interactive proofs as part of the design (which can be made non-interactive
using the random oracle model) and the design of a fully non-interactive group encryption system is
still an open problem. In this paper, we give the first GE scheme, which is a pure encryption scheme
in the standard model, i.e., a scheme where the ciphertext is a single message and proofs are non-
interactive (and do not employ the random oracle heuristic). As a building block, we use a new public
key certification scheme which incurs the smallest amount of interaction, as well.

Keywords. Group encryption, anonymity, provable security.

1 Introduction

Group encryption (GE) schemes, introduced by Kiayias, Tsiounis and Yung [29], are the encryption
analogue of group signatures [16]. The latter primitives basically allow a group member to sign
messages in the name of a group without revealing his identity. In a similar spirit, GE systems aim
to hide the identity of a ciphertext’s recipient and still guarantee that he belongs to a population of
registered members in a group administered by a group manager (GM). A sender can generate an
anonymous encryption of some plaintext m intended for a receiver holding a public key that was
certified by the GM (message security and receiver anonymity being both in the CCA2 sense). The
ciphertext is prepared while leaving an opening authority (OA) the ability to “open” the ciphertext
(analogously to the opening operation in group signatures) and uncover the receiver’s name. At
the same time, the sender should be able to convince a verifier that (1) the ciphertext is a valid
encryption under the public key of some group member holding a valid certificate; (2) if necessary,
the opening authority will be able to find out who the receiver is; (3) (optionally) the plaintext is
a witness satisfying some public relation.

MOoOTIVATIONS. The GE primitive was motivated by various privacy applications such as anonymous
trusted third parties or oblivious retriever storage. Many cryptographic protocols such as fair ex-
change, fair encryption or escrow encryption, involve trusted third parties that remain offline most
of the time and are only involved to resolve problems. Group encryption allows one to verifiably
encrypt some message to such a trusted third party while hiding his identity among a set of possible

* This author’s research was supported by the Belgian Walloon Region project ALAWN (Programme Wist 2).
** This author acknowledges the Belgian National Fund for Scientific Research (F.R.S.-F.N.R.S.) for their financial
support.



trustees. For instance, a user can encrypt a key (e.g., in an “international key escrow system”) to
his own national trusted representative without letting the ciphertext reveal the latter’s identity,
which could leak information on the user’s citizenship. At the same time, everyone can be convinced
that the ciphertext is heading for an authorized trustee.

Group encryption also finds applications in ubiquitous computing, where anonymous credentials
must be transferred between peer devices belonging to the same group. Asynchronous transfers may
require to involve an untrusted storage server to temporarily store encrypted credentials. In such
a situation, GE schemes may be used to simultaneously guarantee that (1) the server retains prop-
erly encrypted valid credentials that it cannot read; (2) credentials have a legitimate anonymous
retriever; (3) if necessary, an authority will be able to determine who the retriever is.

By combining cascaded group encryptions using multiple trustees and according to a sequence
of identity discoveries and transfers, one can also implement group signatures where signers can
flexibly specify how a set of trustees should operate to open their signatures.

PrIOR WORKS. Kiayias, Tsiounis and Yung (KTY) [29] formalized the concept of group encryption
and provided a suitable security modeling. They presented a modular design of GE system and
proved that, beyond zero-knowledge proofs, anonymous public key encryption schemes with CCA2
security, digital signatures, and equivocal commitments are necessary to realize the primitive. They
also showed how to efficiently instantiate their general construction using Paillier’s cryptosystem
[35] (or, more precisely, a modification of the Camenisch-Shoup [13] variant of Paillier). While
efficient, their scheme is not a single message encryption, since it requires the sender to interact
with the verifier in a Y-protocol to convince him that the aforementioned properties are satisfied.
Interaction can be removed using the Fiat-Shamir paradigm [20] (and thus the random oracle model
[4]), but only heuristic arguments [22] (see also [14]) are then possible in terms of security.

Independently, Qin et al. [36] considered a closely related primitive with non-interactive proofs
and short ciphertexts. However, they avoid interaction by explicitly employing a random oracle
and also rely on strong interactive assumptions. As we can see, none of these schemes is a truly
non-interactive encryption scheme without the random oracle idealization.

OUR CONTRIBUTION. As already noted in various contexts such as anonymous credentials [2],
rounds of interaction are expensive and even impossible at times as, in some applications, proofs
should be verifiable by third parties that are not present when provers are available. In the setting of
group encryption, this last concern is even more constraining as it requires the sender, who may be
required to repeat proofs with many verifiers, to maintain a state and remember the random coins
that he uses to encrypt every single ciphertext. In the frequent situation where many encryptions
have to be generated using independent random coins, this becomes a definite bottleneck.

This paper solves the above problems and describes the first realization of group encryption
which is a fully non-interactive encryption scheme with CCA2-security and anonymity in the stan-
dard model. In our scheme, senders do not need to maintain a state: thanks to the Groth-Sahai [27]
non-interactive proof systems, the proof of a ciphertext can be generated once-and-for-all at the
same time as the ciphertext itself. Furthermore, using suitable parameters and for a comparable
security level, we can also shorten ciphertexts by a factor of 2 in comparison with the KTY scheme.
As far as communication goes, the size of proofs allows decreasing by more than 75% the number
of transmitted bits between the sender and the verifier.

Since our goal is to avoid interaction, we also design a joining protocol (i.e., a protocol whereby
the user effectively becomes a group member and gets his public key certified by the GM) which
requires the smallest amount of interaction: as in the Kiayias-Yung group signature [30], only two



messages have to be exchanged between the GM and the user and the latter need not to prove
anything about his public key. In particular, rewinding is not necessary in security proofs and the
join protocol can be safely executed in a concurrent environment, when many users want to register
at the same time. The join protocol uses a non-interactive public key certification scheme where
discrete-logarithm-type public keys can be signed as if they were ordinary messages (and without
knowing the matching private key) while leaving the ability to efficiently prove knowledge of the
certificate/public key using the Groth-Sahai techniques. To certify users without having to rewind®
in security proofs, the KTY scheme uses groups of hidden order (and more precisely, Camenisch-
Lysyanskaya signatures [12]). In public order groups, to the best of our knowledge, our construction
is the first certification method that does not require any form of proof of knowledge of private
keys. We believe it to be of independent interest as it can be used to construct group signatures
(in the standard model) where the joining mechanism tolerates concurrency in the model of [30]
without demanding more than two moves of interaction.

ORGANIZATION. In section 2, we describe the intractability assumptions that we need and recall
the KTY model of group encryption. Section 3 explains the building blocks of our construction and
notably describes our certification scheme. Our GE system is depicted in section 4.

2 Background

In the paper, when S is a set, © < S denotes the action of choosing z at random in S. By
a € poly(\), we mean that a is a polynomial in A while b € negl(\) says that b is a negligible
function of \. When a and b are two binary strings, a||b stands for their concatenation.

2.1 Complexity Assumptions

We use groups (G, Gr) of prime order p with an efficiently computable map e : G x G — G such
that e(g%, h®) = e(g, h)® for any (g,h) € G x G, a,b € Z and e(g, h) # 1g, whenever g, h # 1¢.

In this setting, we rely on an assumption introduced in [7] that allows constructing efficient
non-interactive proofs as pointed out in [27].

Definition 1. The Decision Linear Problem (DLIN) in G, is to distinguish the distribution
of linear tuples D1 = {(g,9% ¢, g%, g*¢, ¢°t¥)|a,b,c,d & Zy} from the distribution of random

tuples Dy = {(g,9% ¢°, 9%, g*%, g*)|a, b, ¢, d, z & Zy}. The Decision Linear Assumption is the
intractability of DLIN for any PPT algorithm D.

This problem amounts to deciding whether vectors gi = (¢%,1,9), g2 = (1, ¢, g) and g3 are linearly
dependent or not. We also consider a related computational problem which bears similarities with
simultaneous pairing problems [26, 25].

Definition 2. The Simultaneous Double Pairing problem (S2P) in G is, given a tuple of
elements (g1, 92, 91.¢,92.4) € G*, to find a non-trivial triple (u,v,w) € G*\{(1g, 1g, 1)} such that
e(g1,u) = e(g1,c,w) and e(g2,v) = e(ga,a, W)-

3 Although the simulator does not need to rewind proofs of knowledge in [29], users still have to interactively prove
the validity of their public key.



Like the simultaneous triple pairing assumption [25], the hardness of this problem is implied by the
DLIN assumption: given (g, g1, g2, 95, 9%, 1 L g¢*?) any algorithm that, on input of (g1, g2, g5, 93),
outputs a non-trivial (u, v, w) such that e(g1,u) = e(g§, w), e(g2,v) = e(gd, w) allows telling whether
n = g°T¢ by testing if e(g,u - v) = e(n, w) (since u = w® and v = w).

We also use the Hidden Strong Diffie-Hellman (HSDH) assumption introduced in [10] as a
strengthening of the Strong Diffie-Hellman assumption [6].

Definition 3. The (-Hidden Strong Diffie-Hellman problem (¢-HSDH) in G consists in,
given (9,02 = g¥,u) & G3 and triples (g% <), g% us) with c1,...,cp & Zy, finding another
triple (gl/(“’+c),gc, u®) such that ¢ # ¢; fori=1,...,¢.

We finally need the following variant of the Diffie-Hellman assumption.

Definition 4. The Flexible Diffie-Hellman problem (FlexDH) is, given (g, g%, ¢°) € G3, where
a,b & Zy, to find a triple (C, C®, C%) such that C # 1g.

A potentially easier problem considered in [33] only requires to output (C,C%) on input of the
same values. The latter problem was proved generically hard in prime order groups [33]. In bilinear
groups, any algorithm solving either of these two problems would make it easy to recognize g**¢ o
input of (g, 9%, g%, g¢), which is a problem suggested for the first time in [8, Section 8].

1

2.2 Model and Security Notions

Group encryption schemes involve a sender, a verifier, a group manager (GM) that manages the
group of receivers and an opening authority (OA) that is able to uncover the identity of ciphertext
receivers. A group encryption system is formally specified by the description of a relation R as
well as a collection GE = (SETUP, JOIN, (G,, R, sampler), ENC,DEC, OPEN, (P, V)) of algorithms
or protocols. Among these, SETUP is a set of initialization procedures that all take (explicitly or
implicitly) a security parameter A as input. They can be split into one that generates a set of
public parameters param (a common reference string), one for the GM and another one for the OA.
We call them SETUPinit(A), SETUPgMm(param) and SETUPga(param), respectively. The latter two
procedures are used to produce key pairs (pkgpm,skem), (Pkoa,skoa) for the GM and the OA. In
the following, param is incorporated in the inputs of all algorithms although we sometimes omit to
explicitly write it.

JOIN = (Juser; Jom) is an interactive protocol between the GM and the prospective user. As in
[30], we will restrict this protocol to have minimal interaction and consist of only two messages:
the first one is the user’s public key pk sent by Juser to Jgm and the latter’s response is a certificate
certyy for pk that makes the user’s group membership effective. We do not require the user to prove
knowledge of his private key sk or anything else about it. In our construction, valid keys will be
publicly recognizable and users do not need to prove their validity. After the execution of JOIN,
the GM stores the public key pk and its certificate certpk in a public directory database.

Algorithm sample allows sampling pairs (z,w) € R (made of a public value = and a witness
w) using keys (pkg,skgr) produced by G,. Depending on the relation, skg may be the empty
string (as will be the case in our scheme). The testing procedure R(z,w) returns 1 whenever
(z,w) € R. To encrypt a witness w such that (z,w) € R for some public x, the sender fetches
the pair (pk, certpy) from database and runs the randomized encryption algorithm. The latter takes
as input w, a label L, the receiver’s pair (pk,certyy) as well as public keys pkgy and pkoa. Its
output is a ciphertext ¢ < ENC(pkgp, pkoa, Pk, certpk, w, L). On input of the same elements, the
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certificate certpy, the ciphertext ¢ and the random coins coins, that were used to produce it, the
non-interactive algorithm P generates a proof m,, that there exists a certified receiver whose public
key was registered in database and that is able to decrypt ¥ and obtain a witness w such that
(z,w) € R. The verification algorithm V takes as input 1, pkgy, pkoa, Ty and the description
of R and outputs 0 or 1. Given ¢, L and the receiver’s private key sk, the output of DEC is
either a witness w such that (z,w) € R or a rejection symbol L. Finally, OPEN takes as input a
ciphertext/label pair (¢, L) and the OA’s secret key skoa and returns a receiver’s public key pk.

The security model considers four properties termed correctness, message security, anonymity
and soundness. In the definitions hereafter, we sometimes use the notation (output4|outputp) <
(A(input ), B(inputg))(common-input) to denote the execution of a protocol between A and B
obtaining their own outputs from their respective inputs.

CORRECTNESS. The correctness property requires that the following experiment returns 1 with
overwhelming probability.

Experiment Exptrectness())

param <— SETUPisit(N\); (pkg,skr) <= Gr(A); (z,w) < sampleg (pkg,skr);
(pkgm, skam) <= SETUPGm(param); (pkoa, Skoa) <= SETUPoa(param);
(pk, sk, certpi|pk, certpr) <= (Juser; Jam(skam)) (Pkgm);
w A ENC(kaM7 pkOA7 pk7 Certpk7 w, L)7
7y < P(pkgms Pkoas Pk, cert, w, L, 1), coinsy);
If ((w # DEC(sk, 1, L)) V (pk # OPEN(skoa, %, L))

VY, L, 7y, pkgms Pkoa) = O)) return 0 else return 1;

MESSAGE SECURITY. The message secrecy property is defined by an experiment where the adver-
sary has access to oracles that may be stateful (and maintain a state across queries) or stateless:

- DEC(sk): is a stateless oracle for the user decryption function DEC. When this oracle is restricted
not to decrypt a ciphertext-label pair (¢, L), we denote it by DEC™L),

- CH® (X, pk,w,L): is a real-or-random challenge oracle that is only queried once. It returns
(1, coinsy) such that ¢ < ENC(pkgy, pkoa, Pk, certpr, w, L) if b = 1 whereas, if b = 0, ¢ «
ENC(pkgm, Pkoas Pk, certpk, w’, L) encrypts a random plaintext uniformly chosen in the space of
plaintexts of length O(\). In either case, coins, are the random coins used to generate 1.

- PROVE?D’p,(kaM, pkoa, Pk, certyi, pkg, 2, w, ¥, L, coinsy): is a stateful oracle that the adversary
can query on multiple occasions. If b = 1, it runs the real prover P on the inputs to produce an
actual proof my. If b = 0, the oracle runs a simulator P’ that uses the same inputs as P except

witness w, coins,, and generates a simulated proof.

These oracles are used in an experiment where the adversary controls the GM, the OA and all
members but the honest receiver. The adversary A is the dishonest GM that certifies the honest
receiver in an execution of JOIN. She has oracle access to the decryption function DEC of that
receiver. At the challenge phase, she probes the challenge oracle for a label and a pair (xz,w) € R of
her choice. After the challenge phase, she can also invoke the PROVE oracle on multiple occasions
and eventually aims to guess the bit b chosen by the challenger.

As pointed out in [29], designing an efficient simulator P’ (for executing PROVE%’;P,(.) when
b = 0) is part of the security proof and might require a simulated common reference string.

Definition 5. A GE scheme satisfies message security if, for any PPT adversary A, the experiment
below returns 1 with probability at most 1/2 4 negl(\).



Experiment Expt®{°()\)
param < SETUPinit(A); (aux, pkgm, Pkoa) < A(param);
(pk, sk, certpk|aux) <— (Juser, A(aux))(pkgm);
aux, z,w, L, pkp) + APECEK) (aux s If (x,w) € R return Oy
R
b & {0,1}; (v, CoINsy) < CH: (A, pk,w, L);
Y APROVE?,J,,(kaM,pkOA,pk,certpk,ka,z,w,w,L,coinsw),DECﬁW”L) (sk,.)(aux b);

If b =10 return 1 else return 0;

ANONYMITY. In anonymity attacks, the adversary controls the whole system but the opening
authority and performs a kind of chosen-ciphertext attack on the encryption scheme of the OA.
She registers two keys pkg, pk; in database and, for a pair (z,w) € R of her choosing, obtains an
encryption of w under pk, for some b € {0,1} chosen by the challenger. She is granted access to
decryption oracles w.r.t. both keys pkg, pk;. In addition, she may invoke the following oracles:

- CHgnon(pkc_;,vl7 pkoa, PKg, Pkq, w, L): is a challenge oracle that is only queried once by the adver-
sary. It returns a pair (1, coins,) consisting of a ciphertext 1) <~ ENC(pkgm, Pkoa, Pkp, certpk, , w, L)
and the coin tosses coins, that were used to generate 1.

- USER(pkgpm): is a stateful oracle simulating two executions of J,ser to introduce two honest users
in the group. It uses a string keys where the outputs of the two executions are written.

- OPEN(skoa, .): is a stateless oracle that simulates the opening algorithm on behalf of the OA
and, on input of a GE ciphertext, returns the receiver’s public key.

Definition 6. A GE scheme satisfies anonymity if, for any PPT adversary A, the experiment below
returns 1 with a probability not exceeding 1/2 + negl(\).

Experiment Expt°"())
param <— SETUP;sit(N); (pkoa, skoa) <= SETUPoa(param);
(aux, pkgy) < A(param, pkop); aux « AYSER(Pkem),OPEN(skoa,.)(
If keys # (pkq, sko, certpi , Pky, ski, certpy, ) (aux) return 0;
(aux, z,w, L, ka) . AOPEN(skOA,.),DEC(skO,.),DEC(sk1,.) (aux);
If (x,w) & R return 0;
b <i {0? 1}7. (1% COZ'TLSw) A CHla)non(kaMa pkOA7 pkOv pk17 w, L);
b o« AP(PkGr\A7Pk0A,pkb,certpkb,a:,w,q/;,L,comsw7
OPENT{¥:L) (skgp,.),DEC™¢¥-L) (skg,.),DEC™(¥-L) (skl,.))(aux V);

aux);

If b =0 return 1 else return 0;

As shown in [29], GE schemes satisfying the above notion necessarily subsume a key-private (a.k.a.
receiver anonymous) [3, 28] cryptosystem.

SOUNDNESS. In a soundness attack, the adversary creates the group of receivers by interacting
with the honest GM. Her goal is to produce a ciphertext 1 and a convincing proof that 1 is valid
w.r.t. a relation R of her choice but either (1) the opening reveals a receiver’s public key pk that
does not belong to any group member; (2) the output pk of OPEN is not a valid public key (i.e.,
pk &€ PK, where PK is the space of valid public keys); (3) the ciphertext C' is not in the space
CzLoPkr PkamPkoasPk of valid ciphertexts. This notion is formalized by a game where the adversary
is given access to a user registration oracle REG(skgwm, .) that simulates Jgm. This oracle maintains
a repository database where registered public keys and their certificates are stored.



Definition 7. A GE scheme is sound if, for any PPT adversary A, the experiment below returns
1 with negligible probability.

Experiment ExptS{dness(\)
param <— SETUP;nit(A); (pkoa, skoa) <= SETUPoa(param);
(pkgm, skem) <= SETUPGm(param);
(P, @, ¥, Ty, L, aux) < AREG(Kem:) (param, pkey, pkoa, Skoa);
If V(1/}7 L77T’t/17 kal\/h pkOA) =0 return 0,‘
pk — OPEN(SkOA, 1!), L);
If ((pk & database) V (pk & PK) V (¢ ¢ C=LPkr:Peu Pkon.Pk))

then return 1 else return 0;

2.3 Groth-Sahai Proof Systems

In the following notations, for equal-dimension vectors Aand B containing group elements, Ao B
stands for their component-wise product.

When based on the DLIN assumption, the Groth-Sahai (GS) proof systems [27] use a common
reference string comprising vectors ¢i, g3, g3 € G3, where ¢i = (g1,1,9), ¢2 = (1,92, g) for some
g1, 92 € G. To commit to X € G, one sets C= (1,1, X) 041" ©d>° ®g3" with r, s, t & Zy. When the
proof system is prepared to give perfectly sound proofs, ¢3 is set as ¢ = ¢i5 ©¢3%? with &, & & Z
Commitments C' = (g] T, g574! X . gr+s+1&1+£)) are then Boneh-Boyen-Shacham (BBS) cipher-
texts that can be decrypted using a1 = log,(g1), a2 = log,(g2). In the witness indistinguishability
(WI) setting, vectors gi, g3, g3 are linearly independent and Cis a perfectly hiding commitment.
Under the DLIN assumption, the two kinds of CRS are indistinguishable.

To commit to an exponent x € Z,, one computes C = GO q"o ¢, with r,s & Ly, us-
ing a CRS comprising vectors @, g1, g2. In the soundness setting ¢, g1, g2 are linearly independent
vectors (typlcally G =g3® (1,1,9) where g3 = gi% © 9252) whereas, in the WI setting, choosing
¢ =gi 2¥0) 92 gives a perfectly hiding commitment since C is always a BBS encryption of 1.

To prove that committed variables satisfy a set of relations, the GS techniques replace variables
by the corresponding commitments in each relation. The whole proof consists of one commitment
per variable and one proof element (made of a constant number of group elements) per relation.

Such proofs are available for pairing-product relations, which are of the type

n n n
[T ecAi x) - H H (X, Xj) 9 = tr,
=1 i=1 j=1

for variables &1, ..., X, € G and constants t; € Gr, Ay,..., Ay, € G, a;; € G, fori,j € {1,...,n}.
Efficient proofs also exist for multi-exponentiation equations

m n
[T [T T[Ty -
i=1 i=1 j=1
for variables X1,..., X, € G, y1,...,Ym € Z, and constants T, Ay, ..., Ay, € G, by,...,b, € Z, and
vi; € G, forie{l,...,m},j€{1,...,n}.
Multi-exponentiation equations admit zero-knowledge proofs at no additional cost. On a simu-
lated CRS (prepared for the WI setting), a trapdoor makes it is possible to simulate proofs without



knowing witnesses and simulated proofs are perfectly indistinguishable from real proofs. As for
pairing-product equations, zero-knowledge proofs are often possible but usually come at some ex-
pense. In the paper, we only resort to such NIZK simulators in one occasion.

In both cases, proofs for quadratic equations cost 9 group elements. Linear pairing-product equa-
tions (when a;; = 0 for all 7, j) take 3 group elements each. Linear multi-exponentiation equations

of the type J[}_, X;j =T (resp. [[[~; AV = T) demand 3 (resp. 2) group elements.

3 Building Blocks

Our certification scheme uses a trapdoor commitment to group elements as an important ingredient
to dispense with proofs of knowledge of users’ private keys.

3.1 A Trapdoor Commitment to Group Elements

We need a trapdoor commitment scheme that allows committing to elements of a group G where
bilinear map arguments are taken. Commitments will have to be themselves elements of G, which
prevents us from using Groth’s scheme [25] where commitments lie in the range G of the pairing.

Such commitments can be obtained using the perfectly hiding Groth-Sahai commitment based
on the linear assumption recalled in section 2.3. This commitment uses a common reference string
describing a prime order group G and a generator f € G. The commitment key consists of vectors

-2z - - U .
(f1, 2. f3) chosen as fi = (f1, 1, f), fa = (L fo, /) and f5 = fi” © fa" © (1,1, /)%, with f1, fo & G,
1,869,835 & Z,,. To commit to a group element X € G, the sender picks ¢1, ¢2, ¢3 & Z,, and sets

Cx = (1,1,X) o ﬁ¢1 ® ﬁ¢2 ® ﬁ¢3, which, if f3 is parsed as (f3.1, f3,2, f3.3), can be written
Cx = (f- fi, 157 f;, X . fortoe fg’%) Due to the use of GS proofs, commitment openings need
to only consist of group elements (and no scalar). To open Cx = (C1,C4, Cs), the sender reveals
(D1, Da, D3) = (f%, f®2, f#3) and X. The receiver is convinced that the committed value was X
by checking that

e(Ch, f) = e(f1,D1) - e(f3,1, D3)
e(Cy, f) = e(f2, D2) - e(f3.2, D3)
e(Cs, f) =e(X - D1 - Dy, f) - e(f33,D3).

If a cheating sender can come up with distinct openings of éx, we can easily solve a S2P instance
(91,92, 91,¢; 92,4)- Namely, the commitment key is set as (f1, f2, f3,1, f3,2) = (91,92, 91,¢,92,4) and
f, f33 are chosen at random. When the adversary outputs (X, (D1, D2, D3)) and (X', (D}, D}, D%)),
we must simultaneously have e(f1, D1/D}) = e(f3,1,D5/D3), e(f2, D2/D5) = e(f32,D5/D3) and
e((XD1Dy)/(X'DiD}), f) = e(fs3,D4/D3). Hence, a solution to the S2P instance is obtained by
setting (u,v,w) = (D1/D}, D2/Dj, D5/Ds3), which is a non-trivial triple as long as X' # X.

We also observe that, using the trapdoor (&1, &2,&3), the receiver can equivocate commitments.
Given a commitment éx and its opening (X, (D1, Dy, D3)), one can trapdoor open éx to any other
X' € G (and without knowing log,(X")) by computing

Dy =Dy (X'/X)/%,  Dy=Dy- (X'/X)%/% Dj=(X/X')Y% . D;.



3.2 A Public Key Certification Scheme

We use a primitive that we call non-interactive certification scheme, which can be viewed as a
signature scheme that only allows signing public keys from a specific public key space PX. These
keys should be signed while retaining algebraic properties that make it possible to prove knowledge
of a public key and its corresponding certificate in an efficient way. In particular, signing hashed
public keys is proscribed. In the interactive setting, several papers (e.g., [5,24]) describe efficient
interactive protocols where a public key is jointly generated by a user and a certification authority
in such a way that the user eventually obtains a certified public key and no one else learns the
underlying private key. In this paper, we aim at minimizing the amount of interaction and let users
generate their public key entirely on their own before requesting their certification. Ideally, we
would like to be able to sign public keys without even requiring users to prove knowledge of their
private key and, in particular, without having to first rewind a proof of knowledge so as to extract
the user’s private key in the security proof.

A certification scheme consists of algorithms (Setup, Certify, CertVerify). The first one is run
by a certification authority (CA) that, on input of global parameters cp, generates a key pair
(SK, PK) < Setup(cp). On input of cp, SK and a user’s public key pk, Certify generates a certificate
certpi. The procedure Verify takes as input cp, PK, pk and cert,, and outputs either 0 or 1.

Correctness mandates that CertVerify(cp, PK, pk, certp) = 1 when certy < Certify(cp, SK, pk).
The (strong) unforgeability [1] requirement is the same as in signature schemes. The adversary is
supplied with a CA’s public key PK and access to a certification oracle Certify(SK,.) that can be
queried for arbitrary public keys pk € PK. Her goal is to produce a new pair (pk*, Cert:k*) (i.e., if
pk™ was queried to Certify(SK,.), the output must have been different from cert;k*).

In the description, we assume common public parameters cp consisting of of bilinear groups
(G, Gr) of prime order p > 2%, for a security parameter A, and a generator g & G. We also assume
that certified public keys always consist of a fixed number n of group elements (i.e., PIC = G").

INTUITION. The scheme borrows from the Boyen-Waters group signature [10] in the use of the
Hidden Strong Diffie-Hellman assumption. A simplified version of this scheme involves a CA that
holds a public key PK = (2 = ¢*, A = (g,9)%, u, ug,u; = g™, ..., u, = g”), for private elements
SK = (w,a, B1,...,0n), where n denotes the number of groups elements that certified public keys
consist of. To certify a public key pk = (X; = ¢™,..., X,, = g**), the CA chooses an exponent
ap & Zy and computes S = (g2 wreo) Gy = goo S3 = uo Sy = (ug - [[I, Xfi)C'D and
Ss = (S5.1,---,95m) = (X{®,...,XP). Verification then checks whether e(S1, 2 -S3) = A and
e(S2,u) = e(g,S3) as in [10]. It must also be checked that e(S4, g) = e(uo, S2) - [[;=; e(ui, S5,) and
e(Ss,i,9) = e(X;,5) fori=1,...,n.

The security of this simplified scheme can only be proven if, when answering certification queries,
the simulator can control the private keys (x1,...,x,) and force them to be random values of its
choice. To allow the simulator to sign arbitrary public keys without knowing the private keys,
we modify the scheme so that the CA rather signs commitments (calculated as in the trapdoor
commitment of section 3.1) to public key elements X7, ..., X,,. In the security proof, the simulator
first generates a signature on n fake commitments C_"Z = (Ci,1,Cip,C; 3) that are all generated in
such a way that it knows logg(Ci’j) fori = 1,...,n and j = 1,2,3. Using the trapdoor of the
commitment scheme, it can then open C; to any arbitrary X; € G without knowing log, (X;).

This use of the trapdoor commitment is reminiscent of a technique (notably used in [18])
to construct signature schemes in the standard model using chameleon hash functions [32]: the



simulator first signs messages of its choice using a basic signature scheme and then “equivocates”
the chameleon hashes to make them correspond to adversarially-chosen messages.

Setup(cp): given common public parameters cp = {g, G, Gr}, select u, ugy EG awd Z,, and set
A=e(g,9)%, 2= g°. Pick Bi1,Biz2 Bis & 73 and set U; = (ui1,uig, uiz) = (g%, g2, g%3)
for i = 1,...,n. Choose f, f1, f2, f3,1, f3,2, 3.3 & G that define a commitment key consisting

of vectors fl =(f,1, 1), fé = (1, f2, f) and f;;, = (f3,1, f3.2, f3,3). Define the private key to be
SK = (a,w,{B; = (Bi,1, Biz2, Bi3) ti=1,..n) and the public key as

PK = (f = (ﬁa.fgaﬁ)a A= e(gmg)aa 2= gw’ u, ug, {ﬂi}i:L...,n>~
Certify(cp, SK, pk): parse SK as (a,w, {B;}i=1,..n), Pk as (X1,...,X,) and do the following.
1. For each i € {1,...,n}, pick ¢; 1, 92, ¢i3 & Zy and compute a commitment
Ci = (Ci1,Cip,Ci3) = ( {m’l 'f?iil’ga ASE 533, X; - fointoiz. f:?%s)

and the matching de-commitment (D; 1, D; 2, Di3) = (f%i1, fou2, fi3).

2. Choose ¢p & Z;, and compute 51 = () (whep) Gy = gap Sy = P as well as

n
. . . CID
51 (w- T[T - ol - o)

i=1
S5 = {(S5,4,1, 55,1,2 95,i,3) Yi=1,..n. = {(C;T, C7%, Ci %) Yi=t,..m
Return certpk = ({(CZ'71, Ci727 01'73), (Di,lv Di,27 Di73)}i:17.,.,n7 Sla 527 S37 S4’ SS) .

CertVerify(cp, PK, pk, certpy): parse pk as (X1, ..., X,) and certyy as above. Return 1 if, for indices
1=1,...,n, it holds that X; € G and

e(Cit, f) =e(f1, D) - e(f3,1, Di3) (1)
e(Cio, f) = e(f2, Dip) - e(f32,Di3) (2)
e(Cis, f) =e(Xi-Di1-Dia, f) - e(f33,Di3), (3)

and if the following checks are also satisfied. Otherwise, return 0.

6(51,0'52) :A (4)

e(S2,u) = e(g, 53) (5)

e(S4,9) = e(ug, S2) - H (e(uin, Ss,1) - €(ui2, S54,2) - €(ui3, S54,3)), (6)
i—1

6(5’5,1"]’,9) :e(Ci’j,SQ) for i = 1,...,n, j = 1,2,3 (7)

A certificate comprises 9n+4 group elements. It would be interesting to avoid this linear dependency
on n without destroying the algebraic properties that render the scheme compatible with the Groth-
Sahai techniques.

Regarding the security of the scheme, the following theorem is proved in appendix A.

10



Theorem 1. The scheme is a secure non-interactive certification system if the HSDH, FlexDH
and S2P problems are all hard in G.

We believe that the above certification scheme is of interest in its own right. For instance, it
can be used to construct non-frameable group signatures that are secure in the concurrent join
model of [30] without resorting to random oracles. To the best of our knowledge, the Kiayias-
Yung construction [30] has remained the only scalable group signature where joining supports
concurrency at both ends while requiring the smallest amount of interaction. In the standard
model, our certification scheme thus appears to provide the first* way to achieve the same result. In
this case, we have n = 1 (since prospective group members only need to certify one group element
if non-frameability is ensured by signing messages using Boneh-Boyen signatures [6] in the same
way as in Groth’s group signature [24]) so that membership certificates comprise 13 group elements
and their shape is fully compatible with GS proofs.

3.3 Public Key Encryption Schemes Based on the Linear Problem

We need cryptosystems based on the DLIN assumption. The first one is Shacham’s variant [37] of
Cramer-Shoup [17] and, since it is key-private [3], we use it to encrypt witnesses. We also use Kiltz’s
tag-based encryption (TBE) scheme [31], where the validity of ciphertexts is publicly verifiable, to
encrypt receivers’ public keys under the public key of the opening authority.

SHACHAM’S LINEAR CRAMER-SHOUP. If we assume public generators g1, g2, g that are parts of
public parameters, each receiver’s public key is made of n = 6 group elements

X1 =91"¢" X3 =g7%¢Y X5 =9i"9"
Xy = g3%g" X4 =g3'gY X6 =95°g".

To encrypt a plaintext m € G under the label L, the sender picks r, s & Z,, and computes

Yes = (U, Uz, Us, Uy, Us) = (9@ g5, 9% m - XEXE, (X1 X5)" - (X2Xf)s),

where o = H(U1,Uz,Us, Uy, L) € Zy is a collision-resistant hash®. Given (¢cs, L), the receiver
computes a. He returns L if Uy # U T o5 U72 T4 U3t and m = Uy /(UF*USUZ) otherwise.

Kirrz’s TAG-BASED ENCRYPTION SCHEME. In [31], Kiltz described a TBE scheme based on the
same assumption. The public key is (Y7, Y5, Y5, Yy) = (g%, g¥2, g%, ¢%*) if g € G is part of public
parameters. To encrypt m € G under a tag t € Z,, the sender picks wy, wy & Z,, and computes

1/}K = (‘/Ylv Vv27v37 VZ;,VE)) = <}/1w17 Y2w27 (gt}/g>w1’ (gtY4)w2a m- gw1+w2>

4 Non-frameable group signatures described in [19, 9] achieve concurrent security by having the prospective user
generate an extractable commitment to some secret exponent (which the simulator can extract without rewinding
using the trapdoor of the commitment) and prove that the committed value is the discrete log. of a public value. In
the standard model, this technique requires interaction and the proof should be simulatable in zero-knowledge when
proving security against framing attacks. Another technique [21] requires users to prove knowledge of their secret
exponent using Groth-Sahai non-interactive proofs. It is nevertheless space-demanding as each bit of committed
exponent requires its own extractable GS commitment.

The proof of CCA2-security [17,37] only requires a universal one-way hash function (UOWHF') [34] but collision-
resistance is required if the scheme has to support labels.
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To decrypt such a ciphertext 1)k, the receiver checks that V3 = Vl(tﬂ’?’)/ oy, = ‘/2(t+y4)/ Y2 If so,

it outputs the plaintext m = V5/ (Vll/y1 V21/y2). Unlike tcs in the linear Cramer-Shoup system,
the well-formedness of 1k is publicly verifiable in bilinear groups. The Canetti-Halevi-Katz [15]
paradigm turns this scheme into a full-fledged CCA2 scheme by deriving the tag ¢ from the verifi-
cation key VK of a one-time signature, the private key SK of which is used to sign (V1, Va, V3, Vy, V5).

4 A GE Scheme with Non-Interactive Proofs

We build a non-interactive group encryption scheme for the Diffie-Hellman relation R = {(X,Y"), W}
where e(g, W) = e(X,Y), for which the keys are pkr = {G,Gr, g} and skr = ¢.

The construction slightly departs from the modular design of [29] in that commitments to the
receiver’s public key and certificate are part of the proof (instead of the ciphertext), which simplifies
the proof of message-security. The security of the scheme eventually relies on the HSDH, FlexDH
and DLIN assumptions. All security proofs are available in appendix B.

SETUP;it()\): choose bilinear groups (G, Gr) of order p > 2*, g & G and g, = g™, go = g* with
ay,ap & Z5. Define gi = (g1,1,9), g3 = (1, 92,9) and g3 = gi*' © g3 with &1,& < Z;, which
form a CRS g = (g1, g2, g3) for the perfect soundness setting. Select a strongly unforgeable (as
defined in [1]) one time signature scheme X' = (G, S,V) and a random member H : {0,1}* — Z,

of a collision-resistant hash family. Public parameters consists of param = {\,G,Gr, g,g, ¥, H}.
SETUPGm(param): runs the setup algorithm of the certification scheme described in section 3.2 with
n = 6. The obtained public key consists of pkgy = (f, A=e(g,9)% 2=g“, u, up, {Hi}i:17.,,,6)
and the matching private key is skgy = (a, w, {B; = (Bi1, Biz2, BZ-73)}¢:17,,,76).
SETUPoa(param): generates pkoa = (Y1, Y2, Y3, Yy) = (g%, g¥2, g¥3, g¥4), as a public key for Kiltz’s
tag-based encryption scheme [31], and the corresponding private key as skoa = (y1,¥y2, Y3, Y4).

JOIN: the user sends a linear Cramer-Shoup public key pk = (X1,..., Xg) € G® to the GM and
obtains a certificate

certpk = ({(Ci1,Ci2,Ci3), (D, Di2, Di3)}i=1,...6, S1, 92, 53, Sa, S5).

ENC(pkgm, Pkoa, Pk, certpr, W, L): to encrypt W € G such that ((X,Y), W) € R (for public ele-
ments X,Y € G), parse pkgy, pkoa and pk as above and do the following.

1. Generate a one-time signature key pair (SK, VK) < G(\).

2. Choose r, s < Z,, and compute a linear CS encryption of W, the result of which is denoted
by tcs, under the label L; = L||VK as per section 3.3 (and using the collision-resistant hash
function specified by param).

3. Fori=1,...,6, choose w; 1, w; 2 & Z,, and encrypt X; under pkoa using Kiltz’s TBE with
the tag VK as described in section 3.3 . Let 1k, be the ciphertexts.

4. Set the GE ciphertext 1 as ¢ = VK||¢cs||¢k, || - - - ||Ykg||o where o is a one-time signature
obtained as o = S(SK, (Ycs||vk, | - - - [[¥kgl|L))-

Return (1, L) and coinsy, consist of {(w;1,w;2)}i=1,..6, (7, s). If the one-time signature of [23]
is used, VK and o take 3 and 2 group elements, respectively, so that 1 comprises 40 group
elements.
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P(pkgm, Pkoa, Pk, certpi, (X, Y), W, 1), L, coinsy): parse pkgy, Pkoa, Pk and 9 as above. Conduct
the following steps.

1. Generate commitments (as explained in section 2.3) to the 9n + 4 = 58 group elements that
certy consists of. The resulting overall commitment COMcert,,, contains 184 group elements.

2. Generate GS commitments to the public key elements pk = (X7, ..., Xg) and obtain the set
compk = {comx, }i=1, .6, which consists of 18 group elements.

3. Generate a proof Tcert,, that COMcert,, 18 a commitment to a valid certificate for the public
key contained in compy. For each i = 1,...,6, relations (1)-(3) cost 9 elements to prove (and
thus 54 elements altogether). The quadratic equation (4) takes 9 elements and linear ones
(5)-(6) both require 3 elements. Finally, (7) is a set of 18 linear equations which demand 54
elements altogether. The whole proof Tcerty, thus takes 123 group elements.

4. For i = 1,...,6, generate a NIZK proof meq ey that comx, (which is part of compk) and
Yk, are encryptions of the same X;. If 9k, comprises

(Vi Vi, Vis) = (Y 71 Yy, X - gtinte)

: 0; 0; 0; 0; 0;1+6; 0;
and comy, is parsed as (cx,;,CxisCX5) = (97" - 9377, 95 - 933, Xi-g""7%2 - g5%3), where
Wi1, Wi 2 € COiNSy, Bi1,0;2,0;3 € Z;; and g3 = (93,1,93,2,933), this amounts to prove knowl-
edge of values w; 1, w; 2,01, 0i2,0;3 € Z;, such that

(Vo Vio Via)

_ wi,1 =8 —0;3 Wiz —bi2 =03 w;1+w;2—0;1—0;2 | ,—0i3
) , = (Y, g G310y Yo T gy gy g, gt T “G33")-
CXi1 CXyp CXy3

)2 )
Committing to exponents wj 1, w; 2, i1, 02, 0;3 introduces 90 group elements whereas the
above relations only require two elements each. Overall, proof elements g key,1, - - -, Teg-key,6
incur 126 elements.

5. Generate a NIZK proof mygienc that cs = (U1, Us2,Us, Uy, Us) is a valid CS encryption.
This requires to commit to underlying encryption exponents r,s € coins, and prove that
Uy = g, Uy = g5, U3 = ¢""* (which only takes 3 times 2 elements as base elements
are public) and Us = (X1X§)" - (X2X{)® (which takes 9 elements since base elements are
themselves variables). Including commitments com, and coms to exponents r and s, Tyai-enc
demands 21 group elements overall.

6. Generate a NIZK proof m that the ciphertext i cg encrypts a group element W € G such
that ((X,Y), W) € R. To this end, generate a commitment

_ N T N N 0146, 0
comw = (cw,1, cwz, cw,3) = (91" gsh, 92" Gz W97 "2 - g5%)

and prove that the underlying W is the same as the one for which Uy = W - X! - X¢ in vcs.
In other words, prove knowledge of exponents r, s, 01, 05, 83 such that

Up Uz Uy 01 03 _s—0s _—03 —61—0s —0
(C ) ’ ) = (97{ Yegs 95 " “Ys32' 9 g38” X5 - Xé). (8)
W1 CW2 CW3

Commitments to 7, s are already part of myuiene. Committing to 1,65, 03 takes 9 elements.
Proving the first two relations of (8) requires 4 elements whereas the third one is quadratic
and its proof is 9 elements. Proving the linear pairing-product relation e(g, W) = e(X,Y)
in NIZKS demands 9 elements. Since 7 includes comyy, it entails a total of 34 elements.

6 It requires to introduce an auxiliary variable X and prove that e(g, W) = e(X,Y) and X = X, for variables W, X
and constants g, X, Y. The two proofs take 3 elements each and 3 elements are needed to commit to X.
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The entire proof Ty = Comcertpk||Compk”7rcertpkH7Teq—key,1H e |’Weq—key,6||77val—enc||7772 eventually
takes 516 elements.

V(param, v, L, my, pkgm, Pkoa): Parse pkgv, Pkoa, Pk, ¥ and 7y, as above. Return 1 if and only
if V(VK, o, (¢Yes||vk, || - - ||¥ks||L)) = 1, all proofs verify and if i, , ..., ¥k, are all valid tag-
based encryptions w.r.t. the tag VK.

DEC(sk, ), L): parse the ciphertext ¢ as VK||tcs||vk, || - ||Ykg||o. Return L in the event that
V(VK, o, (Yes|[vk, || -« - [[Pkgl| L)) = 0. Otherwise, use sk to decrypt (¢cs, L).

OPEN(skoa, %, L): parse the ciphertext 1 as VK||¢cs||k, || - - - [|¥kgl|o. Return L if ¢k, , ..., ¢k,
are not all valid TBE ciphertexts w.r.t. the tag VK or if V(VK, o, (¥cs||vk, || - - - [|Ykg] L)) = 0.
Otherwise, decrypt ¢k,, ..., ¥k, using skoa and return the resulting pk = (X1, ..., Xs).

From an efficiency standpoint, the length of ciphertexts is about 1.25 kB in an implementation

using symmetric pairings with a 256-bit group order, which is more compact than in the Paillier-
based scheme of [29] where ciphertexts take 2.5 kB using 1024-bit moduli. Moreover, our proofs
only require 16.125 kB, which is significantly cheaper than in the original GE scheme [29], where
interactive proofs reach a communication cost of 70 kB to achieve a 275 knowledge error.
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A Proof of Theorem 1

The security proof of the certification scheme considers three kinds of forgeries in the attack game.

- Type I forgeries: are such that the fake certificate cert;k* contains a tuple of elements (57, S5, 53)

that never appeared in outputs of certification queries.

- Type II forgeries: are such that cert;k* contains a triple (ST, 53, 53) that appeared in the output

of some query but cert;k* also contains commitments {( 11, Cras CZB)}1=17~-~7H that do not match
those in the output of that query.

- Type III forgeries: are such that (S7,53,5%) and {(C}y, Cfy, Cf3)}iz1,..n are all identical in

the fake certificate cert’, . and in the output of some certification query. On the other hand, the
public key pk* = (X7,...,X}) is not the one that was certified in that query.

Type I forgeries are easily seen (see lemma 1) to break the HSDH assumption whereas lemma 2
and lemma 3 show that Type II and Type III forgeries give rise to algorithms solving the FlexDH
and S2P problems, respectively. O
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Lemma 1. Any Type I forger has advantage at most AdvT¥P¢1(A) < Adv*HSPE(B), where £ is
the number of certification queries.
Proof. The proof is based on ideas from [10]. We outline an algorithm 5 that, on input of 2 = g,
u € G and a set of £ triples (4; = gl/(”“i) B; = ¢%,C; = u%) € G? with ¢1,...,¢0 €g 77, s USes
a Type I forger to find a triple (g* /(wte) ge, u®) such that ¢ # ¢; for i = 1,. € To generate the
public key PK, B chooses 3y & Ly, a < Zy, and sets ug = gh, A = e(g g)o‘ It also defines
{(uin = g%t uip = g%, ui3 = gﬁ”)}z:l,...,n using random triples (8;1, 82, 8i,3) < (Z3)® for
i =1,...,n whereas f1, fa, f3 are defined by f = g%, fi = g%, fo = g%, f31 = ¢"'%, f32 = g7
and f33 = g%(&172+%) for random chosen 0y, 01,02, &1, &2, &5 < Z5

To answer certification queries involving public keys pk = (Xi,...,X,), B first computes n
commitments to 1lg. For ¢ = 1,...,n, it randomly picks ¢; 1, ¢;2,®:3 & Z, and computes a
commitment C; = ( f)i’l . ?13, 2@’2 . ¢Z3 , flirtdiz . f¢13), which equals (g1, g2, g"3) where

ni1 = 01(¢in + 10i3), iz = O2(di2 + 52@,3) and ;3 = Oo((¢i1 + ¢i2) + (&1 + & + &3)0i3)
are all known to B. Certificate parts (S1,S2,53) are generated as (AL, By, Cy) using the next
available triple (Ag, Bg,Ck) (with k € {1,...,¢}). Finally, as for remaining certificate elements

Sy = (uo - [[im 1(0263’1 C’ZB;’Q Cfg?’))c’C and S5 = {(C/},C7%, Ci%)}iz1,...n, they are calculated as

Sy = B'BOJFZZ 132551 B and S5 = {(B}"", B"*, B}**};=1,... n, respectively. To complete the gen-

eration of certp, B then trapdoor opens C’l, ...,C, to (X17 ..., X;,) using the trapdoor (&1, &2,&3).
More precisely, for i = 1,...,n, it computes the de-commitments

( ;71, 2> ) (f@ 1, (Xi)£1/€37f¢i,2 . (XZ.)Ez/Ea*’ f¢i,3 . (1/Xz')1/£3).

The game ends with A outputting a pair (pk*, cert;k*) such that (ST, 53, S5) never appeared within
outputs of certification queries. Hence, (Sfl/ ®,5%,5%) must solve the HSDH problem. O

Lemma 2. Any Type II forger A making £ certification queries has no better advantage than
AdvTPeI(A) < (- (1= 1) - AdvTPH(B).

Proof. We show how a Type II forger implies an algorithm B that finds a non-trivial triple
(C,C?, C%) on input of (¢,9. = g% g» = ¢°). To generate PK, B chooses w < Ly, Qa, & Z,
and sets {2 = g*, A= e(g,(ga - g*)*)) (so that o = log,(y 4)(A) is implicitly set as o = (a + w)ay)
and u = g**. The commitment key (fi, ﬁ, fg) is obtained by choosing 6,01, 0s, &1, &9, &3 & Z,, and
setting f = ge7 1= 9917f2 = 9927 fz1= 991617f372 — 99252 and f33 = 99(£1+£2+£3).

In the setup phase, B also computes a set of n commitments to 1g, say C’j = (g”l 1 g"l 2 g"l 3)
for t=1,...,n,and obtams them by drawing random exponents qﬁl 1> (bI 99 ¢2T73 & Z,, and computing

= 91(¢Z 1+§1¢13) Ny = 02(¢] ,+620) ) as well as i) 5 = 0((6] | +01) + (&1 +&+E) 0] ). Tt also

retains gbl 1> ¢i,27 ¢i73 for later use. Next, B picks p & Z,, and two sets of n triples (pi1s pi2, Pi3) &

$ - Vi o, 2 s Vi3
(Z3)3, (Vig iz, vis) <= (Z3)? and defines w1 = gPt - g™, wip = gP2 - g%, iz = gris - g,°, for

i=1,...,n,and ug = ¢g* - g} with v = — Z?:l(%mil + %727722 + %737];3). This implicitly defines
private key elements to be 8;1 = pi1 + bvi1, Bi2 = pi2 + byi2 and B3 = pi 3 + byi 3. At the outset
of the game, B also chooses £* < {1,...,0}.

When the certification of a public key pk = (Xi,...,X,) is queried, the query’s treatment
depends on the index k € {1,...,¢} of the query.
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- If k # ¢*, B computes n commitments to 1g (say C; = (gm1, g2, g"3) for i =1,...,n) as in
the proof of lemma 1. Tt generates certy, by setting S1 = (g, - g*)%/“WFk) Sy = g%, S5 = u*
for a random ¢, < Z%. Since it knows H?:1(CB“ 06’2 CB’?’) = [T, (" - )5 - ufs?)
(thanks to (1,1, 7i2,7:,3)), it can also compute Sy = (ug - Hizl(C’ﬂl ! Cﬁl 2 CBZ 5%))%. Finally,
S5 = {(C, Ci%, C7%) Yiz1,....n s also computable from c¢; and B uses 51,52, &5 to trapdoor open
C; to X; and obtain de-commitments (D; |, D, D} 3), for i = 1,...,n, as in lemma 1.

- If £k = ¢*, B implicitly defines ¢» = a and sets S; = g%, Sa = g4, S3 = g5*. Thanks to

t i i
C (C’Tl, C’Z 9, 013) = (g"1,g"2,g"3) that were chosen in the setup phase, B can compute

L " (pian +piont o +pian!
S, = (UO ] H(CT Bi CT Bi,2 CT 513)) - gs+zz:1(m,1m’1+p 27 2P ,3771,3)‘

i=1
Finally, B obtains S5 = {(C],",C],", C1,") = (gZZ 1,93“,gZL3)}¢=1,...,n- Fori=1,...,n,it trap-
door opens C’g to public key elements X; using the trapdoor ({1, &2, &3) and the de-commitment
t t '
(f P, [Pz f ‘b;?’) that was associated with the commitment to 1g. The resulting de-commitment
(D; 1, Dj o, Dj3) and C’J = (CiT,l’ 012, 023) are included in certpy.
Finally, A outputs a pair (pk*,cert;k*) such that (S7,55,5%) appeared in the output of some
certification query but cert;k* comprises commitments {(C’Z 1> C’ 7,*3)}7':177/ that do not match

those returned in that specific query. With probability 1/¢, thls query happens to be the £*' one
(and B fails if this is not the case), so that (ST, S3,53) = (9, ga, g5*). Then, we must have

n
Sy = (UO . H(Czlﬂi,l ,CZQﬂi,l _C’Zgﬁi,S))a’ St {(Cz O O a)}z o
i=1
where {( ;1, ZQ, 1*3)}1:171 #* {(Czp 03,27 Cj,g)}i:17,,_7n, in such a way that dividing out the value
P+ (piam) pin] o +pian) )

S4=0a ’ ’ * from S} yields
n
i,1+bvi i,24+bv; i.31+b7;
T = (H(Ci*,l/czl)p At+byi (CZQ/CiQ)p 2+bvie (ng/clg)p atbis)
i=1
whereas the component-wise quotient of S5 = {(g 77“79222,9213)%‘:1,...,71 and S reveals a triple
{(Zin, Zip, Zis3) = (( i,l/Cz‘T,l) i ( 1,2/ i,2) S ( i,3/ i,?,) )}z=1n Hence, B extracts
n n
Cz* 1\7i l* 2\ C; 3\Vi ab Pi Pi Pi
Ity = (H (C’T )" (CT )" (CT) ’3> = T/HZZ‘JI 75" 25
i=1 Y1 0,2 ' i=1
n n * *
o Yi,1 %2 "/z3 o Z 'Yz 1 L2\7i,2 Z3 Yi,3
RQ—HZM Zig 4, —<H CT ) (CT ) )
i=1 i=1 0,2 i3

)%1 . ( 22)%,2 . ( i,3)w,3

i=1 7,1 CZQ 013

which must form a non-trivial triple (R, ‘f,R‘fl’) with overwhelming probability. Indeed, since
Yi1,%,2,%,3 are (information theoretically) independent of A’s view, we can only have Ry = 1g by
pure chance (with probability 1/p). O
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Lemma 3. Any Type III forger has advantage at most AdvTYPe(A4) < Adv 2P (B).

Proof. From a Type III adversary A, it is simple to break the binding property of the _commitment
scheme in section 3.1. Consider an algorithm B which is given a commitment key ( fl, fa, f3) and
prepares the rest of the public key according to the specification of the scheme in such a way that
it can perfectly answer all certification queries.

At the end of the game, A outputs a pair pk* and cert;k* such that certy~ contains (ST, 53, S3)
and commitments (szl, 22,02-*73) that were both contained in the output of some certification
query. On the other hand, the public key pk* = (X7,...,X*) must be different from the one
(X1,...,X,) that was certified at that query. This necessarily provides B with two distinct openings
(Xi, (D1,iy D2y D3 i), (X7, (D14, D54, D3 ;) (since X; # X[ for at least one index i € {1,...,n})

of some commitment (C’; 1:Cfas Cr,), which violates the S2P assumption.

B Security Proofs for the Group Encryption Scheme
Correctness is straightforward and we focus on anonymity, message security and soundness.

Theorem 2. The GE scheme satisfies anonymity assuming that X is strongly unforgeable, that H
is collision-resistant and that the DLIN assumption holds in G.

Proof. We consider a sequence of games where the first game is the real experiment of definition 6
while the adversary A is essentially a key privacy attacker against the linear Cramer-Shoup system
in the last game. In Game ¢, we call W; the event that A wins.

Game 1: the challenger B generates param that includes a reference string g containing gi, g3
and g3 = gi% @ G°, with &1,& & Z7. The public key pkoa = (Y1, Y2,V3,Y)) is given to A who
generates pkgy on her own. By invoking the USER oracle, she certifies two distinct receivers’ public
keys pko = (X9,..., X9), pky = (X{,..., X}) chosen by B and makes a number of opening queries
and decryption queries, which B handles using skpoa and skg, ski, respectively. At some point,
she outputs ((X,Y), W, L, pkg) such that ((X,Y),W) € R and obtains, as a challenge, a group
encryption ¥* = VK*|[¢¢gs|[vg, || - - [[¥g, |lo* of W under pk,, for some bit b € {0,1} of B’s choice.
Then, she obtains proofs 71'@* for ¢* and makes new opening and decryption queries under the
obvious restrictions. She finally outputs ¥ and we call W the event that b’ = b.

Game 2: is as game 1 but B aborts in the event Fy that A queries the opening of a ciphertext
¥ = VK||Ycs| |k, || - - - [|kg||o such that VK = VK* and o is valid (we may assume that VK* is
generated at the outset of the game). If F, occurs, A is necessarily able to break the strong security
of X (even if the query occurs before the challenge phase, A has forged a signature without seeing
any signature) and |Pr[Ws] — Pr[IW;]| < Pr[Fy] € negl()) if X is strongly unforgeable.

Game 3: we modify the generation of the common reference string g = (g1, g3, d3) in param and
choose the vector ¢3 as ¢; = Gi% © G2 © (1,1,9)! (instead of g3 = a0 g‘éfQ). Under the DLIN
assumption, this change is not noticeable to A and |Pr[W3] — Pr[IW3]| € negl()\).

Game 4: we change the generation of proofs 7@* and use the trapdoor of the CRS (i.e., values &

and & such that g3 = ¢i** ©® ¢ © (1,1,¢)"" and commitments to exponents are thus generated
using g = 7o) 9352) instead of some of the actual witnesses. Namely, m
well as 7*

* *

eq-key,17" " * 77Teq—key,6 as
. . . . . LY N

ral-enc and T4 are simulated without using encryption exponents {wm, wi72}2:17._,,6 (that

are used to encrypt djk) and r*,s* (that are used to compute v¢g). Commitments com;kb and
comjy, are still generated using pky and W but commitments to w;, w;, and r*, s* are replaced by
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commitments to 0. Yet, the trapdoor &1, &2 allows generating proofs that have the same distribution
as real proofs (e.g., [11, Section 4.4] shows how to simulate linear multi-exponentiation equations
whereas quadratic ones, such as the third relation of (8), are also simulatable without r*, s*) and
it comes that Pr[Wy] = Pr[Ws].

Game 5: we modify the generation of the challenge ciphertext ¢* and let ¢% ..., ¢k be encryp-
tions of random group elements instead of X{’, e ,Xé’. Since exponents {wZI’wZQ}i=1,m:6 are no
longer used in Game 4, any significant change in the distribution of A’s output would give rise to
a selective-tag weak CCA2 attacker” against the tag-based encryption (recall that opening queries
do not involve VK* unless the rejection rule of Game 2 applies). According to theorem 5.1 in [31],
we have |Pr[Ws] — Pr[W4]| € negl(X) if DLIN holds.

In Game 5, A is essentially playing a CCA2 anonymity attack against the linear Cramer-Shoup
encryption scheme. Indeed, elements @Z)&Z_ do not depend on b and, since proofs are given in the WI
setting, they reveal no information on underlying witnesses (in particular, com[*)kb and comzertpkb
are perfectly hiding commitments). As for the key privacy of the linear Cramer-Shoup encryption
scheme, re-proving theorem 6 in [3] using DLIN in place of DDH is just an exercise and we even-
tually obtain |Pr[W5] — 1/2| € negl(\) if DLIN holds and if H is collision-resistant. O

Theorem 3. The GE scheme satisfies message security assuming that X is strongly unforgeable,
that H is a collision-resistant hash function and that the DLIN assumption holds in G.

Proof. We use a sequence of games. The first one mirrors the experiment of definition 5 where the
challenger’s bit b is 1 and the adversary obtains a encryption of the witness W and real proofs when
invoking the PROVE(.) oracle. In the last game, the adversary A obtains an encryption of a random
plaintext and proofs are simulated using a fake CRS (constructing a simulator for PROVE(.) using
a simulated CRS is part of the security analysis as stressed in [29]). In Game i, W; denotes the
event that A outputs b’ = 1.

Game 1: the challenger B provides A with common public parameters param that include a real
CRS g containing (g1, g2, g3 = f7iN0) g_§€2), with &1, & & Z,. The adversary generates public keys
pkoa and pkgy on her own. The challenger and A run an execution of JOIN where A certifies
the public key pk = (X1,..., Xg) of a honest receiver chosen by B. Then, .4 makes a number of
decryption queries that B handles using the private key sk that matches pk. At some point, A
outputs ((X,Y), W, L, pkg) such that ((X,Y),W) € R and obtains in return a group encryption
Vv = VK*[|[9gs] v, |- - [k, llo™ of W under pk and L. Then, she obtains polynomially many
proofs 7T:;* for 1p* and makes new decryption queries under the obvious restrictions. She finally
outputs v’ and we call W7 the event that b’ = 1.

Game 2: we modify the generation of the common reference string g = (g1, g2, ¢3) in param and
choose g3 = Gi** ® 32 ® (1,1, )" (instead of 3 = gi*' ® ¢3%?). Under the DLIN assumption, this
change is not noticeable to A and |Pr[Ws] — Pr[Wi]| € negl()\).

Game 3: we modify the DEC(.) oracle and let B reject any ciphertext of the form ¢ = VK]||---||o

such that VK = VK* (VK* can be generated at the outset of the game). Let F3 be the event that
this rule causes B to reject a ciphertext that would not have been rejected in Game 2. As in the

7 Selective-tag weak CCA2 security is defined [31] via a game where the adversary A chooses a tag t* and then
obtains a public key and access to a decryption oracle which she can query for any ciphertext-tag pair (C,t) such
that ¢ # t*. At the challenge phase, she chooses plaintexts mg, m1 and receives a ciphertext C* encrypting my
(under the tag t*) for some bit b & {0,1} that A eventually aims to guess after further decryption queries.
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proof of theorem 2, we have |Pr[W3] — Pr[Ws]| < Pr[F3| € negl(\) if X' is strongly unforgeable.

Game 4: we change the generation of proofs 7%, and use the trapdoor of the CRS instead of
witnesses W and coinsy« = {(r*, s*), {(w};, w}5)}i=1,..6}. More precisely, {m} ., ;}i=1,.6 (which
prove that comy, and )k, hide the same X;), as well as 7, ... and 7% (i.e., the proofs that
¢g is a valid ciphertext and that 1gg and comys contain the same W) are simulated without
using encryption exponents {wzl, w’ZQ}i:17~--»6 and r*, s* and commitments to the latter values are
replaced by commitments to 0. Also, the part of 73, that proves relation e(g, W) = e(X,Y") (and
thus ((X,Y),W) € R) is simulated in NIZK® by setting comy, as a commitment to 1g. As in
the proof of theorem 2, the trapdoor &1,&; allows generating simulated proofs that are perfectly

indistinguishable from real proofs, so that Pr[W4] = Pr[W3].

Game 5: in the calculation of *, we set 1)¢g as an encryption of a random group element. Since
r*, s* are not used in Game 4, any significant change in A’s behavior would imply a CCA2 attacker
(in the modeling of CCA2-security for labeled cryptosystems [38]) against the linear Cramer-Shoup
scheme (recall that decryption queries do not involve VK* unless the rejection rule of Game 3
applies, which prevents A from mauling 1x  while keeping the same (¢¢g, VK*, L)). The result of
[37] implies that |Pr[Ws] — Pr[Wy]| € negl()) if DLIN holds and H is a collision-resistant hash
function.

Game 6: we change again the DEC(.) oracle and do not apply the rejection rule of Game 3 anymore.
If X is strongly unforgeable, we must have |Pr[Ws] — Pr[W5]| € negl(A).

We see that, from Game 4 onwards, the oracle PROVE(.) does not use witnesses W, coinsy+ any
longer. Game 6 is thus the experiment of definition 5 where the challenger’s bit b is 0. Putting the
above altogether, we find [Pr[Wg] — Pr[W1]| € negl()), which establishes the result. 0

Soundness directly follows from the security of the certification system. From a soundness
adversary, the simulator interacts with a challenger for the certification security game and generates
the CRS g for the perfect soundness setting (which precludes the generation of valid proofs for ill-
formed ciphertexts). Then, soundness can only be broken by attacking the certification scheme.

8 In addition to the variable W, the latter proof introduces an auxiliary variable X and provides evidence that
e(g, W) = e(X,Y) and X = X, for constants g, X,Y. The NIZK simulator can use witnesses X = W = 1g to
prove the relation e(g, W) = e(X,Y) and simulate a proof for the second relation thanks to the trapdoor of the
fake CRS.
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Abstract. Group signatures are a central cryptographic primitive, simultaneously supporting accountability
and anonymity. They allow users to anonymously sign messages on behalf of a group they are members of.
The recent years saw the appearance of several constructions with security proofs in the standard model (i.e.,
without appealing to the random oracle heuristic). For a digital signature scheme to be adopted, an efficient
revocation scheme (as in regular PKI) is absolutely necessary. Despite over a decade of extensive research,
membership revocation remains a non-trivial problem in group signatures: all existing solutions are not truly
scalable due to either high overhead (e.g., large group public key size), or limiting operational requirement (the
need for all users to follow the system’s entire history). In the standard model, the situation is even worse
as many existing solutions are not readily adaptable. To fill this gap and tackle this challenge, we describe a
new revocation approach based, perhaps somewhat unexpectedly, on the Naor-Naor-Lotspiech framework which
was introduced for a different problem (namely, that of broadcast encryption). Our mechanism yields efficient
and scalable revocable group signatures in the standard model. In particular, the size of signatures and the
verification cost are independent of the number of revocations and the maximal cardinality N of the group
while other complexities are at most polylogarithmic in N. Moreover, the schemes are history-independent:
unrevoked group members do not have to update their keys when a revocation occurs.

Keywords. Group signatures, revocation, standard model, efficiency.

1 Introduction

As suggested by Chaum and van Heyst in 1991 [32], group signatures allow members of a group to
anonymously sign messages on behalf of a population group members managed by a group authority.
Using some trapdoor information, a tracing authority must be able to “open” signatures and identify
the signer. A complex problem in group signatures is the revocation of members whose signing capability
should be disabled (either because they misbehaved or they intentionally leave the group).

1.1 Related Work

GROUP SIGNATURES WITHOUT REVOCATION. The first provably coalition-resistant scalable group signature
was described by Ateniese, Camenisch, Joye and Tsudik in 2000 [7]. At that time, the security of group
signatures was not totally understood and proper security definitions were given later on by Bellare,
Micciancio and Warinschi [9] (BMW) whose model captures all the requirements of group signatures in
three properties. In (a relaxation of) this model, Boneh, Boyen and Shacham [16] obtained a construction
in the random oracle model [10] with signatures shorter than 200 bytes [13].

In the BMW model, the population of users is frozen after the setup phase beyond which no new
member can be added. Dynamic group signatures were independently formalized by Kiayias and Yung [45]
and Bellare-Shi-Zhang [11]. In these models, pairing-based schemes with relatively short signatures were
put forth in [54,33]. Ateniese et al. [6] also gave a construction without random oracles using interactive
assumptions. In the BMW model [9], Boyen and Waters independently came up with a different standard
model proposal [19] using more classical assumptions and they subsequently refined their scheme [21] to

* This author was supported by the Belgian Fund for Scientific Research (F.R.S.-F.N.R.S.) via a “Chargé de recherches”
fellowship.
** Supported by the IUAP B-Crypt Project and the Walloon Region Camus Project.



obtain constant-size signatures. In the dynamic model [11], Groth [38] described a system with constant-
size signatures without random oracles but this scheme was rather a feasibility result than an efficient
construction. Later on, Groth gave [39] a fairly efficient realization — with signatures consisting of about
50 group elements — in the standard model with the strongest anonymity level.

REVOCATION. In group signatures, membership revocation has received much attention in the last decade
[22, 8,29, 18] since revocation is central to digital signature schemes. One simple solution is to generate a
new group public key and deliver a new signing key to each unrevoked member. However, in large groups, it
may be inconvenient to change the public key and send a new secret to signers after they joined the group.
An alternative approach taken by Bresson and Stern [22] is to have the signer prove that his membership
certificate does not appear in a public list or revoked certificates. Unfortunately, the signer’s workload and
the size of signatures grow with the number of expelled users.

Song [55] presented an approach handling revocation in forward-secure group signatures. However,
verification takes linear time in the number of excluded users.

Using accumulators® [12], Camenisch and Lysyanskaya [29] proposed a method (notably followed by
[60, 27]) to revoke users in the ACJT group signature [7] while keeping O(1) costs for signing and verifying.
While elegant, this approach is history-dependent and requires users to keep track of all changes in the
population of the group: at each modification of the accumulator value, unrevoked users need to update
their membership certificates before signing new messages, which may require O(r) exponentiations — if r
is the number of revoked users — in the worst case.

Brickell [23] suggested the notion of wverifier-local revocation group signatures, which was formalized
by Boneh and Shacham [18] and further studied in [50,61,48]. In their systems, revocation messages are
only sent to verifiers (making the signing algorithm independent of the number of revocations). The group
manager maintains a revocation list (RL) which is used by verifiers to make sure that signatures were
not generated by a revoked member. The RL contains a token for each revoked user and the verification
algorithm has to verify signatures w.r.t. each token (a similar revocation mechanism is used in [24]). As a
result, the verification cost is inevitably linear in the number of expelled users.

More recently, Nakanishi, Fuji, Hira and Funabiki [49] described a construction with constant com-
plexities for signing/verifying and where group members never have to update their credentials. On the
other hand, their proposal has the disadvantage of linear-size group public keys (in the maximal number
N of users), although a tweak allows reducing the size to O(N'/2).

In the context of anonymous credentials, Tsang et al. [58,59] showed how to blacklist users without
compromising their anonymity or involving a trusted third party. Their protocols either have linear prov-
ing complexity in the number of revocations or rely on accumulators (which may be problematic for our
purposes). Camenisch, Kohlweiss and Soriente [28] suggested to handle revocations by periodically up-
dating users credentials in which a specific attribute indicates a validity period. While useful in certain
applications of anonymous credentials, in group signatures, their technique would place quite a burden on
the group manager who would have to generate updates for each unrevoked individual credential.

1.2 Owur Contribution

For the time being and despite over a decade of research efforts, group signatures in the standard model
have no revocation mechanism allowing for scalable (i.e., constant or polylogarithmic) verification time
without dramatically degrading the efficiency in other metrics and without being history-dependent. In
pairing-based group signatures, accumulator-based approaches are unlikely to result in solutions supporting
very large groups. The reason is that, in known pairing-based accumulators [53,27], public keys have lin-
ear size in the maximal number of accumulated values (unless one sacrifices the constant size of proofs of

! An accumulator allows hashing a set of values into a short string of constant size while allowing to efficiently prove that a
specific value was accumulated.



non-membership as in [5]), which would result in linear-size group public keys in straightforward implemen-
tations. Recently [35], Fan et al. suggested a different way to use the accumulator of [27] and announced
constant-size group public keys but their scheme still requires the group manager to publicize O(N') values
at each revocation. In a revocation mechanism along the lines of [29], Boneh, Boyen and Shacham [16]
managed to avoid linear dependencies. However, their technique seems hard to combine? with Groth-Sahai
proofs [40] so as to work in the standard model, which is our goal. In addition, we would like to save unre-
voked users from having to update their keys after each revocation. To this end, it seems possible to adapt
the approach of Nakanishi et al. [49] in the standard model. However, merely replacing sigma-protocols
by Groth-Sahai proofs in the scheme of [49] would result in group public keys of size O(N'/?) in the best
case.

In this paper, we describe a novel and scalable revocation technique that interacts nicely with Groth-
Sahai proofs and gives constructions in the standard model with O(1) verification cost and at most poly-
logarithmic complexity in other metrics. Our approach bears similarities with the one of Nakanishi et al.
[49] in that it does not require users to update their membership certificates at any time but, unlike [49],
our group public key size is either O(log N) or constant. Like the scheme of [49], our main system uses
revocation lists (RLs) of size O(r) — which is in line with certificate revocation lists of standard PKIs —
and we emphasize that these are not part of the group public key: verifiers only need to know the number
of the latest revocation epoch and they do not have to read RLs entirely.

To obtain our constructions, we turn to the area of broadcast encryption and build on the Subset Cover
framework of Naor, Naor and Lotspiech [51] (NNL). In a nutshell, the idea is to use the NNL ciphertext as
a revocation list and have non-revoked signers prove their ability to decrypt in order to convince verifiers
that they are not revoked. In its public-key variant, due to Dodis and Fazio [34], the Subset Cover frame-
work relies on hierarchical identity-based encryption (HIBE) [44,37] and each NNL ciphertext consists of
several HIBE encryptions. To anonymously sign a message, we let group members commit to the specific
HIBE ciphertext that they can decrypt (which gives constant-size signatures since only one ciphertext is
committed to), and provide a non-interactive proof that: (i) they hold a private key which decrypts the
committed HIBE ciphertext. (ii) The latter belongs to the revocation list.

By applying this approach to the Subset Difference (SD) method [51], we obtain a scheme with O(1)-
size signatures, O(log N)-size group public keys, membership certificates of size O(log3 N) and revocation
lists of size O(r). The Layered Subset Difference method [41] can be used in the same way to obtain
membership certificates of size O(log®® N) while retaining the same efficiency elsewhere. Using the Com-
plete Subtree method, we also obtain a tradeoff with O(r - log N) revocation lists, log-size membership
certificates and constant-size group public keys (comparisons among schemes are given in Section 4).

A natural question is whether our SD-based revocable group signatures can generically use any HIBE
scheme. The answer is negative as the Boneh-Boyen-Goh (BBG) construction [15] is currently the only
suitable candidate. For anonymity reasons, ciphertexts should be of constant size and our security proof
requires the HIBE system to satisfy a new and non-standard security property which is met by [15]. As
we will see, the proof can hardly rely on the standard security notion for HIBE schemes [37].

We note that the new revocation mechanism can find applications in contexts other than group signa-
tures. For example, it seems that it can be used in the oblivious transfer with access control protocol of
[26], which also uses the technique of Nakanishi et al. [49] to revoke credentials.

2 In the scheme of [16], signing keys consist of pairs (gl/<w+5), s) € G X Zp, where w € Zj is the private key of the group
manager, and the revocation mechanism relies on the availability of the exponent s € Z,. In the standard model, the
Groth-Sahai techniques would require to turn the membership certificates into triples (gl/(“’+s),gs, u®), for some u € G (as
in [21]), which is no longer compatible with the revocation technique.



2 Background

2.1 Bilinear Maps and Complexity Assumptions

We use bilinear maps e : G x G — G over groups of prime order p where e(g,h) # 1g, if and only if
g,h # 1g. In these groups, we rely on hardness assumptions that are all falsifiable [52].

Definition 1 ([16]). The Decision Linear Problem (DLIN) in G, is to distinguish the distributions
(g%, g% g%, g*%, g¢* ) and (g%, ¢°, g°¢, g*%, g7), with a,b,c,d & Ly, = & Zy,. The Decision Linear As-
sumption is the intractability of DLIN for any PPT distinguisher D.

Definition 2 ([13]). The ¢-Strong Diffie-Hellman problem (¢-SDH) in G is, given (g, g%, ...,g%"),
for some g & G and a & Z,, to find a pair (g*/(@+%) s) € G x Z,.

Finally, we appeal to yet another “g-type” assumption introduced by Abe et al. [2].

Definition 3 ([2]). In a group G, the ¢-Simultaneous Flexible Pairing Problem (q-SFP) is, given
(gz, h., gr, hr, a, @, b, be G) and q € poly(\) tuples (zj,7j, s;,t;,uj,vj,w;) € GT such that

6(&, C~Z) = e(gza zj) ’ 6(97’7 T’]) ’ 6(8]‘, t]) and €(b, b) = e<hzv Z]) : €<h7‘7 u]) ' e(”ja w])v (1)
to find a new tuple (2*,7*, s*,t*, u*,v*,w*) € G7 satisfying relation (1) and such that z* # 1g and z* # 2j
forje{1,....q}.

2.2 Groth-Sahai Proof Systems

In the following notations, for equal-dimension vectors or matrices A and B containing group elements,
A ©® B stands for their entry-wise product.

In their instantiations based on the DLIN assumption, the Groth- Sahal gGS techniques [49] make use of

prime order groups and a common reference string comprising vectors f1, fa, f3 € G3, where f1 = (f1,1,9),

. St
f2 = (1, fa, g) for some f1, fo € G. To commit to an element X € G, one sets C= (1, 1,X)®f1 ®f25®f3
with r, s,t & Z,,- When the CRS is configured to give perfectly sound proofs, we have j:;;, = j_’i& ® fé& where
§1,& € Z;. Commitments C = (ff+£lt,f§+£2t,X . g"tstH&+E)) are then Boneh-Boyen-Shacham (BBS)
ciphertexts [16] that can be decrypted using 81 = log,(f1), B2 = log,(f2). In the witness indistinguishability
(WI) setting, vectors ﬁ, fé, fé are linearly independent and Cisa perfectly hiding commitment. Under
the DLIN assumption, the two kinds of CRS are computat1onally indistinguishable.

To commit to a scalar x € Zj,, one computes C = %4LO) f1 ® fg , where r, s & Zy,, using a CRS comprising
vectors @, f1, fQ. In the soundness setting, &, f1, f2 are linearly independent (typlcally g = f_{», ©® (1,1,9)
where f:; = ﬁEI ® j‘g&) whereas, in the WI setting, choosing J = j‘igl O] fEEQ gives a perfectly hiding
commitment since C' is always a BBS encryption of 1g, no matter which exponent x is committed to.

To prove that committed variables satisfy a set of relations, the prover computes one commitment per
variable and one proof element (made of a constant number of group elements) per relation.

Such proofs are available for pairing-product equations, which are relations of the type

[TeA, ) - T T e x)™ = tr, (2)
i=1 i=1 j=1

for variables X1,..., A, € G and constants tp € Gr, Ay,..., A, € G, a;; € Zp, for i,j € {1,...,n}.
Efficient proofs also exist for multi-exponentiation equations

[T HX AL e = (3)

=1
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for variables &1,..., &, € G, y1,...,ym € Z, and constants T, Ay,..., A, € G, b1,...,b, € Z, and
vij € G, forie{l,...,m},je{l,...,n}.

In pairing-product equations, proofs for quadratic equations require 9 group elements whereas linear
equations (i.e., where a;; = 0 for all 7, in equation (2)) only take 3 group elements each. Linear multi-
exponentiation equations of the type [\, A?" =T demand 2 group elements.

Multi-exponentiation equations admit zero-knowledge (NIZK) proofs at no additional cost. On a sim-
ulated CRS (prepared for the WI setting), a trapdoor makes it is possible to simulate proofs without
knowing witnesses and simulated proofs have the same distribution as real proofs. In contrast, pairing-
product equations do not always have NIZK proofs. Fortunately, NIWI proofs will be sufficient here.

2.3 Structure-Preserving Signatures

Several applications (see [2, 3,36, 31, 4] for examples) require to sign groups elements while preserving the
feasibility of efficiently proving that a committed signature is valid for a committed group element.

In [2, 3], Abe, Haralambiev and Ohkubo showed how to conveniently sign n group elements at once using
signatures consisting of O(1) group elements. Their scheme (which is referred to as the AHO signature in
the paper) makes use of bilinear groups of prime order. In the context of symmetric pairings, the description
below assumes public parameters pp = ((G,Gr), g) consisting of groups (G, Gr) of order p > 2*, where
A € N is a security parameter, with a bilinear map e : G x G — G7 and a generator g € G.

Keygen(pp,n): given an upper bound n € N on the number of group elements that can be signed alto-
gether, choose generators G,., H, & G. Pick v,, 0, & Zy, and 73, 0; & Zy, for i = 1 to n. Then, compute
G. =Gy, H, = H* and G; = G}, H; = HY% for each i € {1,...,n}. Finally, choose exponents
g, p ¢ 7, and define A = (G, g*) and B = e(H,, g*). Set the public key as

pk = (G, Hy, G., H,, {Gi, Hi}I_,, A, B) € G*™ x G}

while the private key consists of sk = (oza, by Yz 02y {Vis 51-}?:1).

Sign(sk, (My, ..., My)): to sign a vector (My,..., M,) € G" using sk = (aq, o, ¥z, 02, {7i, 0i }1—), choose
Cp,Tv,w & Zy, and compute 61 = g¢ as well as

n

Oy = gP*'YzC . H Mi—%‘, 03 = G;—, 04 = g(aa*ﬁ’)/ﬂ-7
=1
n

95 = gu—52C . HMi_éiv 96 = H;“Uv 97 = g(ab—u)/w’
=1

The signature consists of o = (61, 02,03, 04,05, 06, 07).

Verify(pk, o, (M, ..., M,)): parse o as (01,02,03,04,05,06,07) € G” and return 1 iff these equalities hold:

3

A= e(GZ, 91) . E(Gr, 92) . 6(93, 94) . G(Gi, MZ'), (4)
i=1

<
Il

=

B = €(HZ,91) . €(HT,95) . 6(96,07) : | €(HZ',MZ‘). (5)

.
Il
—_

In [2,3], the scheme was proved to be existentially unforgeable under chosen-message attacks under
the ¢-SFP assumption, where ¢ is the maximal number of signing queries.



Abe et al [2,3] also showed that signatures can be publicly randomized to obtain a different sig-
nature {6/}7_, + ReRand(pk,o) on (Mj,..., M,). After randomization, we have 0] = 0; while {0/}7_,
are umformly distributed among the values satisfying the equalities e(G,,05) - e(65,6)) = e(G,,02) -
e(03,04) and e(H,,05) - e(0g,07) = e(H,,05) - (06, 07). Moreover, {0;}ic(34,6,7) are statistically indepen-
dent of (Mj,...,M,) and the rest of the signature. This implies that, in anonymity-related protocols,
re-randomized {0;};c(34,6,7) can be safely revealed as long as (M, ..., M,) and {0;};c1,25) are given in
committed form.

In [4], Abe, Groth, Haralambiev and Ohkubo described a more efficient structure-preserving signature
based on interactive assumptions. Here, we use the scheme of [2, 3] so as to rely on falsifiable assumptions.

2.4 The NNL Framework for Broadcast Encryption

The Subset Cover framework [51] considers secret-key broadcast encryption schemes with N = 2¢ registered
receivers. Each one of them is associated with a leaf of a complete binary tree T of height £ and each tree
node is assigned a secret key. If A/ denotes the universe of users and R C N is the set of revoked receivers,
the idea of the framework is to partition the set of non-revoked users into m disjoint subsets S1,...,S5n
such that N\R = S; U... U Sy,. Depending on the way to partition N'\R and the distribution of keys to
users, different instantiations and tradeoffs are possible.

THE COMPLETE SUBTREE METHOD. In this technique, each subset \S; consists of the leaves of a complete
subtree rooted at some node x; of T. Upon registration, each user obtains secret keys for all nodes on the
path connecting his leaf to the root of T (and thus O(¢) keys overall). By doing so, users in A'\R can
decrypt the content if the latter is enciphered using symmetric keys K1, ..., K, corresponding to the roots
of subtrees Si,...,Sp,. As showed in [51], the CS partitioning method entails at most m < r - log(N/r)
subsets, where r = |R|. Each transmission requires to send O(r - log N) symmetric encryptions while, at
each user, the storage complexity is O(log N).

As noted in [51,34], a single-level identity-based encryption scheme allows implementing a public-key
variant of the CS method. The master public key of the IBE scheme forms the public key of the broadcast
encryption system, which allows for public keys of size O(1) (instead of O(N) in instantiations using
ordinary public-key encryption). When users join the system, they obtain O(¢) IBE private keys (in place
of symmetric keys) associated with the “identities” of nodes on the path between their leaf and the root.

THE SUBSET DIFFERENCE METHOD. The SD method reduces the transmission cost to O(r) at the expense
of increased storage requirements. For each node z; € T, we call T, the subtree rooted at z;. The set
M\R is now divided into disjoint subsets Sk, vy, - - - Sk .um- For each @ € {1,...,m}, the subset Sk, ,, is
determined by a node xj, and one of its descendants x,, — which are called primary and secondary roots
of Sk, .u,;, respectively — and it consists of the leaves of Txk that are not in T,, . Each user thus belongs
to much more generic subsets than in the CS method and this allows reducmg the maximal number of
subsets to m = 2r — 1 (see [51] for a proof of this bound).

A more complex key distribution is necessary to avoid a prohibitive storage overhead. Each subset
Sk, u; 15 assigned a “proto-key” Py, w,, that allows deriving the actual symmetric encryption key Ky, y,
for Sy, 4, and as well as proto-keys ]-%kaxul for any descendant x,,, of z,,. At the same time, P‘Tkwxw should
be hard to compute without a proto-key P, ., for an ancestor z,, of x,,. The key distribution phase
then proceeds as follows. Let user ¢ be assignzed a leaf v; and let € = zg,x1,...,2y = v; denote the path
from the root € to v;. For each subtree T, (with j € {1,...,¢}), if copathzj denotes the set of all siblings
of nodes on the path from z; to v;, user ¢ must obtain proto-keys P, ,, for each node w € copathxj because
he belongs to the generic subset whose primary root is x; and whose secondary root is w. By storing o)
proto-keys (i.e., O(f) for each subtree T,,), users will be able to derive keys for all generic subsets they
belong to.



In [34], Dodis and Fazio extended the SD method to the public-key setting using hierarchical identity-
based encryption. In the tree, each node w at depth < ¢ has a label (w) which is defined by assigning the
label € to the root (at depth 0). The left and right children of w are then labeled with (w)||0 and (w)]||1,
respectively. For each subset Si, ., of N\R, the sender considers the primary and secondary roots xy,,
Ty, and parses the label (z.,) as (wx,)||uie, , - - - Uie, ,, With u;; € {0,1} for each j € {f;1,...,4;2}. Then,
he computes a HIBE ciphertext for the hierarchical identity ((Thy)s Wiy g -+ -5 Uig, ) At level £y o — ;1 + 2.
Upon registration, if € = xo, ..., z¢ = v; denotes the path from the root to his leaf v;, for each subtree T,
user ¢ receives exactly one HIBE private key for each w € copathxj: namely, for each w € copathgﬁj7 there
exist (1,0 € {1,...,¢} such that (w) = (z;)||wy, ... we, with w; € {0,1} for all j € {¢1,..., 4>} and user ¢
obtains a HIBE private key for the hierarchical identity ((x;),wp,,...,ws,). By construction, this key will
allow user ¢ to decrypt any HIBE ciphertext encrypted for a subset whose primary root is x; and whose
secondary root is a descendant of w. Overall, each user thus has to store O(log2 N) HIBE private keys.

2.5 Revocable Group Signatures

We consider group signature schemes that have their lifetime divided into revocation epochs at the begin-
ning of which group managers update their revocation lists.

The syntax and the security model are similar to [49] but they build on those defined by Kiayias and
Yung [45]. Like the Bellare-Shi-Zhang model [11], the latter assumes an interactive join protocol between
the group manager and the prospective user. This protocol provides the user with a membership certificate
and a membership secret. Such protocols may consist of several rounds of interaction.

SYNTAX. We denote by N € poly(\) the maximal number of group members. At the beginning of each
revocation epoch t, the group manager publicizes an up-to-date revocation list RL; and we denote by
R: C {1,..., N} the corresponding set of revoked users (we assume that R; is part of RL;). A revocable
group signature (R-GS) scheme consists of the following algorithms or protocols.

Setup(\, N): given a security parameter A € N and a maximal number of group members N € N, this
algorithm (which is run by a trusted party) generates a group public key ), the group manager’s
private key Sgm and the opening authority’s private key Soa. Keys Sgm and Spa are given to the
appropriate authority while ) is publicized. The algorithm also initializes a public state St comprising
a set data structure St,sers = () and a string data structure Stirans = €.

Join: is an interactive protocol between the group manager GM and a user U; where the latter becomes a
group member. The protocol involves two interactive Turing machines J,ser and Jgum that both take as
input ). The execution, denoted as [Juser(A, V), Jom (A, St, YV, Sgm)], terminates with user U; obtaining
a membership secret sec;, that no one else knows, and a membership certificate cert;. If the protocol
successfully terminates, the group manager updates the public state St by setting Stysers := StusersU{i}
as well as Stirans := Stirans|| (7, transcript;).

Revoke: is a (possibly randomized) algorithm allowing the GM to generate an updated revocation list
RL; for the new revocation epoch t. It takes as input a public key ) and a set Ry C Stysers that
identifies the users to be revoked. It outputs an updated revocation list RL; for epoch ¢.

Sign: given a revocation epoch t with its revocation list RL;, a membership certificate cert;, a membership
secret sec; and a message M, this algorithm outputs L if ¢ € R; and a signature o otherwise.

Verify: given a signature o, a revocation epoch t, the corresponding revocation list RL;, a message M and
a group public key ), this deterministic algorithm returns either 0 or 1.

Open: takes as input a message M, a valid signature o w.r.t. ) for the indicated revocation epoch ¢, the
opening authority’s private key Soa and the public state St. It outputs i € Stysers U{ L}, which is the
identity of a group member or a symbol indicating an opening failure.



Each membership certificate contains a unique tag that identifies the user.

A R-GS scheme must satisfy three security notions defined in appendix A. The first one is called
security against misidentification attacks. It requires that, even if the adversary can introduce and revoke
users at will, it cannot produce a signature that traces outside the set of unrevoked adversarially-controlled
users.

As in ordinary (i.e., non-revocable) group signatures, the notion of security against framing attacks
mandates that, even if the whole system colludes against a user, that user will not bear responsibility
for messages that he did not sign. Finally, the notion of anonymity is also defined (in the presence of a
signature opening oracle) as in the models of [11,45].

3 A Revocable Group Signature Based on the Subset Difference Method

As already mentioned, the idea is to turn the NNL global ciphertext into a revocation list in the group
signature. Each group member is associated with a leaf of a binary tree of height £ and the outcome of
the join protocol is the user obtaining a membership certificate that contains the same key material as
in the public-key variant of the SD method (i.e., O(¢?) HIBE private keys). To ensure traceability and
non-frameability, these NNL private keys are linked to a group element X, that only the user knows the
discrete logarithm of, by means of structure-preserving signatures.

At each revocation epoch ¢, the group manager generates an up-to-date revocation list RL; consisting
of O(r) HIBE ciphertexts, each of which is signed using a structure-preserving signature. When it comes
to sign a message, the user U; proves that he is not revoked by providing evidence that he is capable of
decrypting one of the HIBE ciphertexts in RL;. To this end, If; commits to that HIBE ciphertext C; and
proves that he holds a key that decrypts Cj. To convince the verifier that C; belongs to RL;, he proves
knowledge of a signature on the committed HIBE ciphertext C; (this technique is borrowed from the set
membership and range proofs of [57,25]). Of course, to preserve the anonymity of signers, we need a HIBE
scheme with constant-size ciphertexts (otherwise, the length of the committed ciphertext could betray the
signer’s location in the tree), which is why the Boneh-Boyen-Goh construction [15] is the ideal candidate.

The scheme is made anonymous and non-frameable using the same techniques as Groth [39] in steps 4-6
of the signing algorithm. As for the security against misidentification attacks, we cannot prove it by relying
on the standard collusion-resistance (captured by Definition 7 in appendix B.1) of the HIBE scheme. In the
proof of Theorem 1, the problem appears in the treatment of forgeries that open to a revoked user: while
this user cannot have obtained a private key that decrypts the committed HIBE ciphertext of the forgery
(because he is revoked), unrevoked adversarially-controlled users can. To solve this problem, we need to rest
on a non-standard security property (formalized by Definition 8 in appendix B.1) called “key-robustness”.
This notion asks that, given a private key generated for some hierarchical identity using specific random
coins, it be infeasible to compute the private key of a different identity for the same random coins and
even knowing the master secret key of the HIBE scheme. While unusual, this property can be proved (by
Lemma 1 in appendix B.2) under the standard Diffie-Hellman assumption for the BBG construction.

Perhaps surprisingly, even though we rely on the BBG HIBE, we do not need its underlying ¢-type
assumption [15]. The reason is that the master secret key of the scheme is unnecessary here as its role is
taken over by the private key of a structure-preserving signature. In the ordinary BBG system (recalled
in appendix B.2), private keys contain components of the form (g5 - F/(ID)", g"), for some r € Z,, where
g% is the master secret key and F(ID) is a function of the hierarchical identity. In the join protocol, the
master key g8 disappears: the user obtains a private key of the form (F(ID)",¢") and an AHO signature
is used to bind the user’s membership public key X to ¢". The latter can be thought of as a public key
for a one-time variant (the one-time nature is what allows for a proof of selective-message security in the
standard model) of the Boneh-Lynn-Shacham signature [17]. The underlying one-time private key r € Z,



is used to compute F(ID)" as well as a number of delegation components allowing to derive signatures for
messages that ID is a prefix of (somewhat in the fashion of wildcard signatures [1]|[Section 6]).

3.1 Construction

As in Section 2.4, () denotes the label of node x € T and, for any sub-tree T, rooted at x; and any leaf
v; of Ty, copathxj denotes the set of all siblings of nodes on the path from z; to v;, not counting x; itself.

As is standard in group signatures, the description below assumes that, before joining the group, user
U; chooses a long term key pair (usk[i], upk[i]) and registers it in some PKI.

Setup(\, N): given a security parameter A € N and the permitted number of users N = 2t

1. Choose bilinear groups (G, Gr) of prime order p > 2*, with a generator g & G.
2. Generate two key pairs (sk(AOQO, pkg],_)'O) and (sk(Algo, pk:,(;,_)'o) for the AHO signature in order to sign

messages of two group elements. These key pairs consist of

(d) (d)
pk,(Adl—)|O _ (ng)’ H,ﬁd), ng) _ G;ygfﬂ’ Hz(d) _ H;sga, {G(d) _ Gzi ,H.(d) _ Hf }22:1’ A(d)’ B(d)>

and sk'&dgo = (ozgd), aéd),'y,gd), 52‘1), {'yl-(d), 5i(d) ?:1), where d € {0, 1}.

3. As a CRS for the NIWI proof system, select vectors f = (f_‘i,ﬁ,ﬁ,) st. fi = (f1,1,9) € G3,
o= f20) € G and fy = i - 5, with fi = g%, fo = g% & G and By, B, 61,6 & 75,

4. Choose (U,V) & G2 that, together with f1, f2, g, will form a public encryption key.

5. Generate a master public key mpkggpg for the Boneh-Boyen-Goh HIBE. Such a public key consists?
of mpkggg = ( {hi}fzo), where ¢ = log,(NN), and no master secret key is needed.

6. Select an injective encoding? function H : {0,1}=¢ — Z, and a strongly unforgeable one-time

signature X = (G, S, V).

7. Set Sgm := (skgzo, sk&l,io), Soa = (61,ﬁg) as authorities’ private keys and the group public key

1S
Y = (9; Pk/({).iov pk(Algo, mpkggg, f, (U7 V), H, 2)_

Join(GMU); the GM and the prospective user U; run the following protocol [Juser(X, V), Jam(\, St, ), Sem)]:

1. Juser(N, V) picks # & Z,, and computes X = g% which is sent to Jem(}, St, Y, Sem). If the value
X already appears in some entry transcript; of the database Stians, Jom aborts and returns L to

Juser-
2. Jom assigns to U; an available leaf v; of label (v;) = v;1...v;0 € {0, 1}¢ in the tree T. Let zg = €,
1, ..., Tp_1, Ty = v; be the path from v; to the root € of T. For j = 0 to £, Jgm does the following.

a. Consider the sub-tree T, rooted at node ;. Let copath, - be the co-path from x; to v;.
b. For each node w € copath,_, since z; is an ancestor of w, (z;) is a prefix of (w) and we denote

by wy, ... wp, € {0, 13270+ for some £, < 5 < £, the suffix of (w) coming right after (z;).

3 As mentioned earlier, in comparison with the original HIBE scheme (recalled in appendix B.2) where mpkgge includes
(g1 = g%, g2) and mskese = g%, the public elements g1 and g have disappeared.

* This encoding allows making sure that “identities” will be non-zero at each level. Since the set {0,1}=* is of cardinality
Zf:o 2 =21 _ 1 < p—1, such a function can be efficiently constructed without any intractability assumption.



b.1 Choose a random 7 & Z, and compute a HIBE private key

dw = (DTUJ? Dw,27 Kw,€27€1+37 e 7Kw,f)
H((zx; H(we,) H(we,) \r . r -
e ((ho . hl (( 7>) . h2 el o« e hé2_£i2+2) , g 5 hé2_zl+3’ ey he)

for the identity (H((z;)), H(we,), - .., H(wg,)) € (Z3)2~0+2.
b.2 Using sk,(Aol_)m, generate an AHO signature oy, = (0,1, ..,0w,7) on (X, Dy2) € G2 so as to
bind the HIBE private key d,, to the value X that identifies ;.

3. Jom sends (v;) € {0,1}¢, and the HIBE private keys {{dw}wecopathz_}fzo to Juser that verifies their
J
validity. If these keys are all well-formed, Jyser acknowledges them by generating a digital signature
$ig; = Sigh i) (X]\{{dw}wecopathxj }?ZO) and sends it back to Jgm.

4. Jom checks that Verify g (XH{{dw}w@opathxj }gzo,sigi) = 1. If not Jgm aborts. Otherwise, Jgm
returns the AHO signatures {{O’w}wecopathzj }5:0 to Juser and stores the conversation transcript
transcript; = (X, {{dw, ow}wecopath:ﬁj }§:07 sig;) in the database Stirans.

=05 X), where X

will serve as the tag that identifies &/;. The membership secret sec; is defined to be sec; = .

Revoke(Y, Sgm, t, R¢):

5. Juser defines the membership certificate cert; as cert; = ((v;), {{duw, Jw}weeopathx_}e
J

1. Parse Sgm as Sgm = (Sk(AO&oaSk/(xlli )

2. Using the SD covering algorithm, find a cover of the unrevoked user set {1,..., N}\R; as the union
of disjoint subsets of the form Sk, uy,-- - Skoum, With m < 2+ |Ry| — 1.

3. For i =1 to m, do the following.

a. Consider Sy, ., as the difference between sub-trees rooted at an internal node xj, and one
of its descendants x,,. The label of x,, can be written (y,) = (wg,)||uie,, ---uie,, for some
li1 < {io < and where u;, € {0,1} for each k € {{;1,...,¢;2}. Then, compute an encoding
of Sk, w; as a group element

H((zg, H(wi,e; 1) H(uie; o)
Ci = ho - hy o), hy e Ei,2—;i,’12+2'

Note that C; can be thought of as a de-randomized HIBE ciphertext for the hierarchical identity
(’H(<$k1>)v H(“L&‘,l)? s 7H(ui7fz‘,2)) S (Z;)Ei’Q_gi'l+2'
(1)

b. To authenticate the HIBE ciphertext C; and bind it to the revocation epoch , use sk, o to
generate an AHO signature ©; = (0;1,...,0;7) € G on the pair (C;,g') € G2, where the
epoch number ¢ is interpreted as an element of Z,,.

Return the revocation data RL; which is defined to be

RL; = (t, R+, {(xkl), (xul>, (CZ‘, O, = (@@1, ... 791‘,7))}?;1) (6)

Sign(), t, RL;, cert;,sec;, M): return L if i € R;. Otherwise, to sign M € {0,1}*, generate a one-time
signature key pair (SK,VK) < G(\). Parse cert; as (<vi>,{{(dw,aw)}wecopathw}?:o,X) and sec; as
J
x € Zp. Then, U; conducts the following steps.

1. Using RL;, determine the set Sk, ,,, with [ € {1,...,m}, that contains the leaf v; (this subset must
exist since i ¢ R;) and let xy, and z,, denote the primary and secondary roots of Sy, ,,. Since
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xy, is an ancestor of x,,, we can write (xy,) = (x,)||uie, - .. ure,, for some 1 < o < £ and with
ug, € {0,1} for each k € {¢1,...,¢2}. The signer U; computes a HIBE decryption key of the form

(k)

(D, Diz) = ((ho - 1y

H(ure,) H(ur, o) \7 r
) ey ) (7)

This is possible since, if we denote by (zy)||ury, - - - uy ¢ the shortest prefix of (xy,) that is not a
prefix of (v;), the key material {dw}wecopathxk corresponding to the sub-tree rooted at zj, contains
l

a HIBE private key dy = (Duw,1, Dw,2, Ko g, 43, - - - » Kuw,e) such that

H((zk,))

= ((ho hy sl

H(urey) roor o gr r
..-héll_zl+2) s, g, héll—f1+3""’he 5

.h2

which allows deriving a key of the form (7) for the same r € Z,, (i.e., Djo = Dy ).

. To prove his ability to “decrypt” Cj, U; first re-randomizes ©; as {@271.}1-7:1 — ReRand(ka,_)lo, O)).
Then, he computes a Groth-Sahai commitment com¢, to C; as well as commitments {com@{d bie (1.2,5)
to {Qg,i}i€{1,2,5}‘ He generates a proof m¢, that C is a certified HIBE ciphertext for epoch ¢: i.e.,

7, provides evidence that

AW (0] 45,0] )" -GS, g')™
BW. (O, 92,7)71 : €(H2(1)79t)7

e(GM,01) - e(G1,0;,) - oG, Cy), )
e(HM,0},)-e(HM,6;5) - e(H", Cy),

1
1

z

Then, U; generates commitments {cole’i}?zl to the HIBE key components {D;;}?_, derived at
step 1 and computes a proof wp, that e(Dy 1, g) = e(Cj, D;2). The latter is quadratic and requires 9
group elements. Since {8271‘}1'6{3,4,6,7} are constants, equations (8) are linear and require 3 elements
each. Hence, ¢, and mp, take 15 elements altogether.

. Let o= (6,1, ...,0,7) be the AHO signature on (X, D, ). Compute {0 ,}7_; + ReRand(pk/gOF)'O, o)
and generate commitments {comez Yieq,2,5) 0 {0];}icq1,2,5) as well as a commitment comx to X.
Then, generate a proof m,, that committed variables satisfy the verification equations

A e(6]5.0,)7 = e(GD,071) - (G, 0],5) - (G, X) - (G, Do),
BO) - e(l;,017) 7" = e(H),0,1) - e(H®, 0] 5) - e(H”, X) - e(Hy”, Dy )

Since these equations are linear, 75, requires 6 group elements.
. Using VK as a tag (we assume that it is first hashed onto Z,, in such a way that it can be interpreted
as a Z, element), compute a tag-based encryption [47] of X by drawing 21, 22 <~ Z, and setting

(1, Wy, Ws, Wy, W5) = (f, 32, X - g7, (V- U)™, (g5 - V)™2).

. Generate a NIZK proof that comy = (1,1, X) - £7°0 - 522 L 575 and (@1, W, ¥3) are BBS

encryptions of the same value X. If we write f3 = (f3,1, f3.2, f3,3), the Groth-Sahai commitment

dx1  pPx,3 pPx2  p0X3 X'g¢Xv1+¢X*2- éﬁgs)

comx can be written as (f; " - f317, fo " f357, , so that we have

comx ® (W1, W, W3) = ( sy 127 3132; gt f;?%) (9)

)

with 71 = ¢x1 — 21, 2 = dx2 — 22, T3 = ¢x 3. The signer U; commits to 71,7, 73 € Z, (by
computing com,, = G ~E¢Tj’1 -ﬁ¢Tj’2, for j € {1, 2,3}, using the vector g = f;:,~(1, 1, g) and random
{or1, quj,Q}?:l), and generates proofs {ﬂeq_com,j}?zl that 71,79, 73 satisfy the three relations (9).

Since these are linear equations, proofs {7eq-com.; }?:1 cost 2 elements each.
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6. Compute oyx = gl/ (@+VK) and generate a commitment comg,, to oyk. Then, generate a NIWI

proof that committed variables oykx and X satisfy e(oyk, X - ¢¥%) = e(g,g). This relation is
quadratic and requires a proof consisting of 9 group elements. We denote this proof by 7, =

(WUVKJ? Tovk,2s WUVK73)'

7. Compute o5 = S(SK, (M, RLy, W1, Wa, W3, Wy, ¥s, {2, com, IT)) where 2 = {O],, 9271'}1‘6{3,4,6,7} and

com = (comcl , {comDm }12:1, comy, {com@;’i }i€{1,275}, {COmggvi }i€{1,275}, {com, };‘-3:1, comaVK)

IT= (7TC’Z > TDy» Moy s Teg-com,1s Teg-com,2y Teg-com,35 7Tcr\/K)

Return the signature o = (VK, Uy, Wy, W3, Wy, W, (2, com, 11, aots).
Verify(o, M,t, RL;,)): parse o as above and do the following.

1. T V(VK, (M, RL;,¥1,Wy, W3, Wy, s, 2, com, II), 045) = 0, return 0.
2. Return 0 if e(Wy, VK - U) # e(f1, W) or e(Wo, gVK - V) £ e(fa, ¥s).
3. Return 1 if all proofs properly verify. Otherwise, return 0.

Open(M,t,RL;,0,Son, Y, St): given Soa = (01, 52), parse the signature o as above and return L if
Verify(o, M, t, RL;,Y) = 0. Otherwise, compute X = ¥s - llll_l/ﬁl '%—1/52' In the database Stirans, find
a record (i,transcript; = (X, {{dy, aw}wecopathzj }§:07 sig;)) such that X = X. If no such record exists
in Stirans, return L. Otherwise, return i.

From an efficiency point of view, for each ¢ € {1...,m}, RL; comprises 8 group elements plus the labels
of nodes that identify Sy, ,,. If A\g denotes the bitlength of a group element, the number of bits of RL; is
thus bounded by 2 - [R¢|- (8- Ag +2log N) < 2-|R¢| - (9\g) bits (as log N < Ag/2 since A < A\g and N is
polynomial). The size of revocation lists thus amounts to that of at most 18 - |R¢| group elements.

Group members need O(log3 N) group elements to store their membership certificate. As far as the size
of signatures goes, com and II require 42 and 36 group elements, respectively. If the one-time signature
of [38] is used, o consists of 96 group elements, which is less than twice the size of Groth’s signatures [39].
At the 128-bit security level, if each element has a representation of 512 bits, a signature takes 6 kB.

Verifying signatures takes constant time. The cost of each signature generation is dominated by at
most £ = log N exponentiations to derive a HIBE private key at step 1. However, this step only has to be
executed once per revocation epoch, at the first signature of that epoch.

3.2 Security

Theorem 1 (Misidentification). The scheme is secure against misidentification attacks assuming that
the q-SFP problem is hard for ¢ = max(¢% - q,,q?), where q, and g, denote the mazimal numbers of Qa-join
queries and Qrevoke queTies, respectively, and ¢ = log N.

Proof. To mount a successful misidentification attack, the adversary A must output a non-trivial signature
for which the opening algorithm fails to point to an unrevoked adversarially-controlled group member.
Let o* = (VK*7 U, Uy Wy Wy (2, com™, 1T, o, ) denote A’s forgery and parse com* as

ots
* * * 12 * * * * 13 *
com: = (00m0> {ComDi}i:h comxy, {Com@;}ie{l,Qﬁ}’ {Comeg}ie{1,2,5}a {Comn}izlv COMyg, .« )

By hypothesis, it must be the case that Open(M*, t*, RLi+,0*,Son, Y, St) & U\ R+, where U* denotes the
set of adversarially-controlled users. Depending on extractable commitments com’, comg, {comh}?zl,
{Comé;}ie{172,5}a {comgg}ie{m,g,} and their contents, we distinguish the following cases:
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- Type 1 forgeries are those for which comg, contains a group element C* such that (C*, g"") was
never signed when the latest revocation list RLi was generated.

- Type II forgeries are such that com{, contains a properly certified HIBE ciphertext for epoch t* (say
C* = Cf, for some | € {1,...,m}, where C},...,C}, are the HIBE ciphertexts of RL;«). However, the
execution of Open reveals a previously unseen X* or points some revoked user i € U*NRy although o*
provides convincing evidence that the committed private key (D7, D3) allows decrypting C} and that
committed elements {6} 1-7:1 form a valid signature on (X*, D3). In this case, we have two situations:

a. The pair (X*, D3) was not signed by Jgm in any execution of Join. It means that either: (1) Open
uncovers a value X* that does not appear anywhere in Stans. (2) The traced user i € U* N Ry
colluded with some unrevoked user j € U® whose leaf is in S, ,, — which C} is an encoding of —
and managed to forge an AHO signature so as to link his X* to an authorized key (D7, D3) for
Skl,ul-

b. The pair (X*, D3) was signed by Jem at some execution of Join. At first, we would like to use
the Type IL.b adversary to break the standard selective semantic security of the HIBE system (cf.
Definition 7 in appendix B). As it turns out, even if we were using the original BBG HIBE (with its
master secret key), such a reduction would be unlikely to work because the set Sy, ,, may contain
unrevoked users in U?, so that A obtained private keys that do decrypt C}. Instead, we rely on
the security property that we call “key-robustness” (defined in appendix B.1) and which relies on a
weaker assumption than the standard security of the BBG HIBE. Observe that, when user ¢ joined
the group, he cannot have been issued the private key (D7, D3) (which is an authorized key for
Sk, ;) since he is revoked at epoch t*. However, since (X*, D3) was signed by Jgm, user ¢ must have
obtained from Jgm a HIBE private key of the form (D, D3), where D; # D7, for an identity other
than the one encoded by Sy, ,,. In this case, as will be showed in Lemma 2, the key-robustness
property is necessarily broken in the HIBE scheme.

It is easy to see that Type I and Type Il.a forgeries imply a forger against the AHO signature scheme (the
proof is straightforward and omitted).

Lemma 2 (in appendix C) demonstrates that a Type ILb attack necessarily contradicts the key-
robustness property (formally defined in appendix B.1) of the Boneh-Boyen-Goh HIBE scheme and thus
the Diffie-Hellman assumption, as established by Lemma 1 in appendix B.2.

Finally, one can readily check that an adversary cannot produce a signature ¢* allowing to win the
misidentification game without being one of the above kinds of forgeries. The result of the theorem follows
from the fact that the SFP assumption implies the CDH assumption. O

The security against framing attacks and the anonymity property rely on the SDH and DLIN assump-
tions, respectively, and the proofs are given in appendices D.1 and D.2.

4 Efficiency Comparisons

This section discusses the comparative efficiency of known pairing-based revocable group signatures. We
focus on revocation methods that are more efficient than generic revocation techniques: for example, we
do not consider techniques (such as the one recalled in [19][Section 5.4]) consisting in privately sending
new keys to all remaining users at each revocation. Also, we only consider schemes where group members
are stateless and do not have to update their membership certificate every time a revocation occurs.

In table 1, all sizes are given in terms of number of group elements, each one of which costs O(\) bits
to represent.
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Table 1. Comparison between pairing-based revocable group signatures

Schemes Group public Signature Membership  Revocation Signature Verification Revocation  Standard
key size size  certificate size list size cost cost cost™ model?

NFHF1 [49] O(N) o(1) o(1) O(r) o(1) o(1) O(r) X
NFHF?2 [49] O(N'/?) o(1) o(1) o(r) o(1) o(1) Oo(r) X
BS [18] o(1) o(1) o(1) O(r) o(1) O(r) o(1) X
NF [50] o(1)° o(1) o(1) Oo(r) o(1) O(r) O(r) X
LV [48] O(T)<> 0(1) (1) O(r) o(1) O(r) O(r) v
This work (SD) O(log N) O(1) O(log® N) O(r) O(log N)T * o(1) O(r -log N) v
This work (CS) 0o(1) o(1) O(log N)  O(r-log(N/r))  O(1)* o) O(r -log(N/r))* v

N: max. number of users; r: number of revocations T: max. number of revocation epochs

* The revocation cost refers to the complexity of generating an up-to-date revocation list.

{ These schemes can be modified to have O(1)-size group public keys.

1 This complexity is only involved at the first signature of each revocation epoch.

1 We only count arithmetic operations. In the signing algorithm, for example, we neglect O(loglog N) combinatorial operations at
the beginning of each epoch.

As we can see, our CS and SD-based constructions are not only the first revocable group signatures
with constant verification time in the standard model. Among schemes where revocations do not entail
updates in unrevoked users’ credentials, they are also the only solutions offering O(1) verification cost and
at most poly-logarithmic complexity in other metrics.

In applications where one can afford a logarithmic expansion factor in the size of revocation lists, the
CS method seems preferable as it features compact (meaning logarithmic according to the terminology
used in [9,19]) membership certificates.

In situations where the size of the revocation list is to be minimized, the SD method should be preferred.
Alternatively, the Layered Subset Difference approach (LSD) [41] provides an interesting tradeoff: at the
expense of doubling the maximal size of revocation lists (which asymptotically remain of size O(r)), its
basic variant allows reducing the size of membership certificates to O(log®? N) as only O(log*? N) HIBE
private keys have to be stored.
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Correctness and Security Definitions for Revocable Group Signatures

In the following, a public state St is said wvalid if it can be reached from St = (),¢) by a Turing machine
having oracle access to Jgm. Likewise, a state St’ is said to extend another state St if it can be reached
from St.

Similarly to [45,46], we will write cert; =y sec; to express that there exist coin tosses w for Jgm

and Jyser such that, for some valid public state St', the execution of [Juser(N, V), Jom(A, St', Y, Sem)]| (@)
provides Jyser With (i, sec;, cert;).

CORRECTNESS. We say that a R-GS scheme is correct if:

1.

In a valid state St, it holds that |Stysers| = |Stirans| and no two entries of St;rqns can contain certificates
with the same tag.

I Juser(N, V), Jem (A, St, Y, Sgm)] is honestly run by both parties and (i, cert;, sec;) is obtained by Jyser,

then it holds that cert; =y sec;.

. For each revocation epoch ¢ and any (i, cert;,sec;) such that cert; =y sec;, satisfying condition 2, if

i & Ry, it holds that Verify (Sign(Y,t, RL, cert;,sec;, M), M,t, RLy,Y) = 1.

. For any (i, cert;, sec;) resulting from the interaction [Juser(.,.),Jem(.,St,.,.)] for some valid state St,

any revocation epoch ¢ such that i ¢ Ry, if o = Sign(Y, ¢, RLy, cert;, sec;, M), then

Open(Mvta RLt’O—a SOAa y’ St,) =1.
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SECURITY MODEL. As in [45], we formalize security properties via experiments where the adversary
interacts with a stateful interface Z that maintains the following variables:

states: is a data structure representing the state of the interface as the adversary invokes oracles. It is
initialized as stater = (St,Y, Sgm, Soa) < Setup(\, N). It comprises the (initially empty) set Stysers of
group members and a database St;.qns containing transcripts of join protocols. Finally, statez includes
a counter ¢ (which is initialized to 0) indicating the number of user revocation queries so far.

n = |Stysers| < N is the current cardinality of the group.

Sigs: is a database of signatures issued by the signing oracle. Each record is a triple (i, t, M, o) indicating
that message M was signed by user ¢ during period ¢.

U?: is the set of users that are adversarially-controlled since their introduction in the system.

U®: is the set of honest users that were introduced by the adversary acting as a dishonest group
manager. For such users, the adversary obtains the transcript of the join protocol but not the user’s
membership secret.

When mounting attacks, adversaries will be granted access to the following oracles.

Qpubs QreyoMm and Qyeyoa: When these oracles are invoked, the interface looks up statez and returns the
group public key )V, the GM’s private key Sgm and the opening authority’s private key Soa respectively.
Qajoin: allows the adversary to introduce users under his control in the group. On behalf of the GM,
the interface interacts with the malicious prospective user by running Jgy in the join protocol. If the
protocol successfully terminates, the interface increments N, updates St by inserting the new user n
in sets Stysers and U®. It also sets Stirans := Stirans||(n, transcript,,).

Qb-join: allows the adversary, acting as a dishonest group manager, to introduce new group members
of his choice. The interface starts an execution of [Jyser, Jgm] and runs Jyeer in interaction with the
Jem-executing adversary. If the protocol successfully completes, the interface increments n, adds user
N t0 Stusers and UP and sets Stirans := Stirans|| (0, transcript, ). It stores the membership certificate cert,,
and the membership secret sec, in a private part of statez.

Qsig: given a message M, an index i, the interface checks if the private area of statez contains a
certificate cert; and a membership secret sec; such that i & R, where t is the current revocation epoch.
If no such elements exist or if i & U, it returns L. Otherwise, it generates a signature ¢ on behalf of
user i for epoch t. It also sets Sigs < Sigs||(i,t, M, o).

Qopen: on input of a valid pair (M, o) for some revocation epoch ¢, the interface runs the opening
algorithm using the current state St. When S is a set of triples (M, o,1), Q;ﬁgen denotes the restricted
oracle that applies the opening procedure to any triple (M, o,t) but those in S.

Qread and Quyrite: allow the adversary to read and write the content of statez. When invoked, Q) ead
outputs the whole stater but the public/private keys and the private part of statez where membership
secrets are stored after Qp.join-queries. Queries Qrite allow the adversary to modify statez as long as
it does not remove or alter elements of Stysers, Stirans Or invalidate the public state St: for example,
the adversary can use it to create dummy users at will as long as it does not re-use already existing
certificate tags.

Qrevoke: 18 a user revocation oracle. On input of an index i such that i € St,sers, the interface checks
if 4 is in the appropriate user set (i.e., U% or U’ depending on the considered security notion) and if
Stirans contains a record (i,transcript;) such that i ¢ Ry, where ¢ is the current revocation epoch. If
not, it returns L. Otherwise, it increments ¢, adds ¢ to R; and generates an updated revocation list RL;
which is made available to the adversary. For simplicity, we assumed that the adversary only revokes
one user per query to Qrevoke but the model easily extends to allow multiple revocations at once.

The KY model considers properties termed security against misidentification attacks, framing attacks and
anonymaity.
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In a misidentification attack, the adversary is allowed to corrupt the opening authority via the Queyoa
oracle. He can also introduce corrupt users in the group via Q) join-queries and revoke users at will using
Qrevoke- His goal is to produce a signature o* that verifies w.r.t. RL;«, where t* denotes the current
revocation epoch (i.e., the number of Qeyoke-queries). It wins if the produced signature o* does not open
to any unrevoked adversarially-controlled.

Definition 4. A R-GS scheme is secure against misidentification attacks if, for any PPT adversary A
involved in the experiment hereafter, we have Adv3s4(\) = PrExpt{9(\) = 1] € negl(\).

Experiment Exptsid())
stater = (St, Y, Sem, Soa) < Setup(\, N);
(M*7 U*) A A(qub7 Qa—joina Qrevoke; Qread; leyOA);
If Verify(o*, M, t*, RLi»,Y) = 0 return 0;
i = Open(M*,t*, RL,0*,Son, Y, St');
If (i U\ Ry ) return 1;
Return 0;

This definition extends the usual definition [45] in that A is also successful if o* verifies w.r.t. RL; but
opens to an adversarially-controlled user that was revoked during the revocation epoch t*.

Framing attacks consider the situation where the whole system, including the group manager and the
opening authority, conspires against some honest user. The adversary is allowed to corrupt the group
manager and the opening authority (using Qeyom and Queyoa, respectively). He can also introduce honest
group members (via Qp join-queries), observe the system while these users generate signatures and create
dummy users using Qwrite- In addition, before the possible corruption of the group manager, the adversary
can revoke group members at any time by invoking the Qevoke Oracle. As a potentially corrupted group
manager, A is allowed to come up with his own revocation list RL;+ at the end of the game. We assume
that anyone can publicly verify that RL« is correctly formed (i.e., that it could be a legitimate output
of Revoke) so that the adversary does not come up with an ill-formed revocation list. For consistency, if
A chooses not to corrupt the GM, the produced revocation list RL;» must be the one determined by the
history of Qrevoke-queries. The adversary eventually aims at framing an uncorrupt group member.

Definition 5. A R-GS scheme is secure against framing attacks if, for any PPT adversary A, it holds
that Advi*(\) = Pr[ExptT2()\) = 1] € negl()).

Experiment Expt*(\)
stater = (St, Y, Sem, Soa) < Setup(A\, N);
(M*, O'*, t*, RLt*) < -A(quba leyGMa leyOAy Qb-join» Qrevokea Qsig7 Qready Qwrite);
If Verify(o*, M*,t*, RL+,Y) = 0 then return 0;
i = Open(M™*,t*, RL«,0*,Soa, Y, St');
If i ¢ UY return 0;
If (Njevs i, joi (1%, M*, %) & Sigs) then return 1;
Return 0;

Anonymity is defined via a game involving a 2-stage adversary. To give a proper definition, we need to
define an special algorithm IsRevoked which, given a valid membership certificate/secret pair (cert, sec)
and a revocation list RL;, allows efficiently deciding if (cert,sec) belongs to a revoked user for RL;. Such
an algorithm exists in our construction.

In the first stage of the game, called play stage, the adversary is allowed to modify state;y by making
Quwrite-queries and to open signatures of his choice by invoking (Qopen. At the end of the play stage, it
chooses a message-period pair (M*,t*) and two pairs (secj;, certy), (secy, cert}), consisting of a well-formed
membership certificate and a membership secret for b = 0,1. Note that, to prevent the adversary from
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trivially winning, we impose the constraint IsRevoked(secy, certy, RL;«) = 0 for each b € {0,1}. The chal-
lenger flips a fair binary coin d ¢ {0,1} and generates a signature o* using (sec’, certy). The adversary
aims to eventually determine the bit d. Of course, it is restricted not to query the opening of (M*,o*)
during the guess stage.

Definition 6. A R-GS scheme is fully anonymous if Adv*°"(A) := |Pr[Expt{°"(\) = 1] — 1/2] is
negligible for any PPT adversary A involved in the following experiment:

Experiment Expt®°"())

stater = (St,), Sem, Soa) < Setup(\);

(auz, M*,t*, RLy, (secf, certf), (sect, cert}))
< A(P|ay : qub; leyGMv Qrevoke; Qopen; Qreadv Qwrite);

If —(cert; =y sec}) or IsRevoked(secy, certy, RLi+) =1 for b e {0,1}
or if cert; = cert] return 0;

d & {0,1}; o* « Sign(Y, t*, cert);, secl;, M™);

d' + A(guess : 0*, auz, Qpub, QkeyM, c?p{éy*’a*’t*)}, Qread Qurite) ;

If d = d then return 1;

Return 0;

B Hierarchical Identity-Based Encryption

Consider a hierarchy of entities, each of which has a unique address ID = (I4,. .., I;), with I; € {0, 1}* for
1 <i </, at level £. For any i < ¢, ID|; denotes the prefix (I1,...,I;) of ID. The address of a node at level
i is obtained by appending its local identifier I; to its father’s address ID|;_;.

A HIBE scheme [44, 37] is a tuple (Setup, Keygen, Derive, Encrypt, Decrypt) of algorithms® working as
follows. Setup is run by a trusted private key generator (PKG) to generate a master public key mpk and
a master secret key msk. The latter is used by the PKGQG, at the root of the hierarchy, to derive private
keys from users’ identities at level 1. The key generation algorithm Keygen takes as input the master
secret key msk and a hierarchical identity ID = (I3, ..., I;) and returns a private key djp for that identity.
Algorithm Derive is used by a ¢-th level entity with address ID = (I3, ..., ;) to compute private keys for
its children labeled as (Iy,..., Iy, *) at depth £ + 1. It takes in a ¢-th level private key dip and a vector
ID' = (I1,...,1s,Is41), where ID'|; = ID, to generate a (¢ + 1)-th level secret key dp. Algorithm Encrypt
takes in a plaintext m € M, where M denotes the plaintext space, the master public key mpk and the
receiver’s address ID = (I1,...,Iy) to produce a ciphertext C' that can be undone by the receiver having
obtained d|p from its father.

In many HIBE constructions (such as [15,20]) delegated private keys (produced by Derive) have the
same distribution as original keys (generated by Keygen). In the upcoming security definitions, we assume
that this property is satisfied by the considered HIBE system.

In the following, we say that a HIBE scheme is key-partitioned if private keys dip = (Dip, K|p) consist of
two distinct part: the first one D\p is called decryption component and it is only used to decrypt messages;
the second part K|p is called delegation component and its sole purpose is to derive private keys for children
nodes. Many HIBE systems in the literature (e.g., [15,20]) are key-partitioned.

B.1 Security Definitions for HIBE

The standard security notion [37] captures that any coalition of hierarchy entities that are not ancestors
of some user should be unable to gain information on messages encrypted for that user.

® We use the syntax of [20] which involves an explicit delegation algorithm Derive. Although this algorithm is not explicitly
written in [15], it exists as noted in appendix B.2.
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In [30], Canetti, Halevi and Katz suggested a weaker security notion, called selective security, where
the adversary has to choose its target identity upfront.

Definition 7. [30] A HIBE system with ¢ levels is selectively secure (or IND-sID-CPA secure) if no PPT
adversary A has non-negligible advantage in this game:

1. The adversary A chooses a target identity ID* = (If, ..., I}.) at depth * < £, for some £* of its choice.
The challenger runs (mpk, msk) < Setup(\) and hands mpk to A.

2. A issues a number of key extraction queries under the rule that no prefir of ID* can be the input of
a key extraction query. On input of an identity |ID = (I1,...,Iy), with k < {, the challenger responds
with dip < Keygen(msk, D).

3. When A decides that the first phase is over, it chooses messages mg, m1. The challenger flips a coin
d & {0,1} and responds with a challenge C* = Encrypt(mpk, ID*, my).

4. A issues new queries but cannot ask for the private key of a prefix of ID*.

5. A finally outputs a bit d' € {0,1} and wins if d' = d. As usual, A’s advantage is quantified as the
distance Adv™P(A) := |Pr[d' = d] — 1/2|.

For our purposes, we need a different and non-standard form of selective security, which mandates that
the adversary be unable to maul a private key that it obtained for some target identity IDT even knowing
the master secret key. By “mauling”, we mean computing a private key for a different identity 1D’ # IDT
but under the same randomness as the received key d,y:.

Definition 8. A key-partitioned HIBE system with ¢ levels is said selectively key-robust if no PPT adver-
sary A has non-negligible advantage in the following game:

1. The adversary A chooses an identity 1D = (I{r, . ,I}r) that it wishes to be challenged upon at the
depth €1 < € of its choice. The challenger runs (mpk, msk) < Setup()\) and hands (msk, mpk) to A
along with a challenge consisting of a private key d,nt for the identity IDT.

2. A outputs an identity \D" such that |DT is not a prefia® of ID' and a decryption component Dy (i.e., a
private key without delegation component). The adversary wins if: (i) Do is a valid decryption com-
ponent for \D'; (i) Diyy and d,p+ correspond to the same randomness of the key generation algorithm.

In Definition 8, we insist that A is given a full private key for the target identity IDT but it only has to
output a valid decryption component D,y for ID'.

It is also worth insisting that, for the application of this paper, a selective flavor of key-robustness
suffices. Indeed, since the number of group members is always polynomial, the target identity ID' can be
guessed upfront with non-negligible probability in the proof of Lemma 2 (in appendix C).

B.2 The Boneh-Boyen-Goh HIBE

In [15], Boneh, Boyen and Goh (BBG) described the first HIBE scheme where the size of ciphertext does
not depend on the depth of the receiver in the hierarchy. The construction bears resemblance with the
first selectively secure IBE scheme of Boneh and Boyen [14], which can be seen as a single-level variant of
the BBG HIBE. The latter works as follows.

Setup(\, ¢): given a security parameter A € N and the number of levels ¢ € N in the hierarchy, choose
bilinear groups (G, Gr) of prime order p, where p > 2*. Choose a & Zipy 9,92, ho, R, ... hy &£ G and
compute g1 = g%. The master public key is defined to be

mpkggg = ((G, Gr), 9, 91, 92, {hi}f:o>

5 We assume that hierarchical identities are prefixes of themselves for simplicity.
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while the master secret key consists of mskgpg := g5 . The space of hierarchical identities is 7 = (Z;‘,)SE .
Keygen (mskBBG, ID = (I,... ,Ik)): to generate a private key for ID = (Iy,...,I}) € (Z;)k at level k using
mskggg = g5, choose r & Zy. Then, compute and return

k
dip = (D1, D2, Ky, ..., Kp) = (!J? < (ho - thi)r, 9" Nhgrseees h}?) e Gik+2, (10)
i—1

Derive(d|D, ID' = (I4,..., I, Ik+1)): given a private key dp of the form (10) for the hierarchical identity
ID = (I1,...,I)), it is easy to derive a key for the identity ID" = (I1,..., Iy, It+1) € (Z;)"™ by choosing
' & Z, and computing

dID’ = ( lla /23Kllc+2v" . ?Ké)
, ki1 /
= (D1 LK (ho - H h) Dy g" Kyia hjyo,. .., Ko Iy ) (11)
i=1

k+1
I; r " " " I—k+1
:(gg(hOth) agr¢h7l;+27"'7h2)€G +7
=1

where "' = r + 1.

Encrypt(mpkggg, ID = (I1,...,13), M): toencrypt M € G under ID = (Iy,...,13) € (Z;)d, choose s & 7Z,,
and compute

Co =M -e(g1,92)°, C1=y9, Cy = (ho- hit - hfl‘i)s
The ciphertext is C' = (C’o, Cq, Cg).

Decrypt(mpkggg, dip, C): parse dip as (D1, D2, Kqy1, . .., K¢) € G*~%2 and the ciphertext C as (C’o, C1, Cg).
Then, compute and output
M = Co . 6(01, Dl)_l . €(CQ,D2).

It is easy to see that this construction is key-partitioned since the private key can be divided into (Dip, K\p),
where Dip = (D1, D3) € G? is only used to decrypt and Kip = (Kpt1, ..., Ky) € G52 is only useful for
delegations.

When the private key for ID’ is derived from the private key for ID, the randomizer r’ € Z, in (11)
allows making sure that derived private keys are indistinguishable from original keys that are generated
directly at level k£ + 1.

In our application, we will require that key be derived without any randomization. Namely, a private
key for ID’ is always derived as per

1
diy = (D, Dy, Kfopo o Kf) = (Dy - K55 Doy K, Ko

k+1
_ <gg (ho - [T Y 07 Blaee s h;) e Gt kL,
=1

For this reason, a private key and its descendants will always share the same component Do. However, it
does not affect the security of the group signature since, in the join protocol, users are always given freshly
generated HIBE private keys.

The following lemma demonstrates that the BBG HIBE is selectively key-robust under the Diffie-
Hellman assumption. The proof implicitly relies on the fact (implicitly noted in [43,42]) that BLS-type
signatures [17] can be proved secure in the standard model when the number of signing queries is bounded
by a small constant (such as one here since the one-time public key ¢" is used as a one-time public key).
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Lemma 1. The BBG HIBE scheme is selectively key-robust assuming that the CDH assumption holds in
G. More precisely, a selective key-robustness adversary A with advantage € implies an algorithm B solving
the CDH problem with advantage € - (1 —1/p).

Proof. Towards a contradiction, let us assume that a selective adversary A has non-negligible advantage
in the game of Definition 8. We show that A allows breaking the CDH assumption.

Algorithm B receives as input a CDH instance (g, g%, ¢") € G3 and undertakes to compute g®. At
the beginning of its interaction with A, the latter chooses a target identity IDT = (II, - ,I;T) € (Z;)"zT
at the depth £T < £ of its choice. Then, B generates the master key pair (mskgpg, mpkssg) by choosing
a & Ly G2 & G and setting g1 = g¢ as in the normal setup algorithm. Then, it picks 1, ...,y & Lo,
80,...,00 & Zy, and defines

.
% . (g%)" Yl

hi = g% - (") fori=1,...,0
h; = ¢% fori=0"+1,...,¢

To generate a private key d,p+ = (D1, Do, Kyt q, ..., Ky) for the target identity IDY, B sets

Dy = g5 - (9ol
D2 = ga
Ki:(ga)‘s" fori=0"+1,...,¢,
which form a valid private key for the random exponent r = a.
The adversary A is given (mpkgpg, mskegge = ¢5) and the private key d 5. Its goal will be to produce
a valid decryption component Dy = (D}, Dj) corresponding to an identity ID" = (I,...,I}) € (Z;)k, for
some k € {1,...,£}, that IDT is not a prefix of. In addition, Dy should correspond to the same random
exponent r = a as d,yr (in other words, D} = Dy = g%).
When A outputs its result (ID’, Dyp/), we distinguish the following situations.

o If k< ET, we have

k
/ L gt 1 ot
hg - H hft = 950*‘2?:1 27 (gb)Zf:1 Yi- (I =1 )_Efzkﬂ vil; (12)

=1

and, with overwhelming probability 1 — 1/p, it holds that

k of
Doyt (= 1) = 37 wll #0. (13)
i=1 i=k+1
Indeed, the vector ¥ = (y1,...,7,t) is chosen uniformly in Zg and it is independent of A’s view.
- If k = (7, we must have I] # IZ-T for at least one i € {1,...,¢}. Since the coordinates of ¥ are

independent and uniformly distributed, the probability to have Zfll vi - (I} — IZ-T ) = 0 is at most
1/p since we are bounding the probability of a random vector ¥ to be orthogonal to a given non-zero
vector of ij.

- If k < £, we may have I/ = I;r for each i € {1,...,k} (i.e., ID’ may be a prefix of IDT). In this

situation, the probability to have ZfT:k 1 ’yl-IZ-T = 0 is also 1/p since (Vg41,---,%+) is independent

of A’s view and identities [, ,I IRTRRRS IgT are always non-zero. Finally, if ID is not a prefix of IDf,
there exists ¢ € {1,...,k} such that I] # IJ . Then, the same argument as in previous cases applies.
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Since A presumably outputs a decryption component D,p = (D1, Dy) = (gg‘ - (ho - Hle hili)“, ga)
with non-negligible probability €, B can compute

T
" ( Dy )1/(2§_1 URUES LD DARERTIA
g5 - (g0) 0T Ol

with probability € - (1 — 1/p).
o If k > (T, there exists i € {1,...,¢!} such that Il # I;r since IDT cannot be a prefix of ID’. In this case,
we can write
koo t
ho - [l = gPorSim bt (ghy iz (i=1D
i=1

where Zf;l vi - (I — Ij) # 0 with probability at least 1 — 1/p. Then, the CDH solution g?° can be
found in the same way as in the case k < (.
O

C Deferred Lemma for the Security against Misidentification Attacks

Lemma 2. The advantage of any Type ILb forger A is at most
L 1
AV O) <4 N2 (1- ) - AdvOPR()
p

where N denotes the mazximal number of users.

Proof. At the beginning of its interaction with its challenger, our selective key-robustness adversary B
chooses a random node x; € T and a random descendant x; of z; (alternatively, B can more simply
choose two distinct random nodes in the tree and, with some probability, 3:; will be in the subtree rooted

at x;). Since 7’ is a descendant of x;, its label (z) can be written (27) = (z;)||wy, ... wg,, for some

integers £1,0o € {1,...,¢} and where w; € {0,1} for each i € {f1,...,€s}. Then, B declares IDT =
(H((xj)), H(we, ), - .., H(we,)) as its target identity at level fo — ¢4 + 2. The key-robustness challenger
replies by returning a master key pair (mskggg, mpkepg) consisting of

mpkppe = ((G,GT), g, 91 =49%, 92, {hi}f:o>, mskgsc = g5
together with a private key d,p+ = (D}L, D;, Kg2_41+3, . ,Kg) for the identity IDT.
Then, B uses mpkgpg to construct the group public key ) and generates all other public key elements

(including pkl(d\(),_)lo and pk:/gl,_)lo) according to the specification of the setup algorithm. In particular, B retains

the group manager’s secret key Sgm = (sk/(ﬂ)io, sk:(All_)m) and uses it to answer Q,join-queries.

At each Qajoin-query, B executes the join protocol on behalf of Jgm and proceeds exactly as the real
Jom does (recall that it knows Sgm and can thus perfectly simulate Jgm) with one exception. Namely,
when executing step b.1 of Join, if the private key D,, has to be computed for the target identity IDT, B
uses the private key d|5t that it received from its challenger to compute

(Dw,lv Dw,27Kw,€2—€1+3a ceey Kw,@) = (Di/g§!7 D;a KT

t
Cyl b3 K)).

As for Qpub, Qrevokes @read and Qoa-queries, B simply answers them as the real oracles would.
If the game terminates and B did not have to compute a private key for ID' at some Qa-join-query, then
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B halts and reports failure since it must have guessed the wrong tree nodes x; and :c; Otherwise (i.e., if
dpt was used to compute part of a membership certificate), we know that A’s forgery ¢* will contain a
committed HIBE private key (D7, D3) and a committed value X* such that (X*, D3) is one of the pairs
that were signed by B during some Qa.join-query. Moreover, the pair (X*, D3) was associated with some
HIBE private key dipe = (D1, D5, Kpy—p,+3, - .., K¢) for a certain hierarchical identity ID® at step b.1 of
Join. Since that identity is entirely defined by two nodes at the extremities of a path in the tree T, these two
nodes happen to be z; and z’; — so that ID® = IDT — with non-negligible probability 1/(2N —1)% > 1/4N2.

Therefore, with probability at least 1/4N?, the value Dj is precisely the element D; of the challenge
private key d,pi sent by the key-robustness challenger. Also, we note that dipe and (D7}, D}) necessarily
correspond to distinct identities as the signature o* would not trace to a revoked user otherwise. If the
desirable event ID® = IDT comes about, this implies that either:

- (D1, D3) = (DI, Dg), which means that d,p+ and (D7, D3) correspond to distinct hierarchical identities
IDV = (I1,...,It,_¢,+0) and (I},...,I}), with k € {1,...,£}, such that

lo—01+2 k'

ho - 1:[1 hl :hg-ljllhfé.

Such a collision is known (as shown in [43][Section 1.2], for example) to occur with negligible probability
under the discrete logarithm assumption.

- D5 = D; and D7 # DI, in which case B wins the selective key-robustness game. It does so by
outputting the decryption component (g - DY, D5) — after having extracted (D}, D}) from {com}, }7_,
using (B1, 2) — and the identity ID" corresponding to the HIBE ciphertext C} of the revocation list.
Indeed, if B correctly guessed x; and x;-, ID’ cannot be a descendant of ID' as long as o* opens to a
revoked user in U% N Ryx.

Since the probability to have ID® = IDT is at least 1/4N? and due to the multiplicative factor (1 —1/p) in
the statement of Lemma 1, the announced result follows. O

D Security against Framing Attacks and Anonymity

D.1 Framing Attacks

Theorem 2 (Non-frameability). The scheme is secure against framing attacks assuming that: (i) the
@-SDH assumption holds in G, where qy is the mazimal number of Qp_join-queries; (ii) X is a strongly
unforgeable one-time signature.

Proof. As in [39], we consider two kinds of framing attacks that can be possibly mounted by a non-
frameability adversary A.

- Type I attacks: the adversary A generates a forgery o* = (VK*, U Uy, Uy, Wy, W, (2, com™, IT™, agts)
for which the one-time verification key VK* was used by some honest group member i € U® when an-
swering a (Jsig-query.

- Type II attacks: A outputs a forgery o* = (VK*,W{‘,W;,W}J@,J’;,Q*,com*,l'[*,agts) for which
the one-time verification key VK* was never used by Qsg to answer a signing query on behalf of an
honest user i € U?.

It is immediate that Type I attacks imply a breach in the unforgeability of the one-time signature. Lemma
3 shows that no PPT adversary can produce a Type II forgery as long as the Strong Diffie-Hellman
assumption holds. O
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Lemma 3. The scheme is secure against framing attacks of Type II if the qs-SDH problem is hard.
More precisely, the advantage of any adversary after qs Qsig-queries and q, Qpjoin-queries is at most
AdvT T ()) < g - AdvesSPH()).

Proof. By hypothesis, the adversary A comes up with a forgery (M*, o*) that opens to some honest user
i € U’ and that did not issue a signature containing the verification key VK*. The same proof as in [39]
shows that the Strong Diffie-Hellman assumption can be broken.

Given a problem instance (g, §%,. .., g(a“)) € G911, the simulator B generates ¢, one-time signature
keys pairs (SK;, VK;) <= G(A) for i = 1 to ¢s. Then, using standard techniques (see [13][Lemma 3.2])
it builds a generator ¢ and a randomly distributed public value XT = ¢® — which implicitly defines
zt = logg(XT) = a — such that it knows {(g"/(*FVK) VK;)}% .

Next, using the newly generated g, B generates key pairs {(sk&bglo, pk,&b&o)}bzo,l for the AHO signature
(note that group elements of {pkf&o}b:m are computed as powers of ¢g) and uses pkgogo, pk/&ll_)io to form
the group public key

Y= (ga pk,(A0|—)|07 pk,(A\1|-)|07 mpkBBGa f7 U, V., H, Z)

In the latter, the Groth-Sahai CRS f = ( fi, f_é, f;;) is prepared for the perfect soundness setting, i.e., with
- . SRR .
fi=(fi=9"19), o= fa=9¢"g)and fs=fi" © f", where &1, & & Z;,
Should the adversary A decide to corrupt the group manager or the opening authority during the game,
B has Sem = (skipos skino) and Soa = (B1, B2) = (log,(f1),log,(f2)) at its disposal. At the beginning of
the game, B picks a random index j* & {1,...,¢} and interacts with A as follows.
- QueycMm-queries: if A decides to corrupt the group manager, B surrenders Sgm = (sk:gzo, sk,&ll_)io).
- Qb-join-queries: when A, acting as a rogue group manager, requests the introduction of a new honest
user i in the group, B starts interacting with A in an execution of Join and runs J,ser on behalf of the
prospective user. Namely, B’s behavior depends on the index j € {1,...,q} of the Qp join-query.

- If 5 # 5%, B follows exactly the specification of Jyser-

- If j = j*, B sends the value XT to Jgm at step 1 of Join. This implicitly defines user j*’s membership
secret to be the unknown exponent sec;» = a of the SDH instance. In subsequent steps of the
join protocol, B proceeds as the real J,ser would. When Join terminates, B obtains a membership
certificate cert;« = ({v;), {{dw,ow}wgmpathxj }gzo,XT)-

- Qpub-queries: can be treated as in the real game, by having the simulator return ).

- Qsig-queries: when A asks user i € U® to sign a message M, the simulator B can answer the query
by running the real signature generation algorithm if i # j*. Otherwise (namely, if i = j*), B uses
the next available pair { (gl/ (a+VKi) VKi)};’il to define oyk,. It also recalls the membership certificate
certjx = ((vj), {{duw, aw}w&opathmj }?ZO,X‘L) that it obtained from the Jgm-executing adversary at the
J*-th Qujoin-query. It is easy to see that, using oyk, and cert;s, it can easily generate all signature
components and sign them all using SK;.

Finally, A outputs a signature o* = (VK*,LP{‘ U3 Uy Uy W, (2, com™, IT™, a;ts), for some message M*,
that opens to some user i* € U® who did not sign M*. At this point, B halts and declares failure if it turns
out that XT o . w ~1/B1.gz=1/B2 gince, in this case, it was unfortunate when drawing the random index
g*. Still, with probability 1/gp, the signature o* opens to the user introduced at the j*-th Qp join-query
and (U7, 95, ¥5) does decrypt to X*. In this situation, the perfect soundness of the proof system ensures
that comy, . is a commitment to a group element oy, such that e((I{*/K*,XT -gV¥") = e(g,g). Since o*
is a Type II forgery, B can use (1,32 to compute a BBS decryption of comj, ,, and obtain a solution
(ovk*, VK*) to the ¢,-SDH instance. O
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D.2 Anonymity

As for the anonymity property, it naturally relies on the DLIN assumption. The proof is essentially identical
to that of Lemma 5 in [39] but we give it for completeness.

Theorem 3 (Anonymity). The advantage of any anonymity adversary is at most
Advior(A) < AdvoS(\) 4 3 - AdvPHN (),
where the first term is A’s probability of breaking the strong unforgeability of the one-time signature.

Proof. We consider a sequence of games at the end of which even an unbounded adversary has no advan-
tage. In Game i, we call S; the event that A wins and define Adv; = |Pr[S;] — 1/2].

Game 1: is the experiment of definition 6. In the play stage, the adversary A can obtain the group
public key ), the group manager’s private key Sgm = (sk&oglo,sk,&l,io). It can also ask for the opening
of any group signature and read/write the content of statez. When it decides to enter the challenge
phase, it outputs a message M*, a period index t* and two membership certificate/secret (certf,secf)
and (cert},sec}) such that certf =y seci for b = 0,1. The simulator B flips a fair coin d ¢ {0,1} and
computes o* < Sign(V,t*, RL;x, cert};, sec);, M*), where t* is determined by the history of Qrevoke-queries.
The signature o* is given as a challenge to A who has to guess d € {0,1} after another series of queries
(under the natural restriction of not querying the opening of o*). We have Adv; = Adv®°"(A).

Game 2: is as Game 1 but B halts if A queries the opening of a signature ¢ containing the same one-time
verification key VK* as in the challenge phase (we assume w.l.o.g. that (SK*,VK*) is generated at the
outset of the game). If such a query is made before the challenge phase, it means that A was able to forge
a one-time signature even without having seen a signature. If the query occurs after the challenge phase,
then the strong unforgeability of X is broken. We can thus write |Pr[Sa] — Pr[S1]| < Adv°™()).

Game 3: we change the generation of ) so as to answer (Qopen-queries without using the secret exponents
Bi,B2 € Z, that define Soa. To this end, B chooses ay,a, & Z,, and defines U = g VK. fiv, and
V =g VK . f2 Tt is not hard to see (see [47] for details) that, for any Qopen-query containing a BBS
encryption (¥q, %, ¥s) = (fi', f3%, X -g*1772), the values (W4, ¥5) reveal g*! and ¢g*2 (and thus the encrypted
X) since VK # VK* unless the event introduced in Game 2 occurs. To generate the challenge signature o*
at epoch t*, B first computes (¥7, %5, ¥5) and then (¥}, W) = (U7, ¥3). It sets the challenge signature
to be o* = (VK*, ¥, 03, Wz Wy wr (% com*, IT*, 07,,). It can be checked that the distributions of ) and
o* are unchanged and we have Pr[S3] = Pr[Ss].

Game 4: in the setup phase, we generate the CRS f = ( fi, fg, f_;;,) of the proof system for the perfect

WI setting. We choose f;;, = fi& ©) ]"352 ®(1,1,9) ! instead of fé = f;gl © fé@ so that fi, ﬁ and j‘g are
linearly independent. Any significant change in A’s behavior yields a distinguisher for the DLIN problem
and we can write |Pr[S,] — Pr[S3]| = 2- AdvPMN(B). As noted in [40], proofs in the WI setting reveal no
information on which witnesses they were generated from.

Game 5: we modify the generation of the challenge o* and use the trapdoor of the CRS (i.e., &1,&
s.t. F = flgl © ]“252) to simulate proofs {Feq_com,j}?zl that (¥7,¥5,¥3) and comx encrypt of the same
value. It is known [40] that linear multi-exponentiation equations always have perfectly NIZK proofs on a
simulated CRS. For, any satisfiable relation, (£1,&2) allows generating proofs without using the witnesses
71,72, T3 for which (9) holds and simulated proofs are perfectly indistinguishable from real ones. Hence,
Pr[S5} = PI‘[S4]

Game 6: in the computation of ¥}, we now replace g**%2 by a random group element in the chal-
lenge o*. Since B does not explicitly use 21 = logy, (¥7), z2 = log, (¥3), any change in A’s behavior
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yields a distinguisher for the DLIN problem and |Pr[Ss] — Pr[S5]| < AdvPYN(B). In Game 6, we have
Pr[Ss] = 1/2. Indeed, when we consider the challenge o*, Groth-Sahai commitments are all perfectly hiding
in the WI setting and proofs IT reveal nothing about the underlying witnesses (in particular, NIZK proofs
{Teg-com,j } ;-1 are generated without using them) and (¥7, W3, ¥3) perfectly hides X*. Finally, randomized
signature components 2* = {0}, i ,Ql i }16{3 4,6,7y are information-theoretically independent of the corre-
sponding messages and the remaining components of AHO signatures ©; and 6;.

When combining the above, A’s advantage can be bounded by Advanon(.A) < AdetS(/\)—i-B-AdvD LIN(X)
as stated by the theorem. O

E A Construction Based on the Complete Subtree Method

The following construction uses the public-key variant (suggested in [51,34]) of the CS method, which
does not require a hierarchical IBE: a single-level selectively secure IBE scheme such as the one described
by Boneh and Boyen [14] suffices. As in our construction based on the SD method, we do not need to use
the master secret key of the IBE system.

In the upcoming description, the main difference with the scheme of section 3 is the way to distribute
IBE private keys in the join protocol. Other algorithms are essentially unchanged.

As in section 3, the number of users is assumed to be N = 2¢ so that each group member is assigned to
a leaf of the tree. Again, each node is assigned a unique identifier. For simplicity, we define the identifier
ID(z) € {1,...,2N — 1} of node z to be ID(z) = 2 - ID(parent(z)) + b, where parent(x) denotes x’s father
in the tree and b = 0 (resp. b = 1) if = is the left (resp. right) child of its father. The root of the tree is
assigned the identifier ID, = 1.

Setup(\, N): given a security parameter A € N and the permitted number of users N = 2t

1. Choose bilinear groups (G, Gr) of prime order p > 2*, with a generator g & G.
2. Generate two key pairs (skgogo, pk,(f,io) and (skgﬂo, pk/&llio) for the AHO signature in order to sign

messages of two group elements. These key pairs consist of
phiho = (60, 5D, ¢ =i, 1 = 1}’ (¢ =" B = B} Y2, A9, BO)
and skl&dgo = (a((ld), l()d),'ygd 6L, {%d) 5 D2 > 1), where d € {0,1}.

3. As a CRS for the NIWI proof system, select vectors f = (fl,fg,ﬁ;,) s.t. fl = (f1,1,9) € G3,
- 228 26 \
fo=0,f29)€G’ and fs=fi" - fo, with f1 = g1, fo = ¢® & G and By, o, &1, & & 75,

4. Choose (U,V) & G? that, together with fi, f2, g, will form a public key for an IND-CCA2 cryp-
tosystem.

5. Generate a master public key mpkgg for the Boneh-Boyen IBE. Such a public key consists of

mpkgg = (ho, hl) and, again, no master secret key is needed.
6. Select a strongly unforgeable one-time signature X = (G, S, V).

7. Set Sgm = (sk/(f,_)'o, sk(Al,lO), Soa = (61, Bg) as authorities’ private keys and define the group public

key to be
= kDS, pk) kes, £, (U,V), ¥
y' g, P AHO> p AHO> MpKrBB, ’ ( ’ )7 .
Join(GMU): the group manager and the prospective user U; carry out the following interactive protocol

[Juser()\a y)a JGM()\’ St, y, SGM)]:
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1. Juser(\, V) chooses z & 7Z,, and computes X = g% which is sent to Jem(A, St, Y, Sem). If the value
X already appears in some entry transcriptj of the database Stiyans, Jogm aborts and returns L to

Juser-
2. Jgm assigns to U; an available leaf v; of the tree T and we let ID(v;) be the identifier of v;. Let
To =€, X1, ..., Ty_1, Tp = v; be the path connecting the leaf v; to the root € of T. For 7 = 0 to ¢,

Jom conducts the following steps.
a. Compute an IBE private key Dy, = (Dy; 1, Dy;2) = <(hIOD(mj) . hl)r“j, g”ﬂ') using a randomly
chosen r,, ’ & L.

b. Generate an AHO signature o, = (0%1, e 0%7) on the pair (X, ij,g) € G2 so as to bind
the node x; and the value X that identifies U;.

3. Jom sends the IBE private keys {D,; }520 to Juser that verifies their validity. If all keys are well-
formed, Juser acknowledges these values by generating a digital signature sig; = Sign g (X [{Dx, }ﬁzo)
and sends it back to Jgm.

4. Jom checks that Verify g (X||{ij }gzo,sigi) = 1. If not Jgm aborts. Otherwise, Jgum sends the
AHO signatures {0y, }5:0 to Juser and stores transcript; = (X, { Dy, 04, }§:0= sig;) in Stirans.

5. Juser defines the membership certificate cert; as cert; = (<UZ'>, {Dy;, 04 }E X ) The membership

_7':07
secret sec; is defined to be sec; = x.

Revoke(Y, Sgm, t, R¢):

1. Parse Sgm as Sgm = (SkE\O&oﬁk(Al&o)'

2. Using the CS covering algorithm, find a cover of the unrevoked user set {1, ..., N}\R; as the union
of m sub-trees Si,..., Sy, with m <r-log(N/r). Let uy, ..., u, be the roots of these sub-trees
3. For ¢+ =1 to m, do the following.

a. Compute an IBE ciphertext C; = (hBD(ui) - hy) for the identity ID(u;).

b. To authenticate C; and bind it to the current revocation epoch t, use sk:(All_)|O to generate an
AHO signature ©; = (60;1,...,0;7) € G” on the pair (C;, ¢') € G?, where the epoch number ¢

is interpreted as an element of Z,,.

Return the revocation data RL; which is defined to be

RL, — (t, Re, {ID(w), (Cy, 6;) ;7;1) (14)

Sign(Y, t, RKy, cert;, sec;, M ): return L if i € R;. Otherwise, to sign M € {0, 1}*, generate a one-time key
pair (SK, VK) « G()). Parse cert; and sec; as (<v¢>, {Dy;, 004, }fZO,X) and x € Z,, respectively. Then,
U; conducts the following steps.

1. Using RL;, determine the sub-tree S; with [ € {1,...,m}, that contains the leaf v; (this subset
must exist since i € R;) and let u; be the root of ;. Since w; is an ancestor of v;, the signer U;
necessarily knows and IBE private key of the form

Dy = (D, Duy2) = ((hg ™ 1), g™0). (15)

2. To prove that he holds a valid IBE private key for C} = (h:)D(“l) . hl), U; first generates a com-
mitment comg, to Cj. Then, he re-randomizes the corresponding signature ©; = (0;1,...,0;7) to
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obtain {07 ;}/_; ReRand(pk(Al}'O, ©;) and computes commitments {come; }ic(1,2,5} to the result-

ing {O] i}z’e {1,2,5)- Finally, he generates a proof m¢, that Cj is a certified HIBE ciphertext for epoch
t: i.e., mc, provides evidence that

AW (0] 5,0;,) 7 -G, g = e(GD), 05 - e(G1, 6),) - e(G, Oy), (16)
BY - ¢(6],6}7) " - e(Hy",g") ! = e(H,6],) - e(H, 6]5) - e(H}", ),

Then, U; generates commitments comp,, and comp,, , to Dy, 1 and Dy, 2. Then, he generates a
proof 7p,, that e(Dy,1,9) = e(Cl, Dy, 2). Since {0 ;}ic(3,4,6,7) are constants, the two relations of
(16) are linear equations and m¢, costs 6 elements while mp,, takes 9 elements.

. Let oy, = (0,1, - - ,9%7) € G” be the structure-preserving signature on (X, D, 2). Re-randomize
oy, to obtain {6,
{HUZ iYie{1,2,5) as well as a commitment comy to X. Finally, generate a proof Tg,, that committed
variables {0, ;}ic(1,2,5), X and Dy, o satisfy the verification equations

(R ReRand(pk'&Ogo,aul). Then, generate commitments {comy }icq12,5) to
ug,i 14y

ulz

AO (5.0, =e(GD,0, 1) (G060, 5) - e(GY, X) - e(GY, Dy, ),

ul37 ul4
BO . e(8), 6,001 = e(HD, 6, 1) -e(HD, 0, 5)-e(H”, X) - e(HS", Dy o).

Since these equations are linear, To,, Tequires 6 group elements.

. Compute a tag-based encryption of X by drawing z1, zo & Zy and setting
(1, o, U3, Wy, W) = (ff*, f52, X - g 72, (gVF - U)™, (g0 - V)™2).

> Px.1 ox

. Generate a NIZK proof that the commitment comx = (1 1,X) N f2¢X’2 f;; ? and (U1, Wy, W3)
are BBS encryptions of the same value X. If we write f3 = (f3,1, f3,2, f3.3), comx can be written as

( iﬁX,l ¢X3af2X2 f¢X3,X'g¢X’1+¢X’2 f;b,g(’?)) anda given that (W17!p2ay73) = ( flvaZQaX'gZ1+22)7
we have

comx ® (L_pljg/z’g,g)*l - ( f3 12 2 : ;;327 gTI+TZ : fgdg) (17)

)

with 71 = ¢x1 — 21, T2 = ¢x2 — 22, T3 = ¢x,3. The signer U; commits to the exponents {7'@'}?:1

(by computing com,; = @ ~f1¢7j’1 -ﬁd)Tj’Q for j € {1,2,3}, using the vector @ = f3-(1,1,9)), and
generates proofs Teg-com,1; Teg-com,2 @0d Teg-com,3 that {Ti}?zl satisfy the relations (17). Since (17)
are linear equations, proofs {7eg-com.; }?:1 cost 2 elements each.

. Compute oyk = gl/ (+VK) and generate a commitment comg,, to oyk. Then, generate a NIWI

proof 7, that committed variables oyk and X satisfy

e(ovk, X - g"¢) =e(g,9) (18)

Relation (18) is a quadratic pairing product equation and requires a proof consisting of 9 group
elements.

. Using SK, generate a one-time signature oys = S(SK, (M, RL;, W1, Wy, W3, Wy, s, (2, com, IT)) where
2 ={6,,,0,,}ic(346,7) and

com = (comgy, {comp,, ,}j_1,comx, {come; }ieqrsy {come, Yieqr25) {coma }i1, comoy)

II= (770“ T Dy, » Tou, » Teg-com,15 Teg-com,2> Teg-com,3> 7I'U\/K)~
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Return the signature
o = (VK,&DLWQ,W:;,WAL,&D{),Q,COI’II,H,O’OtS). (19)
Verify(o, M,t, RL;,)): parse o as above and return 1 if and only if the following checks all succeed.

1. If V(VK, (M, RLy, Wy, Ws, W3, Wy, s, 2, com, IT), 01s) = 0, return 0.
2. Return 0 if e(¥y, gVK - U) # e(f1, W) or e(W, gVK - V) £ e(f2, ¥s).
3. Return 1 if all proofs properly verify. Otherwise, return 0.

Open(M,t, RLy,0,S0na,), St): given Sopn = (1, 52), parse the signature o as in (19) and return L if
Verify(o, M, t, RL;,Y) = 0. Otherwise, compute X = Ws - 5?;1/’81 -WQI/BQ. Find a record

(i, transcript; = (X, {Dy;, 04, }§:07 $195))
such that X = X. If no such record exists in Stirans, return L. Otherwise, return 1.

The size of signatures is exactly the same as in the construction based on the SD method. Revocation lists
have become longer: they now contain O(r - log(IN/r)) group elements (as in Section 3, the representation
of ID(u;) is at least as short as that of a group element in RL;) and they can be seen as ciphertexts in the
public-key variant [34] of the CS method. On the other hand, we note that membership certificates now
consist of O(log N) group elements (vs O(log® N) in the SD method).

The complexity of the verification algorithm does not depend on r or N. As for the signing algorithm,
it first requires O(loglog N') combinatorial operations (see [51]) to determine which sub-tree the signer is a
leaf of. However, the cost of these operations (which are only needed once per epoch) is small compared to
that of public-key arithmetic operations. As we can see, the number of arithmetic operations is independent
of r and N when it comes to generate or verify signatures.

E.1 Security

All security proofs go through essentially without changes. The proof of Theorem 4 relies on the key-
robustness of the Boneh-Boyen IBE [14], but this property is implied by Lemma 1: indeed, the first IBE
scheme of [13] (in its single-level variant) can be seen as a single-level variant of the Boneh-Boyen-Goh
HIBE.

Theorem 4 (Misidentification). The scheme is secure against misidentification attacks assuming that
the q-SFP problem is hard for ¢ = max({ - qq, q?), where q, and q, denote the mazximal numbers of Qa-join
queries and Qrevoke queries, respectively, and £ = log N.

Proof. The proof is almost identical to that of Theorem 1. The only difference is that, in the treatment
of Type Il.a forgeries, the simulator B has to generate at most ¢ - ¢, AHO signatures overall (rather than
/% . q, in the proof of Theorem 1). O

Theorem 5 (Non-frameability). The scheme is secure against framing attacks assuming that: (i) the
@-SDH assumption holds in G, where qy is the mazimal number of Qp_join-queries; (ii) X is a strongly
unforgeable one-time signature.

Proof. The proof is the same as the proof of Theorem 2. a
Theorem 6 (Anonymity). The advantage of any anonymity adversary is at most
Adv™ O (A) < Adv°®(\) + 3 - AdvPPN ().

Proof. The proof is completely identical to the proof of Theorem 3. O
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Abstract. Group signatures are a central cryptographic primitive where users can anonymously and
accountably sign messages in the name of a group they belong to. Several efficient constructions with
security proofs in the standard model (i.e., without the random oracle idealization) appeared in the
recent years. However, like standard PKIs, group signatures need an efficient revocation system to be
practical. Despite years of research, membership revocation remains a non-trivial problem: many exist-
ing solutions do not scale well due to either high overhead or constraining operational requirements (like
the need for all users to update their keys after each revocation). Only recently, Libert, Peters and Yung
(Eurocrypt’12) suggested a new scalable revocation method, based on the Naor-Naor-Lotspiech (NNL)
broadcast encryption framework, that interacts nicely with techniques for building group signatures in
the standard model. While promising, their mechanism introduces important storage requirements at
group members. Namely, membership certificates, which used to have constant size in existing standard
model constructions, now have polylog size in the maximal cardinality of the group (NNL, after all, is a
tree-based technique and such dependency is naturally expected). In this paper we show how to obtain
private keys of constant size. To this end, we introduce a new technique to leverage the NNL subset
cover framework in the context of group signatures but, perhaps surprisingly, without logarithmic rela-
tionship between the size of private keys and the group cardinality. Namely, we provide a way for users
to efficiently prove their membership of one of the generic subsets in the NNL subset cover framework.
This technique makes our revocable group signatures competitive with ordinary group signatures (i.e.,
without revocation) in the standard model. Moreover, unrevoked members (as in PKIs) still do not
need to update their keys at each revocation.

Keywords. Group signatures, revocation, standard model, efficiency, short private keys.

1 Introduction

Group signatures, as suggested by Chaum and van Heyst [29], allow members of a group managed
by some authority to sign messages in the name of the group while hiding their identity. At the same
time, a tracing authority has the power of identifying the signer if necessary. A crucial problem is the
revocation of the anonymous signing capability of users when they are banned from or intentionally
leave the group.

1.1 Related Work

ORDINARY GROUP SIGNATURES. The first efficient and provably coalition-resistant group signature
dates back to the work of Ateniese, Camenisch, Joye and Tsudik [6]. By the time their scheme
appeared, the security of the primitive was not appropriately formalized yet. Suitable security
definitions remained lacking until the work of Bellare, Micciancio and Warinschi [8] (BMW) who
captured all the requirements of group signatures in three properties. In (a variant of) this model,

* This author acknowledges the Belgian Fund for Scientific Research (F.R.S.-F.N.R.S.) for his “Collaborateur scien-
tifique” fellowship.
** Supported by the ITUAP B-Crypt Project and the Walloon Region Camus Project.



Boneh, Boyen and Shacham [14] obtained very short signatures using the random oracle method-
ology [9].

The BMW model assumes static groups where no new member can be introduced after the setup
phase. The setting of dynamically changing groups was analyzed later on by Bellare-Shi-Zhang [10]
and, independently, by Kiayias and Yung [40]. In the models of [10,40], constructions featuring
relatively short signatures were proposed in [54,30]. A construction in the standard model was
also suggested by Ateniese et al. [5] under interactive assumptions. At the same time, Boyen and
Waters gave a different solution [18] without random oracles using more standard assumptions. By
improving upon their own scheme, they managed [19] to obtain signatures of constant size. Their
constructions [18,19] were both presented in the BMW model [8] and provide anonymity in the
absence of signature opening oracle. In the dynamic model [10], Groth [34] showed a system in the
standard model with O(1)-size signatures but, due to very large hidden constants, his scheme was
mostly a feasibility result. Later on, Groth came up with an efficient realization [35] (and signatures
of about 50 group elements) with the strongest anonymity level.

REVOCATION. As in ordinary PKIs, where certificate revocation is a critical issue, membership
revocation is a complex problem that has been extensively studied [20, 7,26, 17] in the last decade.
Generating a new group public key and distributing new signing keys to unrevoked members is
a simple solution. In large groups, it is impractical to update the public key and provide mem-
bers with new keys after they joined the group. Bresson and Stern suggested a different approach
[20] consisting of having the signer prove that his membership certificate does not belong to a list
of revoked certificates. Unfortunately, the length of signatures grows with the number of revoked
members. In forward-secure group signatures, Song [56] chose a different way to handle revocation
but verification takes linear time in the number of excluded users.

Camenisch and Lysyanskaya [26] proposed an elegant method using accumulators® [11]. Their
technique, also used in [59,24], allows revoking members while keeping O(1) costs for signing and
verifying. The downside of this approach is its history-dependence: it requires users to follow the
dynamic evolution of the group and keep track of all changes: each revocation incurs a modification
of the accumulator value, so that unrevoked users have to upgrade their membership certificate
before signing new messages. In the worst case, this may require up to O(r) exponentiations, if r
is the number of revoked users.

Another drawback of accumulator-based approaches is their limited applicability in the standard
model. Indeed, for compatibility reasons with the central tool of Groth-Sahai proofs, pairing-based
accumulators are the only suitable candidates. However, in known pairing-based accumulators [53,
24], public keys have linear size in the maximal number of accumulations, which would result in
linear-size group public keys in immediate implementations. To address this concern in delegat-
able anonymous credentials, Acar and Nguyen [4] chose to sacrifice the constant size of proofs of
non-membership but, in group signatures, this would prevent signatures from having constant size.
Boneh, Boyen and Shacham [14] managed to avoid linear dependencies in a revocation mechanism
along the lines of [26]. Unfortunately, their technique does not seem to readily interact? with Groth-

L An accumulator is a kind of “hash” function mapping a set of values to a short, constant-size string while allowing
to efficiently prove that a specific value was accumulated.

2 In [14], signing keys consist of pairs (gl/(‘*’JrS)7 s) € GXZp, where w € Z, is the secret key of the group manager, and
the revocation method relies on the availability of the exponent s € Z,. In the standard model, the Groth-Sahai
techniques would require to turn the membership certificates into triples (gl/(“’JrS),gs, u®), for some u € G (as in
[19]), which is not compatible with the revocation mechanism.



Sahai proofs [36] so as to work in the standard model.

In [21], Brickell considered the notion of verifier-local revocation group signatures, for which
formal definitions were given by Boneh and Shacham [17] and other extensions were proposed in
[50,61,45]. In this approach, revocation messages are only sent to verifiers and the signing algo-
rithm is completely independent of the number of revocations. Verifiers take as additional input a
revocation list (RL), maintained by the group manager, and have to perform a revocation test for
each RL entry in order to be convinced that signatures were not issued by a revoked member (a
similar revocation mechanism is used in [22]). The verification cost is thus inevitably linear in the
number of expelled users.

In 2009, Nakanishi, Fuji, Hira and Funabiki [49] came up with a revocable group signature
with constant complexities for signing/verifying. At the same time, group members never have to
update their keys. On the other hand, their proposal suffers from linear-size group public keys in
the maximal number N of users, although a variant reduces the group public key size to O(N 1/ 2,

In anonymous credentials, Tsang et al. [57, 58] showed how to prevent users from anonymously
authenticating themselves without compromising their anonymity or involving a trusted third party.
Their schemes either rely on accumulators (which may be problematic in our setting) or have linear
proving complexity in the number of revocations. Camenisch, Kohlweiss and Soriente [25] dealt
with revocations in anonymous credentials by periodically updating users credentials in which a
specific attribute indicates a validity period. In group signatures, their technique would place an
important burden on the group manager who would have to generate updates for each unrevoked
individual credential.

While, for various reasons, none of the above constructions conveniently supports large groups,
a highly scalable revocation mechanism borrowed from the literature on broadcast encryption was
recently described by Libert, Peters and Yung [47] (LPY). Using the Subset Cover framework of
Naor, Naor and Lotspiech [51] (NNL), they described a history-independent revocable group signa-
ture in the standard model with constant verification time and at most polylogarithmic complexity
in other parameters. The technique of [47] blends well with structure-preserving signatures [1, 2] and
the Groth-Sahai proofs [36]. The best tradeoff of [47] builds on the Subset Difference (SD) method
[51] in its public-key variant due to Dodis and Fazio [31]. It features constant signature size and
verification time, O(log IN)-size group public keys, revocation lists of size O(r) (as in standard PKIs
and group signatures with verifier-local revocation) and membership certificates of size O(log® V).
This can be reduced to O(log N) using the Complete Subtree method [51] but revocation lists
are then inflated by a factor of O(log N/r). Although the Layered Subset Difference method [37]
allows for noticeable improvements, the constructions of [47] suffer from relatively large member-
ship certificates. However, some logarithmic dependency on the group size is expected when basing
revocation on a tree-like NNL methodology.

1.2 Owur Contributions

As mentioned above, to date, in the only scalable revocable group signatures with constant verifi-
cation time in the standard model [47], group members have to store a polylogarithmic number of
group elements. In many applications, however, this can rapidly become unwieldy even for moder-
ately large groups: for example, using the Subset Difference method with N = 1000 ~ 20, users
may have to privately store thousands of group elements. In order to be competitive with other
group signatures in the standard model such as [35] and still be able to revoke members while
keeping them “stateless”, it is highly desirable to reduce this complexity.



In this paper, we start with the approach of [47] so as to instantiate the Subset Difference
method, but obtain private keys of constant size without degrading other performance criteria.
This may sound somewhat surprising since, in the SD method, (poly)logarithmic complexities in-
herently seem inevitable in several metrics. Indeed, in the context of broadcast encryption [51], it
requires private keys of size O(log? N) (and even O(log® N) in the public key setting [31] if the
result of Boneh-Boyen-Goh [13] is used). Here, we reduce this overhead to a constant while the only
dependency on N is a O(log N)-size group public key.

The key idea is as follows. As in the NNL framework, group members are assigned to a leaf of
a binary tree and each unrevoked member should belong to exactly one subset in the cover of au-
thorized leafs determined by the group manager. Instead of relying on hierarchical identity-based
encryption [15,38,33] as in the public-key variant [31] of NNL, we use a novel way for users to
non-interactively prove their membership of some generic subset of the SD method using a proof
of constant size.

To construct these “compact anonymous membership proofs”, we employ concise vector com-
mitment schemes [46, 27|, where each commitment can be opened w.r.t. individual coordinates in a
space-efficient manner (namely, the size of a coordinate-wise opening does not depend on the length
of the vector). These vector commitments interact nicely with the specific shape of subsets — as
differences between two subtrees — in the SD method. Using them, we compactly encode as a vector
the path from the user’s leaf to the root. To provide evidence of their inclusion in one of the SD
subsets, group members successively prove the equality and the inequality between two coordinates
of their vector (i.e., two nodes of the path from their leaf to the root) and specific node labels
indicated by an appropriate entry of the revocation list. This is where the position-wise openability
of concise commitments is very handy. Of course, for anonymity purposes, the relevant entry of the
revocation list only appears in committed form in the group signature. In order to prove that he is
using a legal entry of the revocation list, the user generates a set membership proof [23] and proves
knowledge of a signature from the group manager on the committed RL entry.

Our technique allows making the most of the LPY approach [47] by reducing the size of mem-
bership certificates to a small constant: at the cost of lengthening signatures by a factor of only
1.5, we obtain membership certificates consisting of only 9 group elements and a small integer. For
N = 1000, users’ private keys are thus compressed by a multiplicative factor of several hundreds
and this can only become more dramatic for larger groups. At the same time, our main scheme
retains all the useful properties of [47]: like the construction of Nakanishi et al. [49], it does not
require users to update their membership certificates at any time but, unlike [49], our group public
key size is O(log N). Like the SD-based construction of [47], our system uses revocation lists of
size O(r), which is on par with Certificate Revocation Lists (CRLs) of standard PKIs. It is worth
noting that RLs are not part of the group public key: verifiers only need to know the number of
the latest revocation epoch and they should not bother to read RLs entirely.

Eventually, our novel approach yields revocable group signatures that become competitive with
the regular CRL approach in PKIs: signature generation and verification have constant cost, signa-
tures and membership certificates being of O(1)-size while revocation lists have size O(r). A detailed
efficiency comparison with previous approaches is given in Section 4. Finally, it is conceivable that
our improved revocation technique can find applications beyond group signatures.



2 Background

2.1 Bilinear Maps and Complexity Assumptions

We use bilinear maps e : G x G — Gr over groups of prime order p where e(g, h) # 1g,. if and only
if g, h # 1g. In these groups, we rely on hardness assumptions that are all falsifiable [52].

Definition 1 ([14]). The Decision Linear Problem (DLIN) in G, is to distinguish the distri-
butions (g%, ¢°, g%, g%, gt%) and (g%, ¢°, g°¢, g*%, ¢%), with a,b,c,d & Zy, z & Zy,. The Decision
Linear Assumption is the intractability of DLIN for any PPT distinguisher D.

Definition 2 ([12]). The ¢-Strong Diffie-Hellman problem (¢-SDH) in G is, given a tuple
(9,9%...,9%"), for some g & G and a & L, to find a pair (g"/(@+5) 5) € G x L.

We use a signature scheme proposed by Abe et al. [1], the security of which relies on this assumption.

Definition 3 ([1]). In a group G, the ¢-Simultaneous Flexible Pairing Problem (q-SFP) is,
given (gz, hy, gr, he, a, a, b, b € (G) and q € poly(\) tuples (zj,7j, sj,t;,uj,vj,w;) € G7 such
that

e(a,a) = e(gz, 2) - elgr, 7)) - e(sj,t;)  and  e(b,b) = e(hz, 2;) - e(hp,ug) - e(vj,wy), (1)
to find a tuple (2*,7*, s*,t*,u*, v*, w*) € G satisfying relation (1) and such that z* € {1g, 21,..., 24}
The paper will appeal to two other assumptions. The first one was implicitly introduced in [16].

Definition 4 ([16]). Let G be a group of prime order p. The (-Diffie-Hellman Exponent (/-
DHE) problem is, given elements (g, g1,...,9¢, Geta, - goe) € G2 such that g; = g'*") for each i
and where o & Ly, to compute the missing element gp11 = g(aul).

We actually need a stronger variant, used in [39], of the ¢-DHE assumption. The Flexible Diffie-
Hellman assumption [43] asserts the hardness of finding a non-trivial triple (g, g>*, g®#*), for some
non-zero p € Zj, given (g, g%, g?). The following assumption relaxes the /-DHE assumption in a
similar way.

Definition 5. In a group G of prime order p, the Flexible (-Diffie-Hellman Exponent (/-
FlexDHE) problem is, given (g, g1,...,9e, Jesas---,9g20) € G** such that g; = ¢ for each i and
where o & Zy, to compute a non-trivial triple (g“,géﬂrl,ggz) € (G\{1g})3, for some u € Zy and
where ge41 = g(‘lul).
The reason why we need to rely on the above assumption instead of the weaker /-DHE assumption
is that, in our proofs, the exponent p € Z, will appear inside Groth-Sahai commitments [36], from
which only values of the form (g#, g, ;) will be efficiently extractable. The additional element gh,
will thus prevent the adversary from simply choosing p = a or it = o~ 1.

A proof of the generic hardness of the ¢-FlexDHE problem is given in [39]. We note that, while
the strength of the assumption grows with ¢, ¢ is only logarithmic in the maximal number of users
here.



2.2 Groth-Sahai Proof Systems

The fundamental Groth-Sahai (GS) techniques [36] can be based on the DLIN assumption, where
they use prime order groups and a common reference string containing three vectors f1, f2, f5 € G3,
where f1 (f1,1,9), fg (1, fa,g) for some fi, fo € G. To commit to a group element X € G, one

= Sr os ot
chooses ,s,t & Zy, and computes C' = (1,1, X) - flr . fgs - f3 . In the perfect soundness setting, we

have f3 = figl -fé&) where £, &, € Z5. Commitments C= (ff+‘£1t, §+52t,X~gr+s+t(5l+52)) are then
extractable (and distributed as Boneh-Boyen-Shacham (BBS) ciphertexts [14]) using 81 = log,(f1),

B2 = log,(f2). In the witness indistinguishability (WI) setting, vectors ﬁ, f;, ﬁ, are linearly inde-

pendent and Cisa perfectly hiding commitment. Under the DLIN assumption, the two kinds of
CRS are computationally indistinguishable.
= ST S
To commit to an exponent x € Zj, one computes C' = G*- f1 - fa , where r, s & Z,, using a CRS

consisting of vectors ¢, fi, f_é In the perfect soundness setting, , fi, fé are linearly independent (&

is often chosen as @ = f3- (1,1,g), where f3 = figl . fg&, for example) whereas, in the WI setting,

choosing g = fi&

of 1g.

To prove that committed variables satisfy a set of relations, the prover computes one commit-
ment per variable and one proof element per relation. Such non-interactive witness indistinguishable
(NIWT) proofs are available for pairing-product equations, which are relations of the type

[TeAx)-T]- H (X, X))™ = tr, (2)

i=1 i=1

. fé& gives a perfectly hiding commitment since C is always a BBS encryption

for variables X1,..., &, € G and constants t7 € Gr, Ai,..., A, € G, a;5 € Zy, for i,j € {1,...,n}.
Efficient NIWI proofs also exist for multi-exponentiation equations, which are of the form

m n m n
[Tar-TTx IR 3)
i=1 j=1 i=1 j=1
for variables X1,..., X, € G, y1,...,Ym € Zp and constants T, Ay, ..., A, € G, by,...,b, € Z; and
vij € G, forie {l,...,m},j € {1,...,n}.

In pairing-product equations, proofs for quadratic equations consist of 9 group elements whereas
linear equations (i.e., where a;; = 0 for all 4, j in equation (2)) only demand 3 group elements each.
Linear multi-exponentiation equations of the type [[;*; AY" = T demand 2 group elements.

Multi-exponentiation equations admit zero-knowledge (NIZK) proofs at no additional cost. On
a simulated CRS (prepared for the WI setting), a trapdoor allows simulating proofs without using
the witnesses and simulated proofs are distributed as real proofs.

2.3 Structure-Preserving Signatures

Many anonymity-related protocols (e.g., [28,1, 2,32, 3]) require to sign elements of bilinear groups
while maintaining the feasibility of conveniently proving that a committed signature is valid for a
committed message.

Abe, Haralambiev and Ohkubo [1,2] (AHO) showed how to sign messages of n group elements
using signatures consisting of O(1) group elements. In the context of symmetric pairings, the de-
scription hereafter assumes public parameters pp = ((G, Gr), g) consisting of groups (G, Gr) of



order p > 2*, where A € N is a security parameter, with a bilinear map e : G x G — G and a
generator g € G.

Keygen(pp,n): given an upper bound n € N on the number of group elements per signed message,
choose generators G,, H, & G. Pick v,,0, & Zyp and y;, 0; & Zy, for i = 1 to n. Then,
compute G, = G*, H, = H% and G; = G}, H; = H?% for each i € {1,...,n}. Finally, choose
Qq, ap & 7, and define A = e(G,, g**) and B = e(H,, g*). The public key is defined to be

pk = (Gr, H,, G., H., {G;,H;}]_,, A, B) € G*™ x G}

while the private key is sk = (aa, by Yz, 02y Vi 51-}?:1).

Sign(sk, (My, ..., My,)): to sign a vector (My,...,M,) € G" using sk = (aq, ¥, Yz, 02, {7Vi, 0i }11),
choose (, pa, Py, Wa, Wy &= Zy, and compute 0 = ¢¢ as well as

n
02 — gPa*'Yzc . H]\4Z‘_'Y’L7 03 — G;‘:’a7 94 — g(aafpa)/wa7
=1
n
05 = gpb—ézc . HMi_di’ 0 = H, 0, = g(ab—pb)/%7
i=1

The signature consists of o = (61, 02,03, 04,05, 06, 67).

Verify(pk, o, (M1, ..., M,)): parse o as (01,0s,03,04,05,06,07) € G and return 1 iff these equalities
hold:

3

A= e(GZ, 91) . €(Gr, 92) . 6(93, 94) . C(GZ‘, MZ'),
=1

o
Il

B = e(HZ,Ql) . e(Hr,05) . 6(96,97) . 6(Hi,Mi).

.

-
I
—

The scheme was proved [1, 2] existentially unforgeable under chosen-message attacks under the
g-SFP assumption, where ¢ is the number of signing queries.

Signatures can be publicly randomized to obtain a different signature {6/ 1‘7:1 + ReRand(pk, o)
on (M, ..., M,). After randomization, we have ] = 0; whereas other signature components {6, i7=2
are uniformly distributed among the values satisfying e(G,, 85) - e(05,0)) = e(G,, 62) - e(03,04) and
e(Hy,05) - e(0,07) = e(Hy,05) - e(0s,07). Moreover, {0;};c(34,6,7} are statistically independent of
the message and the rest of the signature. This implies that, in privacy-preserving protocols, re-
randomized {0;};c(3.4,6,7} can be safely given in the clear as long as (Mj, ..., M,) and {0;}ic(1,25)
are given in committed form.

In [3], Abe, Groth, Haralambiev and Ohkubo described a more efficient structure-preserving
signature based on interactive assumptions. Here, we only rest on non-interactive assumptions.

2.4 Vector Commitment Schemes

We use concise vector commitment schemes, where commitments can be opened with a short de-
commitment string for each individual coordinate. Such commitments based on ideas from [16, 24]



were described by Libert and Yung [46] and, under weaker assumptions, by Catalano and Fiore [27].
In [46], the commitment key is ck = (g, 91, ..., 9e Ges2, - - -, 92¢) € G*, where g; = ¢(®") for each
i. The trapdoor of the commitment is gyy1, which does not appear in ck. To commit to a vector
m = (ma,...,my), the committer picks 7 < Z, and computes C' = ¢" - Hﬁzl 9,4 _,.- A single group
element W; = g/ - Hi:l,n £ gﬁ"l_ 1 Drovides evidence that m; is the i-th component of m as it
satisfies the relation e(g;, C) = e(g, W;) - e(g1, g¢)". The infeasibility of opening a commitment to
two distinct messages for some coordinate i relies on the ¢-DHE assumption. For our purposes, we
only rely on the position-wise binding property of vector commitments and do not need them to
be hiding. The randomizer r will thus be removed from the expression of C.

2.5 The NNL Framework for Broadcast Encryption

The important Subset Cover framework [51] considers secret-key broadcast encryption schemes
with N = 2¢ registered receivers. Each receiver is associated with a leaf of a complete binary tree T
of height ¢ where each node is assigned a secret key. If N denotes the universe of users and R C N
is the set of revoked receivers, the framework’s idea is to partition the set of non-revoked users into
m disjoint subsets S1,..., Sy, such that N\R = S; U...US,,. Depending on the way to divide
M\R, different tradeoffs are possible.

The Subset Difference (SD) method yields a transmission cost of O(|R|) and a storage com-
plexity in O(log® N). For each node z; € T, we call T, the subtree rooted at x;. The unrevoked
set N'\R is partitioned into disjoint subsets Sk, v, - - -, Sk,,.u,- For each i € {1,...,m}, the subset
Sk, u; 1 determined by a node xj, and one of its descendants x,, — which are called primary and
secondary roots of Sk, 4, , respectively —and it consists of the leaves of T, that are not in T, . Each
user belongs to many generic subsets, so that the number of subsets bounded by m=2-|R| -1,
as proved in [51].

In the broadcast encryption scenario, a sophisticated key distribution process is necessary to
avoid a prohibitive storage overhead. Each subset Sy, ., is assigned a “proto-key” Paw,w that al-
lows deriving the actual symmetric encryption key Ky, ., for Sk, ., and as well as proto-iieys Pwki,:vul
for any descendant w,, of x,,. Eventually, each user has to store O(log2 N) keys. In the setting of
group signatures, we will show that, somewhat unexpectedly, the use of vector commitment schemes
allows reducing the private storage to a constant: the size of users’ private keys only depends on
the security parameter A\, and not on V.

2.6 Revocable Group Signatures

As in [49,47] (and w.l.o.g.), we consider schemes that have their lifetime divided into revocation
epochs at the beginning of which group managers update their revocation lists.

The syntax and the security model are similar to those used by Kiayias and Yung [40]. Like
the Bellare-Shi-Zhang model [10], the Kiayias-Yung model assumes an interactive join protocol
whereby the user becomes a group member by interacting with the group manager.

SyNTAX. We denote by N € poly(A) the maximal number of group members. At the beginning of
each revocation epoch ¢, the group manager publicizes an up-to-date revocation list RL; and we
denote by Ry C {1,..., N} the corresponding set of revoked users (we assume that R; is part of
RL;). A revocable group signature (R-GS) scheme consists of the following algorithms or protocols.



Setup(\, N): given a security parameter A € N and a maximal number of group members N € N,
this algorithm (which is run by some trusted party) generates a group public key ), the group
manager’s private key Sgm and the opening authority’s private key Soa. Keys Sgm and Soa are
given to the appropriate authority while ) is publicized. The algorithm also initializes a public
state St comprising a set data structure St,sers = 0 and a string data structure Styrans = €.

Join: is an interactive protocol between the group manager GM and a prospective group member
U;. The protocol involves two interactive Turing machines Jyser and Jgp that both take as
input Y. The execution, denoted as [Jyser(A, V), Jem (A, St, YV, Sem)], ends with U; obtaining
a membership secret sec;, that no one else knows, and a membership certificate cert;. If the
protocol is successful, the group manager updates the public state St by setting Stysers : =
Stusers U {i} as well as Stirans := Stirans|| (i, transcript;).

Revoke: is a (possibly probabilistic) algorithm allowing the GM to generate an updated revocation
list RL; for the new revocation epoch t. It takes as input a public key )V and a set Ry C Stysers
that identifies the users to be revoked. It outputs an updated revocation list RL; for epoch t.

Sign: given a revocation epoch t with its revocation list RL;, a membership certificate cert;, a
membership secret sec; and a message M, this algorithm outputs L if i € R; and a signature o
otherwise.

Verify: given a signature o, a revocation epoch ¢, the corresponding revocation list RL;, a message
M and a group public key ), this deterministic algorithm returns either 0 or 1.

Open: takes as input a message M, a valid signature o w.r.t. ) for the indicated revocation epoch
t, the opening authority’s private key Spa and the public state St. It outputs i € Stysers U{L},
which is the identity of a group member or a symbol indicating an opening failure.

Each membership certificate contains a unique tag that identifies the user.

A R-GS scheme must satisfy three security notions defined in Appendix A. The first one is
called security against misidentification attacks. It requires that, even if the adversary can introduce
and revoke users at will, it cannot produce a signature that traces outside the set of unrevoked
adversarially-controlled users.

As in ordinary (i.e., non-revocable) group signatures, the notion of security against framing
attacks captures that under no circumstances should an honest user be held accountable for messages
that he did not sign, even if the whole system conspires against that user. Finally, the notion of
anonymity is also defined (by granting the adversary access to a signature opening oracle) as in the
models of [10,40].

3 A Revocable Group Signature with Compact Keys and Constant Verification
Time

The number of users is assumed to be N = 271 € poly(\), for some integer £, so that each
group member is assigned to a leaf of the tree. Each node is assigned a unique identifier. For
simplicity, the root is identified by ID(¢) = 1 and, for each other node x, we define the identifier
ID(z) € {1,...,2N — 1} to be ID(x) = 2 - ID(parent(x)) + b, where parent(x) denotes z’s father in
the tree and b = 0 (resp. b = 1) if z is the left (resp. right) child of its father. The root of the tree
is assigned the identifier ID. = 1.

At the beginning of each revocation epoch ¢, the GM generates an up-to-date revocation list RL;
containing one entry for each generic subset Sk, 4, ..., Sk, u, Produced by the Subset Difference
method. These subsets are encoded in such a way that unrevoked users can anonymously prove



their membership of one of them. Our technique allows to do this using a proof of constant size.

The intuition is as follows. In the generation of RL;, for each i € {1,...,m}, if x, (resp. zy,)
denotes the primary (resp. secondary) root of S, ,,, the GM encodes S, ., as a vector of group
elements R; that determines the levels of nodes xy, and x,, in the tree (which are called ¢; and v
hereafter) and the identifiers ID(z,) and ID(xy,). Then, the resulting vector R; is authenticated
by means of a structure preserving signature ©;, which is included in RL; and will be used in a set
membership proof [23].

During the join protocol, users obtain from the GM a structure-preserving signature on a com-
pact encoding C, — which is computed as a commitment to a vector of node identifiers (I1,. .., Iy)
— of the path (I1,...,I;) between their leaf v and the root e. This path is encoded as a single group
element.

In order to anonymously prove his non-revocation, a group member U; uses RL; to determine
the generic subset Sk, ,,, with [ € {1,..., m}, where his leaf v; lies. He commits to the corresponding
vector of group elements R; that encodes the node identifiers ID(zy,) and 1D(z,,) of the primary
and secondary roots of S, ,, at levels ¢; and v, respectively. If (11, ..., ;) identifies the path from
his leaf v; to €, the unrevoked member Uf; generates a membership proof for the subset Sy, ., by
proving that ID(xy,) = Iy, and ID(zy,) # Iy, (in other words, that xj, is an ancestor of v; and
%y, is not). To succinctly prove these statements, U; uses the properties of the vector commitment
scheme recalled in Section 2.4. Finally, in order to convince the verifier that he used a legal element
of RL;, U; follows the technique of [23] and proves knowledge of a signature ©; on the committed
vector of group elements R;. By doing so, U; thus provides evidence that his leaf v; is a member of
some authorized subset Sy, ,, without revealing [ € {1,...,m}.

In order to obtain the strongest flavor of anonymity (i.e., where the adversary has access to a
signature opening oracle), the scheme uses Kiltz’s tag-based encryption scheme [42] as in Groth’s
construction [35]. In non-frameability concerns, the group member U; also generates a weak Boneh-
Boyen signature [12] (which yields a fully secure signature when combined with a one-time signa-
ture) using = = log,(X), where X € G is a group element certified by the GM and bound to the
path (Iy,...,I;) during the join protocol.

3.1 Construction

As in standard security models for group signatures, we assume that, before joining the group, user
U; chooses a long term key pair (usk[é], upk[i]) and registers it in some PKI.

Setup(\, N): given a security parameter A € N and the permitted number of users N = 2t-1,

1. Choose bilinear groups (G, Gr) of prime order p > 2}, with a generator g & G.
2. Define ng = 2 and n; = 5. Generate two key pairs (sk(AO&O,pk(AOQO) and (sk&ﬂo, k(All—)|O) for
the AHO signature in order to sign messages of ng and nq group elements, respectively.

These key pairs are
pk@ = (ng)7 HD, ¢ = G3§d>’ A — Hfid), (G = G3§d),H( ) _ H }_1’ A, B(d))

and sk:/(\d,zo = (a((zd),oz,() ), (@) 5 { @ )0, )}?ﬁl), where d € {0,1}. These two schemes will
be used to sign messages cons1st1ng of 2 and 5 group elements, respectively.
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3. Generate a public key ck = (g1,...,9e, get2,- - -, goe) € G*~ for vectors of dimension ¢ in
the vector commitment scheme recalled in section 2.4. The trapdoor gy is not needed and
can be discarded.

4. As a CRS for the NIWI proof system, select vectors f = (fi, fa, f;:,) st. fi = (f1,1,9) € G3,
fo=(1,fag) € G* and f = Ao, with f1 = g7, fo = g% & G and By, o, &1, & & T,
We also define the vector @ = f3 - (1,1, g).

5. Choose (U, V) £ G? that, together with generators fi, f2,g € G, will form a public encryp-
tion key.

6. Select a strongly unforgeable one-time signature X' = (G, S, V).

7. Set Sgm = (sk,&ok)lo,skg&o), Sop = (Bl,ﬂg) as authorities’ private keys and the group
public key is

— (0) (1) _ =
Y= (g) pkAHOa pkAH07 ck = (gl, s 90, 90425 - - 7924)7 £, ¢ (Uv V)’ E)
Join(GMUi): the group manager and the prospective user U; run the following interactive protocol

[Juser(/\7 y>7 JGM ()\7 St, y7 SGM)]:

1.

Juser(A, V) draws = & Zy, and computes X = ¢g” which is sent to Jem(A, St, Y, Sem). If
X € G already appears in some entry transcript; of the database Stirans, Jom halts and
returns L to Jyeer-

. Jem assigns to U; an available leaf v of identifier ID(v) in the tree T. Let x1,...,xy be the

path from z; = v to the root x; = € of T. Let also (I1,...,I;) = (ID(x1),...,ID(z¢)) be the

corresponding vector of identifiers (with I; = 1 and I, = ID(v) € {N,...,2N — 1}). Then,

Jem does the following.

a. Compute a compact encoding of (I1,...,1Iy) as C, = Hf;:l géj_l_n = gél . -g{e.

b. Using sk:gao, generate an AHO signature o, = (6,1,...,0,7) on the pair (X,C,) € G2
so as to bind the encoded path C, to the value X that identifies U;.

Jom sends ID(v) € {N,...,2N — 1} and C, to Jyser that halts if ID(v) ¢ {N,...,2N —1} or

if €y is found incorrect. Otherwise, Jyser sends a signature sig; = Sign g (X||(I1, ..., 1p))
to Jgm-

. Jgm checks that Verifyupk[i]((XH(Il, . ,Ig)),sigi) = 1. If not Jgm aborts. Otherwise, Jgm

returns the AHO signature o, to Jyser and stores transcript; = (X, ID(v), Cy, 0y, sig;) in the
database Stians.

. Juser defines the membership certificate as cert; = (lD(U), X, C,, o*v) € {N,...,2N -1} xG?,

where X will serve as the tag identifying U;. The membership secret sec; is defined as
sec; = T € Zp.

Revoke(), Sgm, t, R¢): Parse Sgm as Sgm := (skﬂlo, sk'&lk)lo) and do the following.

1.

Using the subset covering algorithm of the SD method, find a cover of the unrevoked user
set {1,...,N}\R; as the union of disjoint subsets of the form Sk, v, .., Skn um, Where

. For i =1 to m, do the following.

a. Consider the subset Sy, ,, as the difference between sub-trees rooted at an internal node
xy, and one of its descendants z,,. Let ¢;,¢; € {1,...,¢} be the depths of zj, and
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Ty, respectively, in T assuming that the root € is at depth 1. Encode Sy, ,, as a vector
ID(zk;) ID(zu,)
(960,91 Gupyr g O 1FH))
b. To authenticate Sy, ., and bind it to the revocation epoch ¢, use sk’gl,}lo to generate an
ID (g,
AHO signature ©; = (0;1,...,0;7) € G" on R; = (gt,g(zsi,g1 (zkl),gwi,g'D(a’“i)), where

the epoch number ¢ is interpreted as an element of Zj,.

Return the revocation data

RL; = (t, Re, {i, ¥i, ID(zg,), ID(zy,), O = (91',1,---,@@7)}?;1)- (4)

Sign(), t, RL, cert;,sec;, M ): return L if i € R;. Otherwise, to sign M € {0,1}*, generate a
one-time signature key pair (SK,VK) <« G(\). Parse cert; as cert; = (|D(Ui),X, C’vi,avi) €
{N,...,2N — 1} x G? and sec; as = € L. Let € = x1,...,74 = v; be the path connecting v; to
the root € of T and let (I3,...,1I;) = (ID(x1),...,ID(x¢)) be the vector of node identifiers. First,
U; generates a commitment comc,, to the encoding Cy, of the path (I1,...,1p) from v; to the
root. Then, he does the following.

1. Using RLy, find the set S, ,,, with [ € {1,...,m}, that contains the leaf v; identified by
ID(v;). Let @, and z,, denote the primary and secondary roots of Sk, ., at depths ¢; and 1,
respectively. Since xy, is an ancestor of v; but x,, is not, it must be the case that I, = ID(xy,)
and Iy, # ID(zy,).

2. To prove that v; belongs to Sy, ., without leaking I, I; first re-randomizes the I-th AHO sig-

nature @; of RL; as {sz 1'7:1 — ReRand(pk(All_%o, ©;). Then, he commits to the I-th revocation
message

ID(x
Ry = (Ri1,Ri2, R, Rias Ris) = (9 96,5 01 ( kl)jgzp,,ng(“l)) (5)

and its signature ©] = (6, ,,..., 0, ;) by computing Groth-Sahai commitments {comp,  }2_,,
{COW@;J_ }j6{17275} to {RZ,T}:?—:Q and {@;J}jE{I,Q,S}'
a. To prove that Iy, = ID(zy,), U; first computes Wy, = Hi:l, v gl{ilfmr@ that satis-

fies the equality e(gg,,Cy;) = e(g1, g0)' - e(g, Wy,). Then, U; generates a Groth-Sahai
commitment comyy,, to Wy,. He computes a NIWI proof that committed variables
(RLQ, Rl73, Cvi, W(m) satisfy

€(R172, Cvl) = 6(R173,g£) ’ 6(9, W(bl) (6)
We denote by 7, the proof for the quadratic equation (6), which requires 9 group

elements.
b. To prove that I, # ID(xy,), U; computes Wy, = Hi:L K géj_l_mﬂbl that satisfies the

equality e(gy,, Cy,;) = e(glvgé)lwl -e(g,Wy,). Then, he computes a commitment comw,,
to Wy, as well as commitments comp, and {COm%,T}Te{O,l,%} to the group elements

_ Iy, I
(11, Y10, Y11, Vi 0) = (91/(1‘” ID(E“Z)),gl’phglw792?1)-
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Then, U; provides evidence that committed variables (R4, Ri5,Cy;, 17, %10, %11, Y1 20)
satisfy

G(RZA) Cvl) = e(wl,la gﬁ) : e(ga WT/Jz)a e(!pl,O/Rlﬁv -Fl) = 6(9)9) (7)
e(Y1,9) = e(g1,%10), e(Wr20,9) = e(920,¥10)-  (8)

We denote this NIWI proof by mpeq = (Tneg 15 Tneq,2: Tneg,3: Tneg,4)- Since the first two
equations (7) are quadratic, Tpeq1 and mpeq2 consist of 9 elements each. The last two
equations (8) are linear and both cost 3 elements to prove.

3. U; provides evidence that the tuple R; of (5) is a certified revocation message for epoch ¢:
namely, he computes a NIWI proof mg, that committed message elements {RLT}§:2 and
signature components {©] j}j€{1,2,5} satisfy the equations

5
AW e(0)4,0]) oG, g T = e(G1,6],) - e(GY,6;,) - [[ e(GD, Ryy),  (9)
T=2
) 5
BW - ¢(0]4,6,7) " - e(H", ") = e(HM,6},) - e(HV,6)5) - [[ e(HY, Ry.1),
T=2

Since {0 ;}je(3,4,6,7) are constants, equations (9) are both linear and thus require 3 elements
each. Hence, mg, takes 6 elements altogether.

4. Let 0y, = (0u;,1,- - -, 0u,7) be the AHO signature on the message (X, Cy,). Set {0, ;}i_;
ReRand(pk&,io, Tv;) and generate commitments {COmgl }JG{LQ,E,} to {0, ;}jef1,2,5) as well

as a commitment comy to X. Then, generate a NIWI proof Ty, that committed variables
satisfy the verification equations

AO) - e(0]5,014) " = (G, 607,) - (G, 075) - (G, X) - e(GY, C),
BO - e(t]5,617) " = e(HO,01) - e(H, 0 5) - e(H", X) - e(H}", C.y)

Since these equations are linear, 7, requires 6 group elements.

5. Using VK as a tag (by first hashing it onto Z, in such a way that it can be interpreted as a
Z, element), compute a tag-based encryption [42] of X by drawing z1, z2 <= Z, and setting
(Tl,TQ,Tg,T4,T5) — ( 1Z1,f222,X . gzl—i-zz’ (gVK . U)zl ( VK V)ZQ)

6. Generate a NIZK proof that comx = (1,1, X) - f f;wXQ ﬁ;,wx’g and (17,7%,73) are
BBS encryptions of the same value X. If we write f3 = (f3,1, f3.2, f3,3), the Groth-Sahai
commitment comy can be written as (f; X" - ;i}f(’g, 5 2 fs, XS,X guxtwxe . ;?f(’s), SO
that we have

comyx - (T1,T2,T3)_1 = ( f3 1R ?2(%, gatxe. f?%) (10)

Wy ;5,1 Wy ;2

'f2 ]77

with wy, 1, wy, 2 ¢ Zy, for j € {1,2,3}, as commitments to {x]} _, and generates proofs

with x1 = wx1 — 21, X2 = wx2 — 22, X3 = wx,3. Compute com,, = g X - f;

{Teg-com.j }]:1 that x1, X2, x3 satisfy the three linear relations (10). The proofs {7eg-com.; }j:
cost 2 elements each.
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7. Compute a weak Boneh-Boyen signature oyx = ¢/ *+VK) on VK and a commitment COMgy
to ovk. Then, generate a NIWI proof Toy, = (Foyx.1s Tok,2s Tovk,3) € G that committed
variables (ovk, X) € G? satisfy the quadratic equation e(ayk, X - gVK) = e(g, 9).

8. Compute 045 = S(SK, (M, RL;,11,72,73,74,75, {2, com, IT)) where 2 = {82,2-, 9;77;}1‘6{3,4,6,7}
and

5
com = (comcvi scomx, {comp,  }7_o, comw, ,comw, ,comr,, {comy, }ref0120},
3
{come; }jeqi25), {come; }ieqr25y {comy, b1, comey)
_ 3
II = (7Teqa Tneqs TRy Tow, {Weq—com,j }j:lv » 7Ta'\/K)
Return the signature o = (VK, 11,75,73,74,75, (2, com, I, aots).

Verify(o, M,t, RL;,)): parse o as above. If V(VK, (M, RL;,11,75,73,74,75, 2,com,II),055) = 0
or if (Y1,75,73,Yy,7s) is not a well-formed tag-based encryption (that is, if e(2y,gVK - U) #
e(f1,Yy) or ey, gVK - V) # e(f2,T5)), return 0. Then, return 1 if all proofs properly verify.
Otherwise, return 0.

Open(M,t, RLs,0,S0a,), St): parse o as above and return L if Verify(o, M,t, RL;,)) = 0. Oth-
erwise, given Soa = (61, 82), compute X = 13 - Tfl/ﬂl -T;l/BQ. In the database Stians, find a
record (i, transcript; = (X;, 1D(v;), Cy,, 0, 5igi)) such that X; = X. If no such record exists in
Stirans, return L. Otherwise, return .

At first glance, the variable ¥ 5y and the proof of the second equality (8) may seem unnecessary in
step 2.b of the signing algorithm. However, this element plays a crucial role when it comes to prove
the security under the ¢-FlexDHE assumption. Indeed, the proof of security against misidentification
attacks (more precisely, the proof of Lemma 1 in Appendix B.1) ceases to go through if we remove
Y 9¢ and its corresponding proof.

As far as efficiency goes, each entry of RL; contains 7 group elements and two node identifiers
of O(log N) bits each. If g is the bitlength of a group element, we have log N < Ag/2 (since
A < Ag and N is polynomial), so that the number of bits of RL; is bounded by 2 - |Ry|- (7 - Ag +
2log N + 2loglog N) < 2 - |Ry| - (9Ag) bits. The size of RL; is thus bounded by that of 18 - |R]|
group elements.

Unlike [47], group members only need to store 9 group elements in their membership certificate.
As far as the size of signature goes, com and II require 66 and 60 group elements, respectively.
If the one-time signature of [34] is used, VK and oy consist of 3 elements of G and 2 elements
of Z,, respectively. The global size ¢ amounts to that of 144 group elements, which is about 50%
longer than [47]. In comparison with [35] (which does not natively support revocation), signatures
are only longer by a factor of 3. At the 128-bit security level, each group element should have a
512-bit representation and a signature takes 9 kB.

Verifying signatures takes constant time. The signer has to compute at most 2¢ = O(log N)
exponentiations to obtain Wy, and Wy, at the beginning of each revocation epoch. Note that these
exponentiations involve short exponents of O(log V) bits each. Hence, computing Wy, and Wy,
requires O(log2 N) multiplications in G. For this reason, since we always have log? N < A (as long
as N <« 2/\1/2), this cost is dominated by that of a single exponentiation in G.

3.2 Security

From a security point of view, we prove the following theorem in Appendix B.

14



Theorem 1. The scheme provides anonymity as well as security against misidentification and
framing attacks if the SFP, FletDHE, SDH and DLIN assumptions all hold in G.

In comparison with [47], the security proof requires the additional non-standard ¢-FlexDHE assump-
tion, where ¢ = log(N). In Appendix C, we show how to rest on weaker (and fewer) intractability
assumptions if we accept to use a group public key of size O(log? N') while keeping all other com-
plexities unchanged. This construction offers an interesting tradeoff since, in some applications,
group public keys of log-squared size are handier to work with than private keys of size O(log3 N)
as in [47].

Appendix C also explains how to also eliminate the SDH assumption using the technique of
Malkin et al. [48]. In this case, an additive factor of O(\) appears in the group public key size be-
cause a longer Groth-Sahai CRS must be used. On the other hand, the ¢-SFP assumption becomes
the only assumption of variable size.

4 Efficiency Comparisons

This section compares pairing-based revocable group signatures where group members are stateless
and do not update their membership certificate whenever a revocation occurs. Comparisons are
given in terms of computational costs and the size (measured by the number of group elements)
of public keys, signatures, membership certificates and revocation lists as functions of N, r and, in
some cases, the number T" of revocation epochs. By “constant”, we thus mean that the complexity
only depends on the security parameter \.

Table 1. Comparison between pairing-based revocable group signatures

Schemes Group public Signature Membership  Revocation Signature Verification Revocation Standard

key size size  certificate size list size cost cost cost model?
NFHF1 [49] O(N) 0(1) O(1) O(r) 0(1) o(1) O(r) X
NFHF2 [49] O(N'/?) 0(1) 0(1) O(r) 0(1) o(1) O(r) X
BS [17] 0(1) 0(1) o(1) O(r) 0(1) Oo(r) 0(1) X
NF [50] o(T)* 0o(1) O(1) O(r) 0o(1) O(r) O(r) X
LV [45] o(T)* o(1) (1) o(r) o(1) Oo(r) Oo(r) v
LPY1 (SD) Of(logN) o(1) O(log® N) O(r) O(log N)f 0(1) O(r -log N) v
LPY2 (CS) O(1) O(1) O(log N) O(r-log(N/r)) O(1) O(1) O(r -log(N/r)) v
This work O(log N) o(1) 0(1) O(r) o(1) o(1) O(r) v
N: max. number of users; r: number of revocations T': max. number of revocation epochs

¢ These schemes can be modified to have O(1)-size group public keys.
1 This complexity is only involved at the first signature of each revocation epoch.

As previously mentioned, among schemes where revocations require no update in unrevoked
users’ credentials, the new method seems asymptotically optimal. The only dependency on N
appears in the group public key size, which is logarithmic and thus quite moderate. At the same
time, it retains revocation lists of size O(r) (which is on par with the VLR-based approach [17] but
without its verification cost of O(r)) as in the SD method of [47]. In comparison with the latter,
we also eliminate the O(log N) multiplicative factor in the revocation cost and the complexity of
the signing algorithm in the worst case.
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The joining protocol is also much more efficient in our scheme than in [47] as the group manager

has to generate only one structure-preserving signature (computing C,, in step 2.a of the protocol
is actually cheaper than a single exponentiation in G), instead of log(N) in the two schemes of [47].

In Appendix C, we give tradeoffs between the strength of the assumption and the efficiency: in

these alternative constructions, the assumption is weakened at the expense of group public keys of
size O(log? N) or O(\ + log? N).
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A Correctness and Security Definitions for Revocable Group Signatures

In the following, as in [40], we say that a public state St is walid if it is reachable from St = (), ¢)
by a Turing machine having oracle access to Jgum. Also, a state St’ is said to extend another state
St if it is within reach from St.

As in [40, 41], when we write cert; =y sec;, it means that there exist coin tosses w for Jgm and

Juser such that, for some valid public state St’, the execution of [Jyser(A, V), Jom(A, St', YV, Sem)] (@)
provides Jyser With (i, sec;, cert;).

CORRECTNESS. A R-GS scheme is correct if the following conditions are all satisfied:

1.

In a valid state St, it always holds that [Stysers| = |Stirans| and two distinct entries of Styrans
always contain certificates with distinct tag.

If the protocol [Juser(A, Y), Jam (A, St, YV, Sem)] is run by two honest parties and (i, cert;, sec;) is
obtained by Jyser, then it holds that cert; =y sec;.

For each revocation epoch ¢ and any (i, cert;, sec;) such that cert; =y sec;, satisfying condition
2,if i € Ry, it always holds that Verify(Sign(y,t, RLy, cert;,sec;, M), M, t, RLt,y) =1.

. For any outcome (i, cert;,sec;) of the interaction [Jyser(-,.),Jem (., St,.,.)] for some valid state

St, any revocation epoch t such that ¢ &€ Ry, if o = Sign(), ¢, RL¢, cert;, sec;, M), then

Open(M, t, RLt7 g, SOAa y7 St,) =1.

SECURITY MODEL. As in [40], we formalize security properties via experiments where the adversary
interacts with a stateful interface Z that maintains the following variables:

- statez: is a data structure representing the state of the interface as the adversary invokes the

various oracles. It is initialized as statez = (St,Y,Sgm,Soa) < Setup(A, N). It includes the
(initially empty) set Stysers of group members and a dynamically growing database Stirqns
storing the transcripts of previously executed join protocols. Finally, states includes a counter
t (which is initialized to 0) indicating the number of user revocation queries so far.

- n = |Stusers| < N denotes the current cardinality of the group.
- Sigs: is a database of signatures created by the signing oracle. Each entry consists of a triple

(i,t, M, o) indicating that message M was signed by user i at epoch t.
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- U%: is the set of users that were introduced by the adversary in the system in an execution of
the join protocol.

- UP": is the set of honest users that the adversary, acting as a dishonest group manager, introduced
in the system. For these users, the adversary obtains the transcript of the join protocol but not
the user’s membership secret.

When mounting attacks, adversaries will be granted access to the following oracles.

- Qpubs Qreyom and Qreyoa: wWhen these oracles are invoked, the interface looks up statez and
returns the group public key Y, the GM’s private key Sgpm and the opening authority’s private
key Soa respectively.

- Qa-join: allows the adversary to introduce users under his control in the group. On behalf of
the GM, the interface runs Jgpm in interaction with the Jyse-executing adversary who plays the
role of the prospective user in the join protocol. If this protocol successfully ends, the interface
increments N, updates St by inserting the new user n in both sets St,srs and U®. It also sets
Stirans := Sttrans|| (1, transcript,, ).

- Qbjoin: allows the adversary, acting as a corrupted group manager, to introduce new honest
group members of his choice. The interface triggers an execution of [Juser, Jom| and runs Jyser
in interaction with the adversary who runs Jgm. If the protocol successfully completes, the
interface increments n, adds user n to Stysers and U? and sets Stirans := Stirans|| (12, transcript,,).
It stores the membership certificate cert,, and the membership secret sec, in a private part of
statez.

- Qsig: given a message M, an index ¢, the interface checks if the private area of statez contains a
certificate cert; and a membership secret sec; such that ¢ & Ry, where ¢ is the current revocation
epoch. If no such elements (cert;, sec;) exist or if i ¢ U®, the interface returns L. Otherwise, it
outputs a signature o on behalf of user i for epoch t and also sets Sigs < Sigs||(i,¢, M, o).

- Qopen: When this oracle is invoked on input of a valid pair (M, o) for some revocation epoch
t, the interface runs algorithm Open using the current state St. When S is a set of triples of
the form (M, o,t), Q;F;S;n denotes a restricted oracle that only applies the opening algorithm to
triples (M, o,t) which are not in S.

- Qread and Quyrite: are used by the adversary to read and write the content of statez. Namely,
at each invocation, Qeaq oOutputs the whole statez but the public/private keys and the private
part of statez where membership secrets are stored after Qp join-queries. By using Quwrite, the
adversary can modify statey at will as long as it does not remove or alter elements of Sty gsers,
Stirans or invalidate the public state St: for example, the adversary is allowed to create dummy
users as long as it does not re-use already existing certificate tags.

- Qrevoke: 18 a revocation oracle. Given an index 4 such that i € Sty,sers, the interface checks if
i appears in the appropriate user set (namely, U% or U b depending on the considered security
notion) and if the database Sty qns contains a record (i, transcript;) such that i € Ry, where ¢
is the current revocation epoch. If not, it returns L. Otherwise, it increments ¢, adds 7 to R;
and generates an updated revocation list RL; which is made available to the adversary. For
simplicity, we assumed that the adversary only revokes one user per query to Qevoke but the
model easily extends to allow multiple revocations at once.

The Kiayias-Yung model considers properties called security against misidentification attacks, fram-
ing attacks and anonymity.
In a misidentification attack, the adversary can corrupt the opening authority using the Qyeyon
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oracle. Moreover, he can also introduce malicious users in the group via @-jein-queries and re-
voke users at any time using Qevoke- His purpose is to come up with a signature o* that verifies
w.r.t. RLsx, where t* denotes the current revocation epoch (i.e., the number of Qyevoke-queries). He
is deemed successful if the produced signature o* does not open to any unrevoked adversarially-
controlled.

Definition 6. A R-GS scheme is secure against misidentification attacks if, for any PPT adversary
A involved in the experiment hereafter, we have Adv§*14(\) = Pr[Expt3sid()\) = 1] € negl(}).

Experiment Expt3s79()\)
stater = (St, Y, Sem, Soa) < Setup(\, N);
(M*, O'*) < A(qub; Qa-joim Qrevoke, Qread, leyOA);
If Verify(o*, M, t*, RL4»,Y) = 0 return 0;
i = Open(M*,t*, RL»,0*,Son, YV, St');
If (1 U\ Ryx) return 1;
Return 0;

This definition extends the usual definition [40] in that A also wins if his forgery o* verifies w.r.t.
RLi but opens to an adversarially-controlled user that was revoked during the revocation epoch
t*.

Framing attacks consider the situation where the entire system, including the group manager
and the opening authority, is colluding against some honest user. The adversary can corrupt the
group manager as well as the opening authority (via oracles Qreygm and Qieyoa, respectively). He
is also allowed to introduce honest group members (via Qp-join-queries), observe the system while
these users sign messages and create dummy users using Qurite- In addition, before the possible
corruption of the group manager, the adversary can revoke group members at any time by invoking
the Qrevoke OTacle. As a potentially corrupted group manager, A is allowed to come up with his own
revocation list RLs at the end of the game. We assume that anyone can publicly verify that RL;
is correctly formed (i.e., that it could be a legitimate output of Revoke) so that the adversary does
not come up with an ill-formed revocation list. For consistency, if A chooses not to corrupt the GM,
the produced revocation list RLs; must be the one determined by the history of Qrevoke-queries.
The adversary eventually aims at framing an honest group member.

Definition 7. A R-GS scheme is secure against framing attacks if, for any PPT adversary A, it
holds that Adv'i#(\) = Pr[Expti?(\) = 1] € negl()).

Experiment Expt2(\)

stater = (St, Y, Sem, Soa) < Setup(\, N);

(M*u o*, t, RLt*) — A(qub; leyGMv leyOAy CQb-joina Qrevokes Qsig: Qread; Qwrite);

If Verify(o*, M*,t*, RL+,Y) = 0 then return 0;

i = Open(M™*,t*, RLi+,0*,Son, Y, St');

If i  UY return O;

If (/\jeUb st joi Gt M* %) & Sigs) then return 1;

Return 0;
The notion of anonymity is formalized by means of a game involving a two-stage adversary. In
the following, we assume that, from a given valid membership certificate/secret pair (cert, sec) and

a given revocation list RL;, it is easy to decide if (cert,sec) belongs to a revoked user for RL;.
More precisely, there must exist an efficient algorithm IsRevoked that takes as input (sec, cert, RL;)
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and returns 1 if the pair (sec, cert) is not the key material of an unrevoked user for RL; (such an
algorithm obviously exists in our construction).

The first stage of the game is called play stage and allows the adversary A to modify stater
via Quwrite-queries and to open arbitrary signatures by probing Qopen. When the play stage ends,
the adversary A chooses a message-period pair (M*,t*), a revocation list RL+ as well as two pairs
(secg, cert}y), (secy, certy), consisting of a valid membership certificate and a corresponding member-
ship secret satisfying IsRevoked(secy,certy, RL;x) = 0 for each b € {0,1}. Then, the challenger flips
a coin d ¢~ {0,1} and computes a challenge signature o* using (sec}, certy). The adversary is given
o* with the task of eventually guessing the bit d € {0,1}. Before doing so, he is allowed further
oracle queries throughout the second stage, called guess stage, but is restricted not to query Qopen
for (M™*, o™, t*).

Definition 8. A R-GS scheme is fully anonymous if Adv*"°"(A) := |[Pr[Expt'*"(\) = 1] — 1/2|
is negligible for any PPT adversary A involved in the following experiment:
Experiment Expt®°"(\)
statez = (St, Y, Sem, Soa) < Setup(\);
(au:z;, M*, t*, RL~, (secj, certy), (sect, cert{))
<« .A(play : qub; leyGMy Qrevoke; Qopen; Qread; Qwrite);
If —(certy =y secy) or IsRevoked(secy, certy, RLi+) =1 for b € {0,1}
or if certy = cert] return O;
d & {0,1}; o* « Sign(Y, t*, cert’, secl, M*);
d +— A(guess : U*, aux, qub7 leyGMa c:‘ée(rjlw*p*’t*)}y Qread; Qwrite);
If d = d then return 1;
Return 0,

B Security Proofs

B.1 Security Against Misidentification Attacks

Theorem 2 (Misidentification). The scheme is secure against misidentification attacks assum-
ing that the ¢-SFP and the (-FlexDHE problems are both hard for ¢ = max(qq,q?) and £ = log N,
where q, and g, denote the maximal numbers of Qajoin queries and Qrevoke queries, respectively,
and N is the mazimal number of group members.

Proof. Towards a contradiction, let us assume that the adversary A outputs a non-trivial signature
that does not open to an unrevoked adversarially-controlled group member.

Let o* = (VK*, 50,15, Y, 17, £2F, com*, IT™, a;ts) denote A’s forgery and parse com* as

* * * * 5 * * *
com” = (comcvi ,com’x, {comp, }7_o, comyy, , oMy, , COMT;,
* * * * 13 *
{Com%T }76{0,1,26}7 {COWQ;,]. }je{1,2,5}: {Comogﬁj }je{1,2,5}7 {Comxj }j:l: COmUVK)

We thus have Open(M*,t*, RL»,0*,Soa, Y, St) € U*\ Ry, where U® denotes the set of adversarially-

controlled users. Depending on the contents of extractable commitments com’;, comg, , {comp, 5 o

{comzp“}ie{07172@}, com{jvqbl, comf,[,wl, com},, we distinguish the following cases:

- Type I forgeries are those for which {com’l}lﬁ 5_, contain group elements <Rl*,2’ e ’Rl*,i')) such
that (gt*, s+, ;) was never signed when the latest revocation list RL; was generated.
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- Type II forgeries are such that {com}p, 7}222 contain group elements (R;,, ..., R} ) for which

the message (g*" R} DIREE , R ;) was signed when the latest revocation list RL;» was publicized
at epoch t*. At the same time, Open uncovers a user’s tag X* for which one of the following
two situations occurs:

a. The pair (X*, C} ) was not signed using sk,&o,io.

b. (X*,C;)) was signed when answering some Qajoin-query. However, C} encodes the path
(If,...,I}) of a leaf v} assigned to a revoked user i* even though the forgery o* provides
convincing evidence that the committed values Cy. , (R} l29 o IR e ) (!Z/l*o,sl'/l LY 25)
and (I, W5 , Wy ) satisfy the relations 7

e(R}y, Cy) = e(Ry 3, 9¢) - e(g, W3,), (11)
and
e( Z47 ) - e(wl 1,9@) (97 szl) (12)
e(u—/l*,o/Rl 5 17) = e(g,9) (13)
(Wl 1,9) = e(g1, LI’lo) (14)
e(Wa 9) = e(920, V). (15)

It is immediate that Type I and Type Il.a forgeries imply a forger against the AHO signature
scheme and the proof is omitted.

Lemma 1 demonstrates that a Type IL.b forgery necessarily contradicts the ¢-FlexDHE as-
sumption. This completes the proof since 0* cannot constitute a successful misidentification attack
without being a Type I or a Type II forgery. O

Lemma 1. The advantage of any Type ILb forger A is at most
Advﬂis‘id‘n'b()\) < Ade-FlexDHE()\)
where £ =log N and N denotes the mazximal number of users.

Proof. The reduction B takes as input a (-FlexDHE instance (g, 91,..-,9¢, Gr2,---,920) € G2
To generate the group public key Y it follows exactly the specification of the Setup algorithm
with the difference that, instead of computing ck as per step 3 of the algorithm, it defines ck =
(G151 90, Got2s - - - goe) € G 1 using its input and gives ) := ( k(A(),_)'O,ka,_)lo, ck, £, 3, (U, V), E)
to the Type IL.b forger A.

Throughout the game, the adversary can adaptively invoke the Qpub, Qa-joins Qrevokes Cread, and
Queyon oracles. Since B knows Sem = (sking, skito) and Soa = (81, B2), it can faithfully answer
all adversarial queries. The game ends with the adversary outputting a forgery o* for which the
committed variables C , ( Z2’ l*,37 7,47 Z5), (5471*,0’“71*,17%*,25) and (I7, W(;l, WtZz) satisfy relations
(11)-(15) although o* opens to some user i* € U N Ry».

Note that (R} [ B0, R 5 B 4, R 5) must be of the form

« ID(zy,) ID(x}
( Z:la ZQ? Z37RZ47RZ:5) = (gt y 9o 91 K s Gy 9 (xkl)>a (16)

for some ¢, € {1,...,¢} and some ID(:L'EZ), ID(xy,) € {1,...,2N — 1} that B knows for having
chosen them itself at the latest Qrevoke-query. By hypothesis, o* contains a committed pair (X*, C})
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that was signed by B at some Qa join-query. Then, B recalls (I, ..., I}) such that C}; = T gﬁrlin

k=1

from its interaction with A at that Q,-join-query. Since * € U% N Ry, it must hold that either:

- I # ID(z},)): In this case, relations (16) and (11) imply that

* ID(x* *
e(96,,C,) = e(gr, 90)"° ) - e(g, W) (17)

for values ¢; € {1,...,¢} and ID(z,)* € {1,...,2N — 1} that are available to B. Since it also

knows (I7,...,I}) such that C} = Hf;:l gﬁ_l_ﬁ, it can compute W' = Hf@:l, s gﬁ_l_ﬁ+¢l
which satisfies

I*
e(gg,, Cy,) = e(g1,9¢) 0 - e(g, W'). (18)
By combining (17) and (18), we find that gprq1 = (W(;Z/W’) LG, =1P@E)) i computable by B
and it solves an instance the -DHE problem (which is not easier than ¢-FlexDHE).

- Ij, = ID(z},): In this situation, if we define ¢ = log,, (¥}, ), relations (16) and (12)-(15) imply
that

6(91/11701)):) 26(91792)9 6(97 W”‘Zl) (19)
g £ 1g (20)
!pl*,o =g° (21)
!pl*,% 9op (22)
Also, similarly to the previous case, B can compute W’ = Hf;:l’ K, gﬁ_l_ s such that
I*
e(gd)l? C;) = e(glagé) i - e(ga W,) (23)

If we divide (19) by (23), we obtain the equality e(g1, gg)Q_I:”l = e(g, W'/W})), so that W' /W5 =

-1
gf le. The triple

*

_J* —I* —I* ‘Q—I* Q—I*
(!Plfo g, WHWE L Wy go wl) - (gg U G G wl)
thus forms a non-trivial solution to the ¢-FlexDHE problem.

In either case, we observe that B solves either the given ¢-FlexDHE instance or the potentially
harder /-DHE problem. a

B.2 Security Against Framing Attacks

The security against framing attacks relies on the SDH assumption and the security of the one-time
signature.

Theorem 3 (Non-frameability). The scheme is secure against framing attacks assuming that:
(i) the qp-SDH assumption holds in G, where qy is the mazimal number of Qp.join-queries; (i) X is
a strongly unforgeable one-time signature.
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Proof. As in [35], we consider two kinds of framing attacks that can be possibly mounted by a
non-frameability adversary A.

- Type I attacks: A generates a forgery o* = (VK*,T{,T;,T?)*, i Q*,com*,l'[*,a;ts) for
which the one-time verification key VK* was used by some honest group member i € U® when
answering a Qsig-query.

- Type II attacks: A outputs a forgery o* = (VK*,T{,T;,Tg, 5T, Q*,com*,ﬂ*,agts) for
which the one-time verification key VK* was never used by Qsjg to answer a signing query on
behalf of an honest user i € U?.

Type I attacks clearly defeat the security of the one-time signature. Lemma 2 shows that a Type
IT forgery would contradict the Strong Diffie-Hellman assumption. a

Lemma 2. The scheme is secure against framing attacks of Type II if the qs-SDH problem is hard.

More precisely, the advantage of any adversary after qs Qsig-queries and q, Qp_join-queries is at
most Adv™ 1)) < ¢, - AdveSPH()).

Proof. Let us assume that a PPT adversary A comes up with a forgery (M*,c*) that opens to
some honest user i € U? who did not issue a signature containing the verification key VK*. The
same proof as in [35] shows that the Strong Diffie-Hellman assumption can be broken.

Given a ¢-SDH instance (g, %, . . . ,g}(a"s)) € G911 the reduction B generates a set of g5 one-time
signature keys pairs (SK;, VK;) <= G()\) for i = 1 to gs. Then, using the Boneh-Boyen techniques
(see [12][Lemma 3.2]) it builds a generator g and a randomly distributed public value XT = g —
which implicitly defines z! = logg(XT) = a — such that it knows {(g"/(@FVK) VK;)}% .

Next, using the newly generated g, B generates key pairs {(sk'&bao,pkgb,lo)}bzo’l for the AHO
signature (note that group elements of {pk,&l)&o}b=0,l are computed as powers of g) and uses

pk(Aogo’pk'(All_)io to form the group public key
Y= (9 rhipor P, ok 1. & (U1, ).

The underlying Groth-Sahai CRS f = ( ﬁ, fé, j:;;) is generated for the perfect soundness setting,
- - 2 pb ot .
ie., with fi = (fi=¢%,1,9), o= (1, fa=g%,9) and fs = fi " - fo ", where &, & & Z.

If the adversary A decides to corrupt the group manager or the opening authority during the
game, BB can reveal Sgm = (sk/(s\olio, skﬂlo) and Soa = (B1, B2) = (log,(f1),log,(f2)). At the outset
of the game, B picks a random j* & {1,..., ¢} and interacts with the Type II forger A as follows.

- QueycMm-queries: if A decides to corrupt the group manager, B surrenders Sgm = (sk(A(),_),O, sk,&l,io).

- Qb-join-queries: when A, acting as a corrupted group manager, decides to introduce a new honest
user ¢ in the group, B starts interacting with A in an execution of Join and runs Jyser on behalf of
the honest user. The actions taken by B depend on the index j € {1,..., ¢y} of the Qp.join-query.

- If j # 5%, B follows exactly the specification of Jyser-

- If j = j*, B sends the value X to Jgm at step 1 of Join. User j*’s membership secret is
implicitly defined to be the unknown exponent secjx = a of the ¢-SDH instance. In steps
2-5 of the join protocol, B proceeds like the real Jyser algorithm . When Join terminates, 5
obtains a membership certificate certjx = (ID(U*), X, Cp, av*).
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- Qpub-queries: can be treated as in the real game, by having the simulator return ).

- Qsig-queries: when the adversary A asks user i € U b to sign a message M, B can answer the
query by running the real signature generation algorithm if i # j*. Otherwise (namely, if i = j*),
B uses the next available pair {(g"/(@TVK) VK;)1% | to define oy, = g"/(@TVK). Tt also recalls
user j*’s membership certificate certj» = (ID(U*), Xt Cv*,ov*) that it obtained from the Jgm-
executing adversary at the j*-th Qp join-query. Using ovk,; and cert;+, it can easily generate all
signature components and sign them using the one-time private key SK;.

Finally, A outputs a signature o* = (VK*, 515,05, 15,1y, 2, com™, IT*, a;ts), for some message
M*, that opens to some user i* € U’ who did not sign M*. At this point, B halts and reports
failure if it turns out that XT # T3 - Tl*_l/ﬂl . T2*_1/52 since, in this case, it was unfortunate
when drawing the random index j*. Still, with probability 1/gp, the signature o* opens to the user
introduced at the j*-th Qp.join-query and (77,23,73) does decrypt to X*. In this situation, the
perfect soundness of the proof system ensures that com(*,VK is a commitment to a group element

oYK+ such that e(oy« X1.gVK") = e(g, g). Since o* is a Type II forgery, B can use 31, 52 to compute
a BBS decryption of com_ . and obtain a pair of the form (oyks, VK*) = (g"/@+VK") 'VK*). The

OyK*

latter eventually yields a solution (§1/ ($+VK*),VK*) to the initial ¢s-SDH instance by performing
an Euclidean division in the exponent as in [12]. O

B.3 Anonymity

As for the anonymity property, it naturally relies on the DLIN assumption. The proof is essentially
identical to that of Lemma 5 in [35] but we give it for completeness.

Theorem 4 (Anonymity). The advantage of any anonymity adversary is at most
Adv(A) < Adv®(A) 43 - AdvPHN(Y),
where the first term is A’s probability of breaking the strong unforgeability of the one-time signature.

Proof. We consider a sequence of games at the end of which even an unbounded adversary has no
advantage. In Game ¢, we call S; the event that A wins and define Adv; = |Pr[S;] — 1/2].

Game 1: is the experiment of definition 8. In the play stage, the adversary A can obtain the
group public key ), the group manager’s private key Sgm = (skgogo, sk:,(o‘l,_)'O). It can also ask for the
opening of any group signature and read/write the content of statez. When it decides to enter the
challenge phase, it outputs a message M*, a period index t* and two membership certificate/secret
(certg,secy) and (cert},sect) such that certj =y secy for b = 0, 1. The simulator B flips a fair coin
d < {0,1} and computes o* <« Sign(Y,t*, RL;, cert}, secl, M*), where t* is determined by the
history of Qrevoke-queries. The signature o* is given as a challenge to A who has to guess d € {0,1}
after another series of queries (under the natural restriction of not querying the opening of o*). We
have Adv; = Adv®°"(A).

Game 2: is as Game 1 but B halts if A queries the opening of a signature ¢ containing the
same one-time verification key VK* as in the challenge phase (we assume w.l.o.g. that (SK*, VK*) is
generated at the outset of the game). If such a query is made before the challenge phase, it means
that A was able to forge a one-time signature even without having seen a signature. If the query
occurs after the challenge phase, then the strong unforgeability of X' is broken. We can thus write
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|Pr[Sa] — Pr[Si1]| < Adve™()).

Game 3: we change the generation of ) so as to answer (Qopen-queries without using the se-
cret exponents (1,32 € Z, that define Soa. To this end, B chooses o, o, & Z,, and defines
U=g VK. f and V = g7VK . f2% Tt is not hard to see (see [42] for details) that, for any
Qopen-query containing a BBS encryption (171,7%,73) = (f{', /5%, X - g2 7%2), the values (1y,75)
reveal ¢*' and ¢*2 (and thus the encrypted X) since VK # VK* unless the event introduced
in Game 2 occurs. To generate the challenge signature o* at epoch t*, the challenger B first
computes (17,75,7%) and then (77,77) = (Y79, 73%). It sets the challenge signature to be
o = (VK 17,73, 75, 1), 15, 2%, com*, IT*, o};,,). It can be checked that the distributions of Y
and o* are unchanged and we have Pr[S3] = Pr[Sa].

Game 4: in the setup phase, we generate the CRS f = (f;,f},f;;) of the proof system for the
perfect WI setting. We choose f;; = fi& -ﬁ& (1,1, ¢9)7" instead of f3 = ffl -fé& so that f1, f
and f3 are linearly independent. Any significant change in A’s behavior yields a distinguisher for

the DLIN problem and we can write |Pr[Sy] — Pr[S3]| = 2 - AdvPYN(B). As noted in [36], proofs
in the WI setting reveal no information on which witnesses they were generated from.

Game 5: in this game, we modify the generation of the challenge signature o* and use the trapdoor

of the Groth-Sahai CRS (namely, the exponents &1, &5 for which @ = figl . fé&) to generate simulated
proofs {ﬂ'eq_comd}?zl that (17,75,73) and comx encrypt of the same value. It is known [36] that
linear multi-exponentiation equations always have perfectly NIZK proofs on a simulated CRS.
For, any satisfiable relation, (&1, &) allows generating proofs without using the witnesses x1, x2, X3
for which (10) holds and simulated proofs are perfectly indistinguishable from real ones. Hence,
PI‘[S5] = PI‘[S4].
Game 6: in the computation of 73, we now replace g****2 by a random group element in the
challenge o*. Since B does not explicitly use z; = logy, (77), 22 = logy,(13), any change in A’s
behavior yields a distinguisher for the DLIN problem and |Pr[Sg] — Pr[S5]| < AdvPYN(B). In Game
6, we have Pr[Ss] = 1/2. Indeed, when we consider the challenge o*, Groth-Sahai commitments are
all perfectly hiding in the WI setting and proofs IT reveal nothing about the underlying witnesses (in
particular, NIZK proofs {meg-com,; }3?:1 are generated without using them) and (7,73, 7%) perfectly
hides X™*. Finally, randomized signature components 2* = {@271*79271*}2'6{3,4,6,7} are information-
theoretically independent of the corresponding messages and the remaining components of AHO
signatures O} and 0;.

When combining the above, A’s advantage can be bounded by Adv**"(A) < Adv°S(\) + 3 -
AdvPMN()\) as stated by the theorem. O

C Constructions from Weaker Assumptions

C.1 CDH-Based Vector Commitments

In [27], Catalano and Fiore described a vector commitment scheme whose binding property relies
on the Diffie-Hellman assumption. In their scheme, if ¢ is the dimension of committed vectors, a
commitment key

2
(gvglv -5 90, ha, ... Dy, {hz,]}f#] ) € Gl+€+£
is obtained by randomly choosing ai,...,a; & Z, and defining g; = g%, h; = gnﬁﬁ ¥ and
4 .
hi; = gl o — hjl-/o” (so that h;; = h; ;) for each i € {1,...,¢} and j # i. A commitment to
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m = (mq,...,my) is obtained as C = Hizl g'¢. By revealing W; = Hf;zl wi i, the committer

can open the commitment to m; at the i-th coordinate of m as it satisfies the equation
e(g,C) - e(g™ ™ hi) = e(gi, Wi).

This time, the coordinate-wise binding property relies on the standard Computational Diffie-
Hellman (CDH) assumption. Note that, in its basic version, the commitment is not (and does
not need to be) hiding since it does not use any randomizer.

C.2 Construction

This section gives an alternative construction of revocable group signature where the /-FlexDHE
assumption is not used. Instead, we rely on an assumption (suggested in [44]) of fixed size, which
is inspired by the Flexible Diffie-Hellman assumption [43].

Definition 9 ([44]). In a group G of prime order p, the Flexible Square Diffie-Hellman (FSDH)
problem consists in, given (g,g%) with a & Z,, finding a non-trivial triple (g“,ga'“,g(az)'“), with
p# 0.

The Flexible Square Diffie-Hellman assumption is the hardness of FSDH for any PPT algorithm.
We thus trade one of the ¢-type assumptions for a constant-size assumption at the cost of
increasing the size of the group public key. Indeed, the latter now contains O(log2 N) group elements.

Setup(\, N): given a security parameter A € N and the maximal number of users N = 2t=1
1. Choose bilinear groups (G, Gr) of prime order p > 2*, with a generator g & G.
2. Define ng = 2 and n; = 7. Generate two key pairs (sk&ogo,pk(Aogo) and (sk(Algo,pk(Algo) for
the AHO signature in order to sign messages of ng and ny group elements, respectively.
These key pairs are

pk/(\d,jo = (G(d), HD ¢ = GQEC”’ HD = Hfid)7

T z

(G = i’ @ Hg§d)}nd A, B(d))

A =1’
and sk/&d,_),O = (oz((ld), oz,()d),'y,gd), (59), {%@, 5§d)}?:d1), where d € {0,1}. These two schemes will
be used to sign messages consisting of 2 and 7 group elements, respectively.
3. Generate a public key ck = (gl, cosgesha, oo he R }fij ) € G for vectors of dimension
£ in the CDH-based vector commitment scheme recalled in Section C.2.
4. As a CRS for the NIWI proof system, select vectors £ = (f1, fa, j:;;) st. fi = (f1,1,9) € G3,

fo=(1, f2,9) € G* and fo = i 5%, with f1 = g%, fo = g% & G and By, B, &1, & & T,
We also define the vector ¢ = fé (1,1, 9).

5. Choose (U, V) & G? that, together with generators fi, f2,g € G, will form a public encryp-
tion key.

6. Select a strongly unforgeable one-time signature X' = (G, S, V).

7. Set Sgm = (sk&ok)lo,sk(;&o), Sop = (,31,,32) as authorities’ private keys and the group
public key is

y:: (ga pk,(Aol-)|O7 pk,(All-)|Ov ck = (gla"'vgfahla"'7hfa{hi,j}§7éj)a f’ 95’ (U’ V)v 2)

27



Join(GMU): the group manager and the prospective user U; run the following interactive protocol
[Juser()\a y)a Jom ()\a St, y> SGM)]:

1. Juser(\, V) picks z € Z, and computes X = g* which is sent to Jom(A, St, Y, Sem). If X € G
already appears in the database Stirqns, Jom halts and returns 1 to Jyser-

2. Jem assigns to U; an available leaf v of identifier ID(v) in the tree T. Let x1,..., 2z, be the
path from z; = v to the root x; = € of T. Let also (I1,...,I;) = (ID(x1),...,ID(z¢)) be the
vector of identifiers (with I; = 1 and I, = ID(v) € {N,...,2N — 1}). Then, Jgm conducts
the following steps.

a. Compute a compact encoding of (I1,...,1Iy) as C, = Hf;:l gl € G.
b. Using s/-c,ﬁo,jo, generate an AHO signature o, = (01, .,0,7) on (X,C,) € G* in order
to bind C, to the value X that identifies the new member U;.

3. Jom sends ID(v) € {N,...,2N — 1} and C,, to Jyser that halts if ID(v) &€ {N,...,2N —1} or
it Cy, # Hi:l gls € G. Otherwise, Jyser sends a signature sig; = Signes) (X||(I1,...,1p)) to
Jem-

4. Jgm checks that Verifyupk[i]((XH(Il, ..., 10)),sig;) = 1. If not Jgm aborts. Otherwise, Jom
returns o, to Jyser and stores transcript, = (X, ID(v), Cy, 04, sig;) in the database Stirqns-

5. Juser defines the membership certificate as cert; = (ID(v), X, C,, av) € {N,...,.2N -1} xG?,
where X will serve as the tag identifying U;. The membership secret sec; is defined as
sec; = x € Zyp.

Revoke (Y, Som, t, R¢): Parse Sem as Som = (sking, skaio) and do the following.

1. Find a partition of the unrevoked user set {1,..., N}\R; as the union of disjoint subsets of
the form Sk, uys -5 Sk, With m <2 |Ry| — 1.

2. For i =1 to m, do the following.

a. Parse Sy, ., as the difference between sub-trees rooted at an internal node xj, and one
of its descendants x,,,. Let ¢;,¢; € {1,...,¢} be the depths of xj, and x,,, respectively,
in T assuming that the root € is at depth 1. Encode Sy, ., as a vector of group elements

—ID(ay, ID(2,
(gdhvh@"g (xkz)vgwwhd)i?g (= Z)) € GG'
b. To authenticate Sy, ,, and link it to the revocation epoch ¢, use Sk,&lr)io to compute a
structure-preserving signature ©; = (6;1,...,0;7) € G” on the message

Ri = (4", 96, ho» 97 "P) gy, by, g'P)) € GT,

where the epoch number ¢ is interpreted as an element of Z,.

Return

RLt - (ta Rta {¢Za wia ID(me)a ID(xuz)a @z - (Qi,lw-'a@i,?)}gl)- (24)

Sign(Y,t, RL, cert;,sec;, M): return L if i € Ry. Otherwise, to sign M, generate a one-time key
pair (SK,VK) «+ G()). Parse cert; as cert; = (ID(v;), X, Cy,, 04,) € {N,...,2N — 1} x G? and
sec; as & € Zy. Let € = x1,..., x4 = v; be the path connecting the leaf v; to the root € and let
(11, 1e) = (ID(21),...,ID(x¢)). First, U; generates a commitment comc,, to the encoding
C,, of the path (I1,...,I;) from v; to the root. Then, conduct the following steps.
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1. Using RLy, find the set Sy, ,,, with [ € {1,...,m}, that contains the leaf v; identified by
v;. Let x, and z,, denote the primary and secondary roots of Sy, ., at depths ¢; and 1y,
respectively. Since xy, is an ancestor of v; but x,, is not, it holds that Is = ID(z,) and

Iy, # 1D(zy,).
2. To prove that v; belongs to Sk, 4, U; first re-randomizes the I-th AHO signature ©; of RL;
as {O) 11| « ReRand(pk(Algo, ©;). Then, he commits to the [-th revocation message

Rl = (Rl,hRl,Q,Rl,37Rl,47Rl,57Rl,67Rl,7) = (gt7 9oy » h¢l7 g_ID(xkl)7 [ hd)p ng(xul))(25)

and its signature ©; = (6, |, ..., 0, ;) by computing Groth-Sahai commitments {comp, 3o,
{come; }jeq1,25) to {Rir}7_p and {O] ;}jecq1.2,5)-
a. To prove that Iy, = ID(xy,), U; first computes Wy, = er:l Koty hé‘;n that satis-

fies the equality e(g,C,,) - e(gfl‘ﬁl,hqgl) = e(gg,» We,). Then, U; generates a Groth-
Sahai commitment comyy,  to Wy,. He computes a proof that committed variables
(Ri2, Ry 3, Ria, Cy,, Wy,) satisfy the equation

e(9, Cv;) - e(Ria, Rig) = e(Ri2, We,). (26)
Let 7q be the proof for the quadratic equation (26).
b. To prove that I, # ID(xy,), U; computes Wy, = Hf@:l, wetdy hi*; ., that satisfies the

equality e(g, Cy, ) e(g 1w, hy,) = €(gy,, Wy, ). Then, he computes a commitment comw,,
to Wy, as well as commitments comp, and {com%f}T:ojl to the group elements

_ _ -1
(B,WLO,!pl,l) _ (gl/(ID(x“l) le)’g le7g1/1l wl)‘

Then, U; provides evidence that committed variables (R; 5, Ry 6, Ri 7, Cy,;, 17, W) satisfy

e(gv Cvz) ' 6(&[70, RZ,G) = e(Rl,57 W¢l)a (27)
e(Ri7-¥0,17) =e(g,9) (28)
e(W,0, Ri5) = e(9,%1,1)- (29)

We denote this proof by m,eq = (ﬂneqjl,ﬂneq,g, 7rneq73). It consists of 27 group elements
since all equations are quadratic.

3. U; proves that the tuple R; of (25) is part of RL: namely, U; computes a proof mg, that
committed message elements {R;;}_, and signature components {O), i}jef1,2,5) satisfy the
equations

e(G’(rl)7 Rl,T)u (30)

i~

AW e(0]5,0] )7 -G, g) 7 = e(G1, 6]4) - e(G, 6;,) -

||
N

T

e(HY R, ),

i

BW. e(0]4,017) " 6(1511(1),9’5)71 = e(HLY, O11) e(H, 0] ;) -

T=2

The proof mp, takes 6 elements as both equations of (30) are linear.
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4. Let oy, = (04,1, -,0y,7) be the AHO signature on the message (X, C),). Set {9 _q

ReRand(julc'(A\O,_)|O7 oy;) and generate commitments {comgy }icq12,5) to {6;, i}je(1,25) as well
Vi, 14y IR 14y

as a commitment comx to X. Then, generate a proof 7, that committed variables satisty

A (05,07 = (GO, 01) - (G, 6],) - (G, X) - (G, O,

z

BO) - e(6]5,0,)7 = e(H,07,) - e(HO, 6] 5) - e(H\”, X) - e(H”, Cyy)

z

Since these equations are linear, Toy, requires 6 group elements.
5. Using VK as a tag, compute a tag-based encryption [42] of X by picking 21, 20 <~ Z, and
setting
(Tl,TQ,Tg,T4,T5) — ( 121’ f222,X . gz1+22 ( VK U)Zl, (gVK . V)ZQ)‘

6. Generate a NIZK proof that comx = (1,1, X) - f1 T o -f;,wx’g and (11,7%,73) are
BBS encryptions of the same value X. If we write f3 = ( f3 1, f3.2, f3,3), the Groth-Sahai
commitment comy can be written as (f; X" - ;:)fﬁ, 5 2 fs, eyt X - guxatuxe . ;i)g(’S), SO

that we have
comy - (1,1, Y3) " = (fi" - /35, 32 f55, g0 15) (31)

with x1 = wx1 — 21, X2 = wx,2 — 22, X3 = wx 3. The signer U; commits to x1, x2, X3 € Zp
(by computing com,, for j € {1,2,3}), and generates proofs {Weq_comj};?:l that x1, x2, X3
satisfy the relations (31).

7. Compute a weak Boneh-Boyen signature oy = g on VK and a commitment com,
to oyk. Then, generate a NIWI proof 7o, = (Toyk,1s Tovk,2s Tovk,3) € G? that committed
variables (oyk, X) € G? satisfy the quadratic equation e(ovk, X - ¢¥%) = e(g, g).

8. Compute oo = S(SK, (M, RL;, 11,75, 73,74,75, £2, com, IT)) where 2 = {6O), 0 917i}i€{37476’7}
and

1/(z+VK)

com = (comcuz, ,comx, {COmR,,T}Z:w comy, , comyy,, ,comr,
{Comw“ }76{0,1}7 {COWQLJ. }je{1,2,5}a {com% }je{m,s}, {Coij }?:1, Como—VK)
IT = (ﬂeq’ Tneqs TRy Toy, ) {Weq-comd }?:17 ﬂ-UVK)
Return the signature o = (VK, 11,75,75,74, 15, {2, com, I, o*ots).
Verify(o, M,t, RL;,)): parse o as above and do the following.

1. T V(VK,(M,RL,11,7%,73,74,75, 2,com,II), 0,s) = 0, return 0.
2. Return 0 if e(11,gVK - U) # e(f1,Ta) or e(Yo, gVK - V) # e(f2, T5).
3. Return 1 if all proofs properly verify. Otherwise, return 0.

Open(M,t, RL, 0,80, ), St): parse o as above and return L if Verify(o, M,t, RL;,)) = 0. Oth-

erwise, given Soa = (01, 82), compute X = 13 - Tfl/ﬂl -T;l/ﬁz. In the database Stirans, find a
record (i, transcript; = (X, ID(v;), Cy,, 0v,, sig;)) such that X; = X. If no such record exists in
Stirans, return L. Otherwise, return 1.

Each signature now consists of 150 group elements since com and IT contain 69 and 63 group

elements, respectively. The only overhead is in the size of the group public key which grows from
O(log N) to O(log® N).
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C.3 Security

Theorem 5 (Misidentification). The scheme is secure against misidentification attacks assum-
ing that the q-SFP and the FSDH problems are both hard for ¢ = max(qq,q?), where q, and g,
denote the mazimal numbers of Qajoin queries and Qrevoke queries, respectively, and N is the maz-
imal number of group members.

Proof. The proof is almost identical to the proof of Theorem 2. It considers the same two kinds
of forgeries and the only difference is the treatment of Type IL.b forgeries. Lemma 3 shows how to
break the 2-3-SqDH assumption using a Type II.b forger. a

Lemma 3. The advantage of any Type ILb forger A is at most Adv s 4P (\) < ¢. AdvFSPH()),
where £ =log N and N is the maximal number of users.

Proof. To prove the result, it is convenient to use an equivalent formulation® of the problem. Namely,
given (g, ¢%), we have to find a triple (g%, g*, g*/®) for some pu # 0. We describe an algorithm B
that receives as input an instance (g, g*) € G? of the FSDH problem and uses the Type IL.b forger
to find a non-trivial (g**, g, g @). To generate the group public key, B follows the specification of
the Setup procedure except that, instead of computing ck as in step 3 of the algorithm, it defines
ck = (g1, geshy ... he, {hij}izj) as follows. It picks i & {1,...,¢} and defines

gir = 9"
9i =9 i
h’i* — gnn?ﬁi* 2K
i = (gl i
hij = (g 2 it A
hiej = gl = g
hie = glleriar 2 i #

where z1,...,2 & Z,. Eventually, J := (g,pkgogo,pk,&l,io,ck, £, 4, (U,V), Z‘) is given to the Type
II.b forger A.

During the whole game, the adversary can adaptively probe the Qpub, Qa-join, Qrevoke, @read, and
Qkeyoa oracles. Since Sgm = (sk,(f,io, skg\lgo) and Soa = (B1, f2) are available to the reduction B,
the latter can always perfectly answer adversarial queries. At the end of the game, the adversary
A outputs a forgery o* for which the committed variables Cy., (R, ..., Rf;), (¥, %) and
(L7, W, W, ) satisfy the relations 7 7 o

€(9>Cf5-) (Rl47R13) €(R127W¢l> (32)
e(g,Cy,) - e(Wo, Rig) = e(R] 5, Wy, (33)
e(Ri7 - W0, I7) =e(9,9), (34)
e(Wo, '5) = e(9, Y1) (35)

3 Given (g,¢%), if we define y = ¢ and y* = ¢ (so that A = 1/a) any FSDH solution (y“,yA"‘,y(Az)M) can be
written as (¢**, g%, g“/“)
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although o* opens to some user i* € U* N Ry=.
Note that (R}, .., ;) is necessarily of the form

* —ID(x} ID(x3
(RZMRZQvRZ:37RZ4aRZ5aRZG7RZ7) = <gt y 9oy hd?za g (xkl)v Gy hTZJu g (xkl)>7 (36)

for some indices ¢y, ¢ € {1,...,¢} and some node identifiers ID(z}, ),ID(z},) € {1,...,2N — 1}
that were chosen by B at the latest Qevoke-query. Since, by hypothesis, o* contains a committed
pair (X*, C7) that was signed by B during some Q. join-query, B also knows (I7, ..., I;) such that
Cy. = Hf;:l gi*. Since i* € U® N Ry, it must hold that either:

- I3 # ID(z%,)): In this case, relations (36) and (32) imply that

* —ID(z} *
e(g,Cy) - elg™ PR hy,) = e(gs,, W) (37)

for values ¢; € {1,...,¢} and ID(zy,)* € {1,...,2N — 1} that are available to B. At this point,
B fails if ¢; # i*. With probability 1/¢ however, it holds that ¢; = ¢* in which case B can solve

the problem as follows. Since it knows (I7,..., ;) such that C; = H£:1 g,é’:, it can compute
¢ I . .
W’ =TTz, wrey e which satisfies
_I*
e(ga CZZ) : e(g o, h¢g) = €(g¢17 W(;ISZ) (38)

By dividing (37) and (38), we find that e(g;, (Wdfl/Wq’bl)l/(ld*’lle(le))) = e(g, hi+). This implies

that, by computing ¢!/ = (W(;l/W’) /UG, =1D@E ) Tezin “ B actually solves a problem which
is at least as hard as FSDH.

- Iy, = ID(x7,): If we define o = —log, (¥}), relations (36) and (33)-(35) imply that

e(g,Cy,) - e(g 8, hy,) = e(gy,, Wy,) (39)
g £ 1 (40)

Vo=9g"° (41)

vl =g,°% (42)

for some ¢, € {1,...,¢}. At this point, B halts and declares failure if ¢; # *. Still, with

probability 1/¢, we have ¢, = i* and B can solve the 2-3-SqDH as follows. Similarly to the

previous case, it can compute W' = Hi:l, s hffl .. such that

_I*
6(97 C':l) : 6(9 i, h¢[) = €(g¢l, WQZZ) (43)

Now, by dividing (39) from (43), we obtain the equality e(g, hwl)g_%l = e(gy,, W'/W},) which,
if ¢ = i*, implies W’/ Wy = g'¢~ ) Thie /% e triple

<<!p;:1_1 . (ga’)_I:Z’l )Hn#i* Z"‘@’ (wlfo_l . g_I'z’l )Hm?ﬁi* Z"‘@’ W//W$l>
* * (Q*I* )HN i*x FK
= (g“(g_lwl)’nmﬁi* - g(g_lwl)'nnﬁ* - g—wl sasia )
is a non-trivial solution to the FSDH instance.
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In both cases, we observe that, if A is able to mount a Type ILl.b attack with probability ¢, then B
is able to break the Flexible Square Diffie-Hellman assumption with probability /4. O

The proofs of anonymity and security against framing attacks are identical to those of the first
scheme and omitted here.

C.4 Further Reducing the Number of Assumptions

We note that, using the technique of Malkin, Teranishi, Vahlis and Yung [48], it is possible to
replace the SDH assumption by the standard Diffie-Hellman assumption in the proof of security
against framing attack. To this end, we must introduce a Waters-like [60] number theoretic hash
function (described by O()\) group elements) in the group public key in order to have a message-
dependent Groth-Sahai CRS. Namely, all proofs of the signature are generated w.r.t. a Groth-Sahai
CRS ( ﬁ, f;, ﬂ/K), where f{/K is obtained by “hashing” the verification key of a one-time signature.
In order to secure the scheme against framing attacks, each group signature should prove knowledge
of a value (such as g*/*, where z = log, (X)) that only the signer knows. Finally, all non-interactive
proofs should be signed along with the actual message using the private key SK of the one-time
signature?.

The details are omitted here but it is not hard to see that a successful framing attack would
imply a PPT algorithm to compute g'/* given X = ¢”, which is equivalent to solving the Diffie-
Hellman problem. Eventually, we only need the ¢-SFP assumption, the FSDH assumption and the
DLIN assumption to prove the security of the scheme. In the resulting group signature, the group
public key is larger and comprises O(\ + log? N) group elements.

4 The reason why f{m is not directly derived from M is that we need to prevent Groth-Sahai proofs from being
publicly randomized in order to achieve anonymity in the CCA2 sense: as noted in [35], signatures should not be
re-randomizable in order to attain anonymity in the strongest sense.
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Abstract. Structure-preserving signatures (SPS) are signature schemes where messages, signatures and
public keys all consist of elements of a group over which a bilinear map is efficiently computable. This
property makes them useful in cryptographic protocols as they nicely compose with other algebraic tools
(like the celebrated Groth-Sahai proof systems). In this paper, we consider SPS systems with homo-
morphic properties and suggest applications that have not been provided before (in particular, not by
employing ordinary SPS). We build linearly homomorphic structure-preserving signatures under simple
assumptions and show that the primitive makes it possible to verify the calculations performed by a server
on outsourced encrypted data (i.e., combining secure computation and authenticated computation to al-
low reliable and secure cloud storage and computation, while freeing the client from retaining cleartext
storage). Then, we give a generic construction of non-malleable (and actually simulation-sound) commit-
ment from any linearly homomorphic SPS. This notably provides the first constant-size non-malleable
commitment to group elements.

Keywords: Structure-preserving cryptography, signatures, homomorphism, commitment schemes, non-
malleability.

1 Introduction

Composability is an important cryptographic design notion for building systems and protocols. In-
side protocols, cryptographic tools need to compose well with each other in order to be used in
combination. Structure-preserving cryptography [3], in turn, is a recent paradigm that takes care of
composing algebraic tools, and primarily within groups supporting bilinear maps to allow smooth
composition with the Groth-Sahai proof systems [47]. The notion allows for modular and simplified
designs of various cryptographic protocols and primitives. In the last three years, a large body of
work has analyzed the feasibility and the efficiency of structure-preserving signatures (SPS) [45, 28,
38,1,3,4,20,29,51,5, 6], public-key encryption [21] and commitments schemes [48, 2].

In this paper, we consider SPS schemes with linearly homomorphic properties and argue that such
primitives have many applications, even independently of Groth-Sahai proofs. Let us next review our
results and then review related work.

1.1 Owur Contributions

LINEARLY HOMOMORPHIC STRUCTURE-PRESERVING SIGNATURES. In this paper, we put forth the
notion of linearly homomorphic structure-preserving signatures (linearly homomorphic signatures
and structure-preserving signatures have been defined before, as we review in the sequel, but the
combination of the earlier notions is useful and non-trivial). These signature schemes function exactly
like ordinary homomorphic signatures with the additional restriction that signatures and messages
only consist of (vectors of) group elements whose discrete logarithms may not be available. We
describe three constructions and prove their security under established complexity assumptions in
symmetric bilinear groups.

* This author was supported by the CAMUS Walloon Region Project.



APPLICATIONS. As in all SPS systems, the structure-preserving property makes it possible to effi-
ciently prove knowledge of a homomorphic signature on a committed vector. However, as indicated
above, we describe applications of linearly homomorphic SPS beyond their compatibility with the
Groth-Sahai techniques.

First, we show that the primitive enables verifiable computation mechanisms on encrypted data.*
Specifically, it allows a client to store encrypted files on an untrusted remote server. While the dataset
is encrypted using an additively homomorphic encryption scheme, the server is able to blindly com-
pute linear functions on the original data and provide the client with a short homomorphically derived
signature vouching for the correctness of the computation. This is achieved by having the client sign
each ciphertext using a homomorphic SPS scheme and handing the resulting signatures to the server
at the beginning. After this initial phase, the client only needs to store a short piece of information, no
matter how large the file is. Still, he remains able to authenticate linear functions on his data and the
whole process is completely non-interactive. The method extends when datasets are encrypted using
a CCA1l-secure encryption schemes. Indeed, we will observe that linearly homomorphic SPS schemes
yield simple homomorphic IND-CCA1-secure cryptosystems with publicly verifiable ciphertexts.

As a second and perhaps more surprising application, we show that linearly homomorphic SPS
schemes generically yield non-malleable [35] trapdoor commitments to group elements. We actually
construct a simulation-sound trapdoor commitment [40] —a primitive known (by [40,54]) to imply
re-usable non-malleable commitments with respect to opening [31] — from any linearly homomorphic
SPS satisfying a relatively mild condition. To our knowledge, we thus obtain the first constant-
size trapdoor commitments to group elements providing re-usable non-malleability with respect to
opening. Previous non-interactive commitments to group elements were either malleable [47,48] or
inherently length-increasing [36]: if we disregard the trivial solution consisting of hashing the message
first (which is not an option when we want to allow for efficient proofs of knowledge of an opening),
no general technique has been known, to date, for committing to many group elements at once using
a short commitment string.

In the structure-preserving case, our transformation is purely generic as it applies to a template
which any linearly homomorphic SPS necessarily satisfies in symmetric bilinear groups. We also
generalize the construction so as to build simulation-sound trapdoor commitments to vectors from any
pairing-based (non-structure-preserving) linearly homomorphic signature. In this case, the conversion
is only semi-generic as it imposes conditions which are only met by pairing-based systems for the time
being: essentially, we need the underlying signature scheme to operate over groups of finite, public
order. While only partially generic, this construction of non-malleable commitments from linearly
homomorphic signatures is somewhat unexpected considering that the terms “non-malleability” and
“homomorphism” are antagonistic, and thus may be considered incompatible.

TECHNIQUES AND IDEAS. At first, the very name of our primitive may sound almost self-contradic-
tory when it comes to formally define its security. Indeed, the security of a linearly homomorphic
scheme [17] notably requires that it be infeasible to publicly compute a signature on a vector outside
the linear span of originally signed vectors. The problem is that, when vector entries live in a discrete-
logarithm hard group, deciding whether several vectors are independent or not is believed to be a
hard problem. Yet, this will not prevent us from applying new techniques and constructing schemes
with security proofs under simple assumptions and the reduction will be able to detect when the
adversary has won by simply solving the problem instance it received as input.

Our first scheme’s starting point is the one-time (regular) SPS scheme of Abe et al. [1]. By
removing certain public key components, we obtain the desired linear homomorphism, and prove the
security using information-theoretic arguments as in [1]. The key observation here is that, as long
as the adversary does not output a signature on a linear combination of previously signed vectors,

4 Our goals are very different from those of [42], where verifiable computation on homomorphically encrypted data is
also considered. We do not seek to outsource computation but rather save the client from storing large datasets.



it will be unable to sign its target vector in the same way as the reduction would, because certain
private key components will remain perfectly hidden.

Our initial scheme inherits the one-time restriction of the scheme in [1] in that only one linear
subspace can be safely signed with a given public key. Nevertheless, we can extend it to build a full
linearly homomorphic SPS system. To this end, we suitably combine our first scheme with Waters
signatures [60]. Here, Waters signatures are used as a resting ground for fresh random exponents
which are introduced in each signed vector and help us refresh the state of the system and apply
each time the same argument as in the one-time scheme. We also present techniques to turn the
scheme into a fully randomizable one, where a derived signature has the same distribution as a
directly signed message.

In our simulation-sound commitments to group elements, the commitment generation technique
appeals to the verification algorithm of the signature scheme, and proceeds by evaluating the cor-
responding pairing-product equations on the message, but using random group elements instead of
actual signatures. The binding and simulation-binding properties, in turn, stem from the infeasibil-
ity of forging signatures while the signature homomorphism allows equivocating fake commitments
when simulating the view of an adversary. It was already known how to build simulation-sound
and non-malleable commitments [40,54, 31,41, 24] from signature schemes with efficient X' proto-
cols. Our method is, in fact, different and immediately yields length-reducing structure-preserving
commitments to vectors without using 3’ protocols.

1.2 Related Work

STRUCTURE-PRESERVING SIGNATURES. Signature schemes where messages only consist of group
elements appeared for the first time — without the “structure-preserving” terminology — as ingredi-
ents of Groth’s construction [45] of group signatures in the standard model. The scheme of [45] was
mostly a proof of concept, with signatures consisting of thousands of group elements. More efficient
realizations were given by Cathalo, Libert and Yung [28] and Fuchsbauer [38]. Abe, Haralambiev and
Ohkubo [1, 3] subsequently showed how to sign messages of n group elements at once using O(1)-size
signatures. Lower bounds on the size of structure-preserving signatures were given in [4] while Abe et
al. [7] provided evidence that optimally short SPS necessarily rely on interactive assumptions. As an
ingredient for their tightly secure cryptosystems, Hofheinz and Jager [51] gave constructions based
on the Decision Linear assumption [16] while similar results were independently achieved in [20,
29]. Quite recently, Abe et al. [5,6] obtained constant-size signatures without sacrificing the security
guarantees offered by security proofs under simple assumptions.

Regarding primitives beyond signature schemes, Camenisch et al. [21] showed a structure-pre-
serving variant of the Cramer-Shoup cryptosystem [30] and used it to implement oblivious third
parties [22]. Groth [48] described length-reducing trapdoor commitments (i.e., where the commitment
is shorter than the committed message) to group elements whereas [2] showed the impossibility of
realizing such commitments when the commitment string lives in the same group as the message.
Sakai et al. [58] recently suggested to use structure-preserving identity-based encryption [59] systems
to restrict the power of the opening authority in group signatures.

LINEARLY HOMOMORPHIC SIGNATURES. The concept of homomorphic signatures can be traced
back to Desmedt [33] while proper definitions remained lacking until the work of Johnson et al. [53].
Since then, constructions have appeared for various kinds of homomorphisms (see [8] and references
therein).

Linearly homomorphic signatures are an important class of homomorphic signatures for arith-
metic functions, whose study was initiated by Boneh, Freeman, Katz and Waters [17]. While initially
motivated by applications to network coding [17], they are also useful in proofs of storage [9,10] or
in verifiable computation mechanisms, when it comes to authenticate servers’ computations on out-



sourced data (see, e.g., [8]). The recent years, much attention was given to the notion and a variety
of constructions [43, 11, 18,19, 26, 27,37, 12, 13] based on various assumptions have been studied.

1.3 Organization

Section 2 first gives security definitions for linearly homomorphic SPS systems, for which efficient
constructions are provided in Section 3. Their applications to verifiable computation on encrypted
data are explained in Section 4 while Section 5 shows how to build simulation-sound commitments
to group elements. Implications and generalizations of the latter are then given in Appendix E.

2 Background

2.1 Definitions for Linearly Homomorphic Signatures

Let (G,Gr) be a configuration of (multiplicatively written) groups of prime order p over which a
bilinear map e : G x G — Gr is efficiently computable.

Following [1, 3], we say that a signature scheme is structure-preserving if messages, signature
components and public keys live in the group G.

We consider linearly homomorphic signatures for which the message space M consists of pairs
M =T xG", for some n € N, where T is a tag space. We remark that, in the applications considered
in this paper, tags do not need to be group elements. We thus allow them to be arbitrary strings.

Definition 1. A linearly homomorphic structure-preserving signature scheme over (G,Gr) consists
of a tuple of efficient algorithms X = (Keygen, Sign, SignDerive, Verify) for which the message space
is M =T x G", for some n € poly(\) and some set T, and with the following specifications.

Keygen(\, n): is a randomized algorithm that takes in a security parameter X € N and an integer
n € poly(A) denoting the dimension of vectors to be signed. It outputs a key pair (pk,sk) and the
description of a tag (i.e., a file identifier) space T .

Sign(sk, T, M) s a possibly probabilistic algorithm that takes as input a private key sk, a file iden-
tifier T € T and a vector MeG". It outputs a signature o € G"s, for some ngs € poly(\).

SignDerive(pk, T, {(wi, @) }_,): is a (possibly probabilistic) signature derivation algorithm. It
takes as input a public key pk, a file identifier 7 as well as £ pairs (wi,a(i)), each of which
consists of a weight w; € Z, and a signature o@D e G™. The output is a signature o € G on
the vector M = Hle MZ “i where o\ is a signature on M;.

Verify(pk, 7, M, 0): is a deterministic algorithm that takes in a public key pk, a file identifier 7 € T,
a signature o and a vector M. It outputs 1 if o is deemed valid and O otherwise.

Correctness is expressed by imposing that, for all security parameters A € N, all integers n € poly(\)
and all triples (pk, sk, 7)) <— Keygen(A,n), the following holds:

1. For all 7 € T and all n-vectors M, if o = Sign(sk, T, M), then we have Verify(pk, 7, M, o) =1
2. For all 7 € T, any £ > 0 and any set of triples {(w;, o™, M;)}e_,, if Verify(pk, 7, M;, o) =1 for
each i € {1,...,¢}, then Verify(pk, 7, Hle Miw",SignDerive(pk,T, {(ws, o) le)) =1.

SECURITY. In linearly homomorphic signatures, we use the same definition of unforgeability as
in [12]. This definition implies security in the stronger model used by Freeman [37] since the adversary
can interleave signing queries for individual vectors belonging to distinct subspaces. Moreover, file
identifiers can be chosen by the adversary (which strengthens the definition of [17]) and are not
assumed to be uniformly distributed. As a result, a file identifier can be a low-entropy, easy-to-
remember string such as the name of the dataset’s owner.



Definition 2. A linearly homomorphic SPS scheme X = (Keygen, Sign, Verify) is secure if no PPT
adversary has non-negligible advantage in the game below:

1. The adversary A chooses an integer n € N and sends it to the challenger who runs Keygen(\,n)
and obtains (pk,sk) before sending pk to A.
2. On polynomially-many occasions, A can interleave the following kinds of queries.

— Signing queries: A chooses a tag T € T and a vector M € G™. The challenger picks a handle
h and computes o < Sign(sk, T, M) It stores (h, (T,M, o)) in a table T and returns h.

— Derivation queries: A chooses a vector of handles h = (hi,...,hg) and a set of coefficients
{wi}F_,. The challenger retrieves the tuples {(h;, (T,Mi), o NYE_ | from T and returns L if one
of these does not exist or if there exists i € {1,...,k} such that 7; # 7. Otherwise, it computes
M = Hle ]\2;”1 and runs o’ < SignDerive(pk, 7, {(wi,a(i))}le). It also chooses a handle h’,
stores (W, (7, M), 0") in T and returns h' to A.

— Reveal queries: A chooses a handle h. If no tuple of the form (h, (r, M),a’) exists in T, the
challenger returns L. Otherwise, it returns o’ to A and adds ((r, M), 0’) to the set Q.

3. A outputs an identifier T, a signature ¢* and a vector M* € G". The adversary A wins if
Verify(pk, 7, M*, 0*) =1 and one of the conditions below is satisfied:
o (Type I): 7 # 7 for any entry (7,.) in Q and M* # (1g, ..., 1g).

o (Type II): 7 = 1; for ki > 0 entries (1;,.) in Q and M* ¢ Vi, where V; denotes the

=

subspace spanned by all vectors Ml, oy My, for which an entry of the form (T*,Mj), with
je{l,...,ki}, appears in Q.

A’s advantage is its probability of success taken over all coin tosses.

In our first scheme, we will consider a weaker notion of one-time security. In this notion, the adversary
is limited to obtain signatures for only one linear subspace. In this case, there is no need for file
identifiers and we assume that all vectors are assigned the identifier 7 = €.

In the following, the adversary will be said independent if

— For any given tag 7, it is restricted to only query signatures on linearly independent vectors.
— Each vector is only queried at most once.

Non-independent adversaries are not subject to the above restrictions. It will be necessary to consider
these adversaries in our construction of non-malleable commitments. Nevertheless, security against
independent adversaries suffices for many applications —including encrypted cloud storage — since
the signer can always append unit vectors to each newly signed vector.

At first, one may wonder how Definition 2 can be satisfied at all given that the challenger may not
have an efficient way to check whether the adversary is successful. Indeed, in cryptographically useful
discrete-logarithm-hard groups G, deciding whether vectors {J\ZI'Z}Z of G™ are linearly dependent is
believed to be difficult when n > 2. However, it may be possible using some trapdoor information
embedded in pk, especially if the adversary additionally outputs signatures on {Z\_jz}Z

In some applications, it makes sense to consider a weaker attack model where, in the case of Type
IT attacks, the adversary is only deemed successful if it can output a convincing proof that its target
vector M* is indeed independent of the vectors that were signed for the tag 7*. The proof can be
either a NIZK proof or, alternatively, a vector in the kernel of the matrix whose rows are the vectors
that were signed for 7*. We call such an adversary a targeting adversary.

2.2 Hardness Assumptions

We rely on the following hardness assumptions, the first of which implies the second one.
Definition 3 ([16]). The Decision Linear Problem (DLIN) in G, is to distinguish the distributions

(9%, g°, g%, g", g°t%) and (g%, ¢", g°¢, g"%, g7), with a,b,c,d & Ly, z £ Zy. The Decision Linear
Assumption is the intractability of DLIN for any PPT distinguisher D.



Definition 4. The Simultaneous Double Pairing problem (SDP) in (G,Gr) is, given a tuple of
elements (., gr, bz, hu) €r G*, to find a non-trivial triple (z,7,u) € G*\{(1g, 1g,1g)} such that
e(gz,2) - e(gr,7) = 1g, and e(h, z) - e(hy,u) = 1.

3 Constructions of Linearly Homomorphic Structure-Preserving Signatures

As a warm-up, we begin by describing a one-time homomorphic signature, where a given public key
allows signing only one linear subspace.

3.1 A One-Time Linearly Homomorphic Construction

In the description hereunder, since only one linear subspace can be signed for each public key, no file
identifier 7 is used. We thus set 7 to be the empty string ¢ in all algorithms.

Keygen(\, n): given a security parameter A and the dimension n € N of the subspace to be signed,
choose bilinear group (G, Gr) of prime order p > 2*. Then, choose generators h, g., g, h. £ G.
Pick xi, i, 0 < Zy, for i = 1 ton. Then, for each i € {1,...,n}, compute g; = gX’g", h; = hX*hd.
The private key is sk = {xi, Vi, i}/, while the public key is defined to be

pk = (gZ) h?“7 hz, h, {glahl}znzl) e G2n+4'
Sign(sk, 7, (M1, ..., My)): tosigna vector (M, ..., M,) € G" associated with the identifier 7 = ¢

using sk = {xs, i, i}, compute the signature consists of o = (z,7,u) € G3, where
n

z = ﬁMi7Xi, r = ﬁM;%, U= HMi_éi.
i=1 i=1

=1

SignDerive(pk, T, {(wi,a(i))}le): given the public key pk, a file identifier 7 = & and £ tuples
(wi, O'(i)), parse each signature ¢ as ¢(9) = (zi,m, ul) € G3 for i = 1 to £. Compute and return
the derived signature o = (z,r,u) = (Hf:1 2, 1, i, Hle u).

Verify(pk, o, 7, (M, ..., My)): given a signature o = (z,7,u) € G3, a vector (My,..., M,) and a
file identifier 7 = ¢, return 1 if and only if (M, ..., M,) # (1g,...,1g) and (z,r, u) satisfy

n n
lg, = e(9z,2) - e(gr,T) - He(gi, M), lg, = e(hz,2) -e(h,u) - He(hi, M;).
i=1 =1

The proof of security relies on the fact that, while the signing algorithm is deterministic, signatures
are not unique. However, the reduction will be able to compute exactly one signature for each vector.
At the same time, an adversary has no information about which specific signature the legitimate
signer would compute on a vector outside the span of already signed vectors. Moreover, by obtaining
two distinct signatures on a given vector, the reduction can solve a given SDP instance.

Theorem 1. The scheme is unforgeable if the SDP assumption holds in (G,Gr).

Proof. We describe an algorithm B that takes as input a SDP instance (g, g-, h-, k) € G* and uses
a forger A to find a triple (z,7,u) such that e(g., 2) - e(gr,7) = e(hz, 2) - e(h,u) = 1lg,.

To this end, B honestly runs the key generation algorithm using randomly chosen {(x;,vi, 6;) }i -
Whenever A requests a signature on a vector (M, ..., M,) € G", B faithfully follows the specification
of the signing algorithm. The game ends with the adversary A outputting a vector (M7,..., MY)
with a valid signature (z*,7*,u*). At this point, B computes its own signature

n n n
—Xi —%i —6;
Glorful) = ([T M T e T M) (1)
=1 i=1 =1
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on (Mf,...,M). We claim that, with overwhelming probability, (2%, 7+ u?) = (2" /2%, »" /ot " /ul)
is a non-trivial solution to the SDP instance.

To see this, we first note that a given public key has exponentially many corresponding pri-
vate keys and pk perfectly hides the vector (xi,...,Xxn). Moreover, for a given pk, each message
(M, ..., M,) has an exponential number of valid signatures but the one produced by the signing
algorithm is completely determined by (x1,. .., xn). We will see that, in A’s view, guessing the value
2 of (1) amounts to inferring which vector (x1,...,xn) the reduction B is using.

Throughout the game, A obtains signatures {(z;, i, u;)}?=}' on at most n—1 linearly independent
vectors of G”. If we consider discrete logarithms, these signatures only provide A with n — 1 linearly
independent equations because, for each triple (z;,r;, u;), z; uniquely determines (r;, u;). Taking into
account the information revealed by {(g;, hi)}? 1, we find that an unbounded adversary is presented
with 3n — 1 linear equations in 3n unknowns. In A’s view, since (M7, ..., M) must be independent
of previously signed vectors, predicting z' is only possible with probability 1 /p. With probability
1 —1/p, we thus have zf # 2*, in which case (2%, 7%, ut) solves the SDP instance because (21,77, ul)
and (z*,r*,u*) both satisfy the verification equations. O

The scheme can be modified so as to work in asymmetric pairing configurations and the Double
Pairing assumption [1]. However, we need to work with the SDP assumption in the next section.

3.2 A Full-Fledged Linearly Homomorphic SPS Scheme

Here, we upgrade our one-time construction to obtain a scheme allowing us to sign an arbitrary
number of linear subspaces. Here, each file identifier 7 consists of a L-bit string. The construction
builds on the observation that, in the scheme of Section 3.1, signatures (z, r, ) could be re-randomized
by computing (z-g%,r-g7% u-h; logh(gr)’e), with 6 & Ly, it h, 1081(97) ere available. Since publicizing

—1lo . . . .
h. 8.97) would render the scheme insecure, our idea is to use Waters signatures as a support for

introducing extra randomizers in the exponent.
In the construction, the u component of each signature can be seen as an aggregation of the
one-time signature of Section 3.1 with a Waters signature (h{zogh(g’“) - Hg(7)7P, h?) [60] on the tag .

Keygen(\, n): given a security parameter A and the dimension n € N of the subspace to be signed,
choose bilinear group (G,Gr) of prime order p > 2*. Then, conduct the following steps.

1. Choose h & G and o, Oy By yil Zy. Define g, = h**, g, = h® and h, = hB=.

2. For i = 1 to n, pick x4,%,d; ¢ Z, and compute g; = gX’g, hy = hX'h%.

3. Choose a random vector w = (wp, w1, ..., wr,) & GLHL, The latter defines a hash function
Hg : {0,1}* — G which maps 7 = 7[1]...7[L] € {0,1}* to Hg(r) = wo - [Tr—, w;[k}.

The private key is sk = (h%", {xi,7i,di}_;) while the public key consists of

pk = (gzs grs Dy hy {gis R}y, W) € GTH x GEHL

Sign(sk, 7, (M1,...,M,)): to sign a vector (My,...,M,) € G" w.r.t. the file identifier 7 using
sk = (h?r, {x, Vi (5i}?:1), choose 6, p & Z, and output o = (z,7,u,v) € G*, where

n n
5= gf . H Mi_Xi r = 9;9 . H Mi_'Yi
i=1 i=1
n
w=(her)~ [ ™% He(r)™” v=h
i=1



SignDerive(pk, T, {(wi, @) }_,): given pk, a file identifier 7 and ¢ tuples (w;,c®), parse o(®

; . R
as o) = (zi,m,ui,vi) € G* for i = 1 to £. Then, choose p/ < Z, and compute and return
l w; l w; = 4 w; 0 o l Wi /
o= (z,r,u,v), where z = [[;_y 2", r = [[,_y ", u= [y v - He(7) ™7 and v = [[;_y v - h¥.

Verify(pk, o, 7, (M, ..., My)): given a signature o = (z,7,u,v) € G*, a file identifier 7 and a
vector (My,. .., M,), return 1 if and only if (My,..., M,) # (1g,...,1lg) and (z,r,u,v) satisfy

n n

Lo, = e(gz, 2) - e(gr,r) - | [ egi, M), lo, = e(hz, 2) - e(h,u) - e(He(7),v) - [[ e(hi, M), (2)
i=1 =1

The security of the scheme against non-independent Type I adversaries is proved under the SDP
assumption. In the case of Type II forgeries, we need to assume the adversary to be independent
because, at some point, the simulator is only able to compute a signature for a unique value® of .

Theorem 2. The scheme is unforgeable against independent adversaries if the SDP assumption
holds in (G,Gr). Moreover, the scheme is secure against non-independent Type I adversaries.

Proof. The result is proved by separately considering Type I and Type II forgeries. For simplicity,
we first consider Type II adversaries as the case of Type I attacks will be simpler. Lemmas 1 and 2
show how to build an algorithm solving the SDP problem either way. g

The proof of Lemma 1 uses Waters signatures as a handle to randomize signatures. Specifically,
whenever the reduction is able to compute a Waters signatures (hS” - Hg(7)™?, h”) on the tag 7, it
can inject a fresh extra randomizer 6 € 7Z, in the exponent for each vector associated with 7. By
doing so, with non-negligible probability, the specific vector (x1,...,Xxn) used by the reduction will
remain completely undetermined from A’s view.

Lemma 1. For any Type II independent forger A, there exists an algorithm B solving the SDP
problem such that Adv(A) <8-q-(L+1)- (AdeDP(B) + %), where q is the number of distinct tags
appearing in signing queries. (The proof is given in Appendix A.1).

Lemma 2. A Type I forger A implies an algorithm B solving the SDP problem with non-negligible
advantage. More precisely, we have Adv(A) < 8-q-(L+1)- (AdVSDP(B) + %), where q is the number
of distinct tags occurring in signing queries. Moreover, the statement holds even for non-independent
adversaries. (The proof is given in Appendix A.2).

Since the signature component u cannot be publicly randomized, the scheme does not have fully
randomizable signatures. In Appendix B, we describe a fully randomizable variant. In applications
like non-malleable commitments to group elements, the above scheme is sufficient however.

4 Applications

4.1 Verifiable Computation for Encrypted Cloud Storage

Linearly homomorphic schemes are known (see, e.g., [8]) to provide verifiable computation mecha-
nisms for outsourced data. Suppose that a user has a dataset consisting of n samples s1, ..., s, € Zj,.
The dataset can be encoded as vectors v; = (€&;|s;) € Zg“, where €; € Z; denotes the i-th unit
vector for each i € {1,...,n}. The user then assigns a file identifier 7 to {#;}}"_;, computes signatures
o; < Sign(sk, 7,7;) on the resulting vectors and stores {(7;,0;)};; at the server. When requested,
the server can then evaluate a sum s = > | s; and provide evidence that the latter computation is
correct by deriving a signature on the vector (1,1,...,1,s) € Z;LH. Unless the server is able to forge

5 Note that this is not a problem since the signer can derive  as a pseudorandom function of 7 and (Mj, ..., M,) to
make sure that a given vector is always signed using the same 6.



a signature for a vector outside the span of {7;}" ;, it is unable to fool the user. The above method
readily extends to authenticate weighted sums or Fourier transforms.

One disadvantage of the above method is that it requires the server to retain the dataset {s;}7 ,
in the clear. Using linearly homomorphic structure-preserving signatures, the user can apply the
above technique on encrypted samples using the Boneh-Boyen-Shacham (BBS) cryptosystem [16].

The BBS cryptosystem involves a public key (g, g, f = g%, h = g¥) €r G*, where (z,y) € Zg is the
private key. The user (or anyone else knowing his public key) can first encrypt his samples {s;}1 ;
by computing BBS encryptions (C ;, Ca4, Cs;) = (f", hli, g% - g"ith), with r;, ¢; £ Ly, for each i €
{1,...,n}. If the user holds a linearly homomorphic structure preserving signature key pair for vectors
of dimension n+3, he can generate n structure preserving signatures on vectors ((C1 4, Ca,4, ng)\E,) €
G"*3, where E; = (1g,...,1G,9,1G,--- 1@) = ¢% for each i € {1,...,n}, using the scheme of
Section 3.2. The vectors {((C’1 i 021,032)’E )}, and their 81gnatures { ZiyTi, Wi, v;) Y1 are then
archived in the cloud in such a way that the server can publicly derive a signature on the vector
(fzi i p2iti g2isi.gdu(ritti) g g ,g) € G™*3 in order to convince the client that the encrypted
sum was correctly computed. Using his private key (z,y), the client can then retrieve the sum ), s;
as long as it remains in a sufficiently small range.

The interest of the above solution lies in that the client can dispense with the need for storing the
O(n)-size public key of his linearly homomorphic signature. Indeed, he can simply retain the random
seed that was used to generate pk and re-compute private key elements {(xi, i, d;) }7—,; whenever he
wants to verify the server’s response. In this case, the verification equations (2) become

lg, = e(gz, 2 HMX’ e(gr,m HM% e(hs, z- l_[MXZ e(h,u-ﬁMfi)-e(HG(T),v),
i=1

so that the client only has to compute O(1) pairings. Moreover, the client does not have to determine
an upper bound on the size of his dataset when generating his public key. Initially, he only needs to
generate {(g;, h;) ?:1. When the i-th ciphertext (C4;, C2;,C3;) has to be stored, the client derives
(Xi+3,Yi+3,0i+3) and (gi+3, hi+3) by applying a PRF to the index 4. This will be sufficient to sign
vectors of the form ((Cy, Cay, Cs)|Es).

In order to hide all partial information about the original dataset, the server may want to re-
randomize the derived signature and ciphertext before returning them. This can be achieved by
having the client include signatures on the vectors (f, 1,9, lg,--.,1lg), (1g, h,g,1g,...,1lg) in the
outsourced dataset. Note that, in this case, the signature should be re-randomized as well. For this
reason, our randomizable scheme described in Appendix B should be preferred.

Complete and careful security models for “verifiable computation on encrypted data” are beyond
the scope of this paper. Here, they would naturally combine the properties of secure homomorphic
encryption and authenticated computing. It should be intuitively clear that a malicious server cannot
trick a client into accepting an incorrect result (i.e., one which differs from the actual defined linear
function it is supposed to compute over the defined signed ciphertext inputs) without defeating the
security of the underlying homomorphic signature.

4.2 Extension to CCAl-Encrypted Data

In the application of Section 4.1, the underlying crypotosystem has to be additively homomorphic,
which prevents it from being secure against adaptive chosen-ciphertext attacks. On the other hand,
the method is compatible with security against non-adaptive chosen ciphertext attacks. One possi-
bility is to apply the “lite” Cramer-Shoup technique (in its variant based on DLIN) as it achieves
CCA1l-security while remaining homomorphic. Unfortunately, the validity of ciphertexts is not pub-
licly verifiable, which may be annoying in applications like cloud storage or universally verifiable
e-voting systems. Indeed, servers may be willing to have guarantees that they are actually storing
encryptions of some message instead of random group elements.



Consider the cryptosystem where ciphertexts (Cy,Ca,C3,Cy) = (f7,ht, g™, g™ - XT - Xt) are
decrypted as m = log;(Cy - C; ™' Cy "2 Cy %), where X1 = f*1g* and X3 = h*2g* are part of the public
key. In [52], such a system was made chosen-ciphertext secure using a publicly verifiable one-time
simulation-sound proof that (f,h,g,C1,Cs,C3) forms a DLIN tuple. In the security proof, if the
reduction is guaranteed not to leak C| ' C,**C5* for an invalid triple (C1,Cs,C3) (i.e., as long as
the adversary is unable to generate a fake proof for this), the private key component z will remain
perfectly hidden. Consequently, if the challenge ciphertext is computed by choosing C5 €r G (so
that (f, h,g,C5,C5,C%) is not a DLIN tuple) and computing C} = g™ -C7" - C5%? - C37, the plaintext
m is independent of A’s view. If we replace the one-time simulation-sound proofs by standard proofs
of membership in the scheme of [52], we obtain a CCA1 homomorphic encryption scheme. Linearly
homomorphic SPS schemes provide a simple and efficient way to do that.

The idea is to include in the public key the verification key of a one-time linearly homomorphic
SPS — using the scheme of Section 3.1— for n = 3 as well as signatures on the vectors (f, 1g,g),
(1g,h,g) € G3. This will allow the sender to publicly derive a signature (z,r,u) on the vector
(Cy,Co,C3) = (f,ht,g" ). Each ciphertext thus consists of (z,r,u,Cy,Cs, Cs,Cy). In the security
proof, at each pre-challenge decryption query, the signature (z,r,u) serves as publicly verifiable
evidence that (f,h,g,C1,Cs,C3) is a DLIN tuple. In the challenge phase, the reduction reveals
another homomorphic signature (z*, 7*, u*) for a vector (C}, C3,C%) that may be outside the span of
(f,1g,9) and (1g, h, g) but it does not matter since decryption queries are no longer allowed beyond
this point.

We note that linearly homomorphic SPS can also be used to construct CCAl-secure homomorphic
encryption schemes based on the Naor-Yung paradigm [56] in the standard model.

5 Non-Malleable Trapdoor Commitments to Group Elements from Linearly
Homomorphic Structure-Preserving Signatures

As noted in [48,49], some applications require to commit to group elements without knowing their
discrete logarithms or destroying their algebraic structure by hashing them first. This section shows
that, under a certain mild condition, linearly homomorphic SPS imply length-reducing non-malleable
structure-preserving commitments to vectors of group elements.

As a result, we obtain the first length-reducing non-malleable structure-preserving trapdoor com-
mitment. Our scheme is not strictly® structure-preserving (according to the terminology of [2]) be-
cause the commitment string lives in Gp rather than G. Still, openings only consist of elements
in G, which makes it possible to generate efficient NIWI proofs that committed group elements
satisfy certain properties. To our knowledge, the only known non-malleable commitment schemes
whose openings only consist of group elements were described by Fischlin et al. [36]. However, these
constructions cannot be length-reducing as they achieve universal composability [23, 25].

Our schemes are obtained by first constructing simulation-sound trapdoor commitments (SSTC)
[40, 54] to group elements. SSTC schemes were first suggested by Garay, MacKenzie and Yang [40]
as a tool for constructing universally composable zero-knowledge proofs [23]. MacKenzie and Yang
subsequently gave a simplified security definition which suffices to provide non-malleability with
respect to opening in the sense of the definition of re-usable non-malleable commitments [31].

In a SSTC, each commitment is labeled with a tag. The definition of [54] requires that, even if
the adversary can see equivocations of commitments to possibly distinct messages for several tags
tagi, ..., tagy, it will not be able to break the binding property for a new tag tag & {tagi,...,tag,}.

6 We recall that strictly structure-preserving commitments cannot be length-reducing, as shown by Abe et al. [2], so
that our scheme is essentially the best we can hope for if we aim at short commitment stings.
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Definition 5 ([54]). A simulation-sound trapdoor commitment (Setup, Com,FakeCom, FakeOpen,
Verify) is a tuple where (Setup, Com, Verify) forms a commitment scheme and (FakeCom, FakeOpen)
are PPT algorithms with the following properties

Trapdoor: for any tag and any message Msg, the following distributions are computationally indis-
tinguishable:

Diake := {(pk,tk) < Setup()); (com,aux) <— FakeCom(pk, tk,tag);
dec « FakeOpen(aux, tk,com, Msg) : (pk, tag, Msg, com, d?e?)}

D,ear := {(pk,tk) < Setup(A); (com,dec) + Com(pk, tag, Msg) : (pk, tag, Msg, com, dec)}

Simulation-sound binding: for any PPT adversary A, the following probability is negligible

Pr[(pk, tk) < Setup()\); (com,tag, Msg,, Msg,, dec;, decy) +— AC##k (pk) : Msg, # Msg,
A Verify(pk, tag, Msg;, com,dec;) = Verify(pk, tag, Msgs, com,deca) = 1 A tag € Q],

where Oy, pi; 15 an oracle that maintains an initially empty set QQ and operates as follows:

— On input (commit, tag), it runs (com,aux) < FakeCom(pk,tk,tag), stores (com,tag,aux),
returns com and adds tag in Q.

— On input (decommit,com, Msg): if a tuple (com,tag,aux) was previously stored, it computes
dec FakeOpen(aux, tk, tag,com, Msg) and returns dec. Otherwise, Oy, pi, Teturns L.

While our SSTC to group elements will be proved secure in the above sense, a non-adaptive flavor of
simulation-sound binding security is sufficient for the construction of non-malleable commitments.
Indeed, Gennaro used [41] such a relaxed notion to achieve non-malleability from similar-looking
multi-trapdoor commitments. In the non-adaptive notion, the adversary has to choose the set of tags
tagi, ..., tag, for which it wants to query the Oy, oracle before seeing the public key pk.

5.1 Template of Linearly Homomorphic SPS Scheme

We first remark that any constant-size linearly homomorphic structure-preserving signature nec-
essarily complies with the template below. Indeed, in order to have a linear homomorphism, each
verification equation necessarily computes a product of pairings which should equal 1g, in a valid
signature. In each pairing of the product, one of the arguments must be a message or signature com-
ponent while the second argument is either part of the public key or an encoding of the file identifier.

For simplicity, the template is described in terms of symmetric pairings but generalizations to
asymmetric configurations are possible.

Keygen(A,n): given A and the dimension n € N of the vectors to be signed, choose constants
N, Ny, M. Among these, n, and n, will determine the signature length while m will be the number
of verification equations. Then, choose {F} .}jc1,...m}.uefl,...n.}» 1Giitie{1, .n}, jefj,....m} 0 the
group G. The public key is pk = ({Fj,u}je{l,...,m},,ue{l,...,nz}7 {Gjitiequ, ..ny, je{j,...,m}) while sk
contains information about the representation of public elements w.r.t. specific bases.

Sign(sk, 7, (M1,...,M,)): Outputs a tuple o = (Zl, o Ty Vi, an) € Gt

SignDerive(pk, 7, {(w;, a(i))}le): parses each o(@ as (Z{i), ol ZSZ), Vl(i)7 ol VTE?) and computes
. . e . .
Z, =[] 2" v, =][v" ™ pe{l,...,n.}, ve{l,... n}.
i=1 i=1

After a possible extra re-randomization step, it outputs (Zl, s Dy Vigeony an).
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Verify(pk, o, 7, (M1, ..., M,)): given a signature o = (Zl, cosZp Vi, . ,an) € Gt g tag
7 and (My,..., M,), return O if (Mq,...,M,) = (1g, ..., 1lg). Otherwise, do the following.
1. For each j € {1,...,m} and v € {1,...,n,}, compute one-to-one’ encodings T}, € G of the
tag 7 as a group element.
2. Return 1 if and only if ¢; = 1g,, for j =1 to m, where

i =[] e 20) - [ e Vo) - [] (G, M) jed{l,...,m}. (3)
pn=1 v=1 =1

In the following, we say that a linearly homomorphic SPS is regular if, for each file identifier 7,
any non-trivial vector (M, ..., M,) # (1g,..., 1g) has a valid signature.

5.2 Construction of Simulation-Sound Structure-Preserving Trapdoor Commitments

Let IT5PS = (Keygen, Sign, SignDerive, Verify) be a linearly homomorphic SPS. We construct a simu-
lation-sound trapdoor commitment as follows.

SSTC.Setup(A, n): given the desired dimension n € N of committed vectors, choose public parame-
ters pp for the linearly homomorphic SPS scheme. Then, run I7°7°.Keygen()\, n) to obtain a public
key pk = ({Fj,u}je{l,...,m},ue{l,...,nz}v {Gjitieq, .ny, je{j,...,m})v for some constants n,, n,, m, and
a sk. The commitment key is pk = pk and the trapdoor tk consists of sk. Note that the public
key defines a signature space G™=*"v for constants n, and n,,.

SSTC.Com(pk, tag, (M1,...,My)): to commit to (Mi,..., M,) € G™ with respect to the tag
tag = T, choose (Zl, v Vi, Vm,) & Gretno in the signature space. Then, run step 1 of
the verification algorithm and evaluate the right-hand-side member of (3). Namely, compute

i =1 e@Ein 20 - [[e@jn: Vo) - [] e(Gji, M) je{l,...,m} (4)
pn=1 v=1 =1

where {7, };, form an injective encoding of tag = 7 as a set of group elements. The commitment
string is com = (¢, ..., ¢y, ) whereas the decommitment is dec = (Zl, cosZn Vi, an).

SSTC.FakeCom(pk, tk, tag): proceeds like SSTC.Com with (Mj, ..., M,) & G™. If (com, dec) de-
notes the resulting pair, the algorithm outputs com = com and the auxiliary information aux,
which consists of the pair aux = ((Mj, ..., M,),dec) for tag = 7.

SSTC.FakeOpen(aux, tk, tag,com, (M, ..., M,)): the algorithm parses com as (¢, ..., ¢y) and
aux as ((Ml, R Mn), (21, e an> Vi,..., an)) It first generates a linearly homomorphic signa-
ture on (Ml/Ml, o ,Mn/Mn) for the tag tag = 7. Namely, using the trapdoor tk = sk, compute
a signature o' = (Z1,...,2,_,V{,...,V, ) < HSPS.Sign(sk, T, (Ml/Mn, . ,Mn/Mn)) Since o’
is a valid signature and aux = ((Ml, e ,Mn), (Zl, ce an, Vi,..., an)) satisfies

&= [1e@im 20 - [ eTiu: Vo) - [ (G, M) jed{l,...,m}, (5)
pn=1 v=1 =1

the fake opening algorithm can run (Z1,. .., Zy., 1~/1~, .., Vi) < SignDerive(pk, 7, {(1,0"), (1,6)}),

where 6 = (21, ceisZins Vi, ..o, Vi, ), and output dec = (Zl, ceisZn,y Vi, ..., Vi, ) which is a valid
de-commitment to the vector (M, ..., M,) with respect to tag = 7.

7 This condition can be relaxed to have collision-resistant deterministic encodings. Here, we assume injectivity for
simplicity.
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SSTC.Verify(pk, tag, (M, . .., My),com,dec): parse com as (ci,...,¢n) € GJ' and the de-
commitment dec as (Zl, e Ly V1, .,an) € G"=t" (if these values do not parse properly,
return 0). Then, compute a one-to-one encoding {7}, };, of tag = 7. Return 1 if relations (4)
hold and 0 otherwise.

In Appendix E, we extend the above construction so as to build simulation-sound trapdoor
commitment to vectors from any linearly homomorphic signature that fits a certain template. As
a result, we obtain a modular construction of constant-size non-malleable commitment to vectors
which preserves the feasibility of efficiently proving properties about committed values.

Theorem 3. Assuming that the underlying linearly homomorphic SPS is reqular and secure against
non-independent Type I adversaries, the above construction is a simulation-sound trapdoor commit-
ment to group elements. (The proof is given in Appendix D).

A standard technique (see, e.g., [40,41]) to construct a re-usable non-malleable commitment
from a SSTC scheme is as follows. To commit to Msg, the sender generates a key-pair (VK,SK)
for a one-time signature and generates (com, dec) <— SSTC.Commit(pk, VK, MSg) using VK as a tag.
The non-malleable commitment string is the pair (com,VK) and the opening is given by (dec, o),
where ¢ is a one-time signature on com, so that the receiver additionally checks the validity of
o. This construction is known to provide independence (see Definition 8 in Appendix C) and thus
non-malleability with respect to opening, as proved in [32, 44].

In our setting, we cannot compute o as a signature of com, as it consists of G elements. However,
we can rather sign the pair (Msg,dec) —whose components live in G— as long as it uniquely
determines com. To this end, we can use the one-time structure-preserving of [1, Appendix C.1] since it
allows signing messages of arbitrary length using a constant-size one-time public key. Like our scheme
of Section 3.2, it relies on the SDP assumption and thus yields a non-malleable commitment based on
this sole assumption. Alternatively, we can move o in the commitment string (which thus consists of
(com, VK, o)), in which case the one-time signature does not need to be structure-preserving but it has
to be strongly unforgeable (as can be observed from the definition of independent commitments [32]
recalled in Appendix C) while the standard notion of unforgeability suffices in the former case.
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A Deferred Proofs for the Scheme in Section 3.2

A.1 Proof of Lemma 1

Proof. Let us assume that an independent adversary A can produce a Type II forgery with non-
negligible advantage . Using A, we build an algorithm B solving a SDP instance (g., g;, h., h) with
probability at least /(8(q — 1)(L + 1)). Algorithm B chooses (wo, w1, ...,wr) € G¥*1 in the same
way as in the security proof of Waters signatures [60]. Namely, for any string 7 € {0, 1}¥, the hash
value Hg (1) = wp - Hl 1 wTM can be expressed as Hg(7) = g7 () LK) for certain integer-valued
functions J, K : {0,1}* — Z, that remain internal to the simulation. They are further defined
using the methodology of programmable hash functions [50] so that, for any distinct 7,71, ..., 74, we
have J(7) = 0 mod p and J(7;) # 0 mod p for each i € {1,...,q} with non-negligible probability
C=1/(8 g (L+1).

Remaining public key components are defined by setting g; = ¢X'g)* and h; = h¥'h%, with
XisVis 0s £ Zy, for i = 1 to n, as in the real key generation algorithm.

Since A is a Type II forger, it is expected to produce a forgery (7' M*, o*) for a tag 7* that was
used by B in some signing query but for which M* o4 span(Ml, o M, ) where Mj, ..., M,_1 are
the vectors of G" that were associated with 7*. We denote by 71, ..., 7, the distinct adversarially-
chosen tags involved in A’s queries during the game. Note that, since A is a Type II adversary, we
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will have 7% € {71,...,7,} at the end of the game. We also assume w.l.o.g. that exactly n — 1 signing
queries are made for each tag 7 € {7,...,7,} during the game (otherwise, B can simulate signing
queries for itself). During its interaction with A, the reduction B answers Sign, SignDerive and Reveal
queries as follows.

Signing queries: At each signing query (Tj, M = (M, ..., Mn)) involving the j-th distinct tag 75,
B evaluates the function J(7;) and considers the following situations.
— If J(1j) # 0, B picks p,0 £ Zy, and computes

K(TJ>

©1 = Hg(7j)~" - (hz) '

.0 =6
) Oy = h” - (h2)”",

which can be written (01,02) = (h;%% - Hg(7)™?, h?) if we define p = p — j(f;) Using

(©1,0,), B obtains a valid signature on the vector (M, ..., M,) by computing

n

n n
z:gf'HM;Xi r:gz_e-HM;% uz@l-HMi_‘si v =6
i=1 =1 i=1

The signature o = (z,7,u,v) is not directly sent to A but assigned to a new handle h and
stored in an entry (h, (15, M), o) of the table T.

— If J(r;) = 0, B picks p £ Zy, and computes

n

n n
z= H M, r= HMi_% u= Hg(rj)""- HM;(;" v="hP,
=1 i=1 =1

which corresponds to a valid signature (z,r,u,v) on (Mj,...,M,) for which § = 1. Again, B
chooses a handle h and stores (h, (1, M), (z,7,u, v)) in the table T

Derivation queries: Whenever A queries ((hl, ooy hg), (7, ]\Zf"), {Bi le) to the SignDerive oracle, B
returns L if not all handles hy, ..., hg correspond to queries involving 7. Otherwise, let Ml, cee Mk
be the queried vectors. If M’ #+ Hi-“:l Mf . B returns L. Otherwise, B answers the query in the
same way as the real SignDerive oracle, by updating the table T'.

Reveal queries: When A supplies a handle h, B returns L if no entry of the form (h, (r, M),.)
exists in 7. Otherwise, BB returns the previously generated signature o and adds ((T, M ),0) in
the list Q.

Forgery: Eventually, A outputs a Type II forgery (T*,M*,U*), where M* = (Mf,...,M}) and
o* = (2%, 7%, u*,v*) € G* satisfies the verification equation. At this point, B evaluates J(7*) and

reports failure if J(7*) # 0 or if the set {1,...,7,} contains at least two tags 7j,,7;, such that

J(7j,) = J(7j,) = 0. The same analysis as in [60] shows that, with probability 1/(8(¢—1)(L+1)),

we have J(7%) = 0 and J(7;) # 0 for each 7; € {71, ..., 74} \{7*}. We thus find that B’s probability

not to abort during the entire game is at least 1/(8(¢ — 1)(L + 1)).

If B does not fail, we have Hg(7*) = h®("") so that B can compute

n n n
Zf = H M;Fxi rf = H M7 uf = o* K0 H MO ol =v*. (6)
i=1 i=1 i=1
We see that (2, 7T, uf, vt) forms a valid signature on (M7, ..., M) whose last component v’ coincides

with that of A’s forgery. Since (27,71, u’,v") and (2*,7*, u*, v*) both satisfy the verification equations,
the triple
Pt d) = (i r i)
(Z,T’,U) ZTj’I"TjuT
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necessarily satisfies e(gs, 2%) - e(gy, %) = e(h, 2%) - e(h,ut) = 1g,.. We are thus left with proving that
2t # 1g with all but negligible probability.
To do this, the key observation is that, in the desirable event

J(r*) =0 A N J(m) #0, (7)
Tj #T*
the only information that B reveals about (x1, ..., Xy) is contained in the z-components of signatures

involving 7* if A is a Type II adversary. Indeed, for each signing query (7, M ) such that 7 # 7%, B
introduces in the signature a fresh random exponent 6 €r Z, that does not appear anywhere else.
This allows B not to leak anything about (x1, ..., xn) during these queries.

More precisely, let us first consider what an unbounded Type II adversary A can see. Throughout
the game, A makes n(q — 1) + (n — 1) signing queries since at most n — 1 independent queries
are allowed for the tag 7*. Let us index these queries as {(Tj,]\Z/k = (Mg, .. -’Mk,n»}j,kv with
JjeA{l,...,q}, and let {(2x,7jk ©jk k) }jk denote the answers in which B introduces n(q — 1)
variables {0; x};j* ke{1,..n} in the exponent. Together with private key elements {(x:,7i, d:) }iy, we
have a total of 3n 4+ n(q — 1) = 2n + ng unknowns. Each signature (2;x,7j %, u;k, vjk) provides A
with at most one new linearly independent equation —recall that (2, v;x) uniquely determines
T}k, Uj k While v; , does not depend on 6, j, or {(xs, Vi, 9:) };_; —in addition to the 2n linear equations
resulting from the public key elements {(g;, ki) }1" ;.

Overall, a Type II adversary A thus obtains 2n + ng — 1 linear equations which is insufficient
to solve a system of 2n + ng unknowns. Since (M7, ..., M) is linearly independent of the vectors
MJ*,D .. ,Mj*7n,1 associated with 7*, for A, predicting the value z* of (8) is equivalent to finding
the missing piece equation that would determine (x1, ..., x»n). With probability 1—1/p, we thus have
24 £ 2* as claimed. O

A.2 Proof of Lemma 2

Proof. Let Abe a Type I forger with non-negligible advantage €. We show that it implies an algorithm
B solving a SDP instance (g, gr, hz, h) with probability at least €/(8¢(L + 1)).

Algorithm B begins by choosing (wg,w,...,wr) € GX*! as in the security proof of Waters
signatures [60]. This is done in such a way that, for any 7 € {0,1}%, the hash value Hg(7) can be
written Hg(7) = g;](T) - hE() for the same functions J, K : {0,1}F — Z,, as in the proof of Lemma
1. For any distinct 7,71,...,7;, we will thus have J(7) = 0 mod p and J(r;) # 0 mod p for each
i €{1,...,q} with non-negligible probability ( =1/(8-¢- (L + 1)).

Other public key components are defined by setting g; = gX g7 and h; = hX h%, with xi, v, 6; &=
Zy, for ¢ = 1 to n. During the game, A’s queries are handled as follows.

Signing queries: At each signing query (Tj, M = (M, ..., Mn)) involving the j-th distinct tag 7;,
B aborts in the event that J(7;) = 0 mod p. Otherwise, B picks p, 0 £ Zy, and computes

K(75) -6

Oy = Hg(7;)™" - (he) 7, Oy = hP - (h) ).

Note that the above pair can be written (©1,602) = (h;e'c“ - Hg(1)7?, hf’), where p = p — ‘?éf_z).
J

Using (01, 602), B obtains a well-formed signature on (M, ..., M,) by computing
n n n
z:gf-HM;Xi r:g;9~HM;7i u:@l-HMi_é" v = 6Os.
i=1 i=1 i=1

The signature o = (z,r,u,v) is not directly returned to A but associated with a new handle h
and stored in an entry (h, (7, M), o) of the table T'.
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Derivation queries: When A queries ((hy,...,hg), (7, M), {B;}F ¥ 1) to the signature derivation
oracle, B returns L if not all handles hy, ..., hg correspond to queries involving 7. Otherwise,
let Ml, .. Mk be the queried vectors. If M £ HZ 1 M , B returns 1. Otherwise, B answers
exactly hke the real SignDerive oracle and updates the table T.

Reveal queries: When A queries the Reveal oracle with a handle h, B returns L if no entry of the
form (h, (7, M ),.) exists in T. Otherwise, B returns the previously computed signature o — just
like the actual Reveal oracle— and adds ((7, M), o) in the list Q.

Forgery: Eventually, A outputs a Type II forgery (T*,M*,a*), where M* = (MF,...,M}) and
o* = (2%, 7%, u*,v*) € G* is a tuple satisfying the verification equation. At this step, A computes
J(7*) and aborts if J(7*) # 0. However, the same analysis as in [60] shows that, with probability
1/(8¢(L + 1)), we have J(7*) = 0 and J(7;) # 0 for each j € {1,...,¢}.

If B does not fail, we have Hg(7*) = hX(™) and B can thus compute

n n n
2= H M;F—xi rf = H M7 ul = K07 H M{*—(Si ol =v*. (8)
i=1 i=1 i=1
The 4-uple (27,77, ul, vT) forms a valid signature on (M7, ..., M}) whose last component is identical

to that of A’s forgery. Since (zf, 7!, uf,v") and (2*,7*, u*,v*) both satisfy the verification equations,

we find that L. .
Pty = (2 1)
(2, ut) = (zT’rT’uT
necessarily gives a non-trivial solution to the SDP instance with overwhelming probability.

Indeed, the same arguments as in the proof of Lemma 1 show that we can only have z¥ # 1g with
probability 1/p. The reason is that, in each signing query, B introduces a new blinding exponent 6
that does not appear anywhere else. For this reason, B never leaks any information about (x1, ..., xn)
at any time and the element z' is thus completely undetermined in A’s view. a

B A Fully Randomizable Linearly Homomorphic SPS

In certain situations, one may want derived signatures to have the same distribution as original
signatures on the same messages.

B.1 Privacy Definition

Ahn et al. [8] formalized a strong privacy property requiring that derived signatures be statistically
indistinguishable from original ones, even when these are given.

In [12], Attrapadung et al. extended the definition of [8] — which only considers honestly gener-
ated signatures— to any original signature satisfying the verification algorithm.

Definition 6 ([12]). A linearly homomorphic signature (Keygen, Sign, SignDerive, Verify) is said com-
pletely context hiding if, for all public/private key pazrs (pk, sk) <« Keygen( ), for any message set
S = {(r, Ml) (7, My_1)}, any coeﬁficzents {wi}=! and any (T, M) such that M = | ! Mw’,
for all {o;}; Such that Verify(pk, 7, MZ, 0;) = 1, the following distributions are statistically close

{(sk, {Ji}?:_ll, Sign(sk, 7, M))} {(sk, {Ji}?:_ll, SignDerive(pk,T, {(wi, 09) }i7, 1))}sk51\71'

sk,S,M ’

In [8] Ahn et al. showed that, if a scheme is strongly context hiding, then Definition 1 can be
simplified by removing the SignDerive and Reveal oracles and only providing the adversary with an
ordinary signing oracle.
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B.2 A Completely Context-Hiding Construction

We show that our scheme of Section 3.2 can be modified so as to become strongly context-hiding
in the sense of [8]. Namely, signatures produced by the SignDerive algorithm should be statistically
indistinguishable from signatures freshly generated by Sign, even when the original signatures are
given.

The difficulty is that, in the scheme of Section 3.2, we cannot re-randomize the underlying 6
without knowing h$". To address this problem, it is tempting to include in each signature a random-
ization component of the form (hS" - Hg(7)~¢, hS), for some ¢ € Z,, which can be seen as a signature
on the vector (1g,...,1g). Unfortunately, the security proof ceases to go through as the reduction
finds itself unable to generate a well-formed pair (h2" - Hg(7)~¢, h¢) at some step of its interaction
with the adversary. Our solution actually consists in committing to the signature components that
cannot be re-randomized and provide evidence that committed group elements satisfy the verifica-
tion equations. This is achieved using Groth-Sahai non-interactive arguments on a perfectly witness
indistinguishable Groth-Sahai CRS, as in the linearly homomorphic construction of Attrapadung
et al. [13]. A slight difference with [13], however, is that signature components (Hg(7)™?,h™") are
no longer used and replaced by the technique of Malkin et al. [55], which yields slightly shorter
signatures.

Keygen(\, n): given a security parameter A and the dimension n € N of the subspace to be signed,
choose bilinear group (G, Gr) of order p > 2*. Then, do the following.
1. Choose h & G and «, oy, B, & Z,. Define g, = h®, g, = h® and h, = hP.
2. For each i € {1,...,n}, pick xi,7i, d; & Z, and compute g; = gX* - g*, h; = hX* - ho.
3. Generate L + 1 Groth-Sahai common reference strings by choosing fi, fo & G and defining
vectors fi = (f1,1,9) € G3, fo = (1, fo,9) € G3 and f;;z & G3, for each i € {0,...,L}.
The public key consists of

pk: (gm 9r, hZ) h’7 {gi?hi}?zl’ f= (ﬁaﬁa{ﬁ,i}fzo))

while the private key is sk = (hg‘r7 {XisVis 6i}?:1).

Sign(sk, 7, (M1, ...,M,)): to sign a vector (My,...,M,) € G" using sk = (hg"“, {Xi,'yi,éi}?zl)
with the file identifier 7, conduct the following steps.
1. Choose 0 & Zy, and compute

n

n n
Z= gf : H M r= gz_e : H M U= hz_a'ar : H Mz'_(si
i=1 i=1 i=1
2. Using the bits 7[1]...7[L] of 7 € {0,1}E, define the vector f, = faq - M-, ﬁ);[i] so as to

assemble a Groth-Sahai CRS f, = (fi, fé, f:)
3. Using f,, compute Groth-Sahai commitments

= PUz1 PUz,2 > V2,3
CZ:(1G71G72).JC1 'f2 'fT )
= FUrl pUn2  pUn3
C’f‘:(lG71Ga7‘)'f1r 'f2 'fTr

Vu,3

Cu= (g, 1g,u)- fi " % fr

to z, r and u, respectively. Using the randomness of these commitments, generate proofs
7?1 = (7T1,1, 7T172,7T1’3) € GS and 7?2 = (7T2,1, 7T272,7T2’3) € GS that (Z, T, u) Satisfy the verification
equations 1g, = e(gz, 2) - e(gr,7) - [ 11— e(gi, M;) and 1g, = e(hs, 2) - e(h,u) - [[;—, e(hq, M;).
These proofs are obtained as

— —Vz,21 —Vr,1 —Vz,2 —Vr2 —Vz,3 —Ur 3
7T1:(7T1,1,7F1,2,7Tl,3):(gz ? *gr " y gz ? *gr " y 9z ? *gr " )

- —Vz,1 —V, —Vz,2 —V, —Vz,3 —V,
Ty = (w21, Ta,2,Ma3) = (hz =1 - h™Vwl, by 2% RV TR TV
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and satisfy the verification equations

n

HE(gz', (1g, 1G,Mi))7l = E(9:,C.) - E(9r,C,) - E(mi, fi) - B(mi2, f2) - E(miz, fr) (9)
-1

HE(hi, (1g, 1G,Mi))_1 = E(h.,C.) E(h,Cy) - E(man, fi) - E(ma2, f2) - E(mas, fr).

=1

The signature consists of
o= (C,,C,,Cy, 1, 72) € G, (10)

SignDerive(pk, 7, {(wi, o) }4_,): given pk, a file identifier 7 and ¢ tuples (w;,c(")), parse each
signature ¢ as a tuple of the form ¢(® = (C_"zﬂ-,6r7i76u7i,ﬁ1,i,7?27i) € GY for i = 1 to ¢.
Otherwise, the derivation process proceeds in two steps.

1. Compute
¢ ¢ ¢ ¢ ¢
5 TT A 5 TTAw 5 TT A C TTow L TTew
C.=]]c.s G=1I¢s Co=]]Cx% m=]75 = [ [ 7
i=1 =1 i=1 i=1 i=1

2. Re-randomize the above commitments and proofs using their homomorphic property and
return the re-randomized version o = (C, C,, C,, 71, T2).

Verify(pk, o, 7, (M1, ..., M,)): given a pair (7,(M,...,M,)) and a purported signature o parse
the latter as (C,, Cy, Cy, 1, 72). Then, return 1 if and only if (My,...,M,) # (1g,...,1lg) and
equations (9) are satisfied.

We believe this construction to be of interest even if we disregard its structure-preserving prop-
erty. Indeed, if we compare it with the only known completely context-hiding linearly homomorphic
signature in the standard model [13], its signatures are shorter by one group element. Moreover,
we can prove the security under the sole DLIN assumption whereas the scheme of [13] requires an
additional assumption.

The scheme is clearly completely context hiding because signatures only consist of perfectly
randomizable commitments and NIWI arguments.

As for the unforgeability of the scheme, the proof of the following theorem is along the lines of [55,
Theorem 5]. However, we can only prove unforgeability in a weaker sense as we need to assume that
the adversary is targeting. Namely, in the case of Type II attacks, the adversary must also output a
proof that it actually broke the security of the scheme and that its vector M* = (Mf,...,My) e G"
is indeed independent of the vectors for which it obtained signatures for the target tag 7*.

If {MZ = (M;a,...,M;,)}™, denote the linearly independent vectors that were signed for 7*, the
adversary could simply output a vector W = (Wy,...,W,,) € G" such that [[j=y e(M;,W;) # 1,
and [[7_, e(M; ;, W) = lg, for each i € {1,...,m}. The latter test guarantees that the adversary’s
output is a non-trivial Type II forgery.

Theorem 4. The above scheme provides unforgeability against independent targeting adversaries if
the DLIN assumption holds in G.

Proof. Since the scheme is completely context-hiding, we work with a simpler security definition
where the adversary only interacts with a signing oracle. This suffices to guarantee security in the
sense of Definition 2, as implied by the result of Ahn et al. [8]. The proof proceeds via a sequence of
games. In each game, we denote by X; the probability that the adversary A wins.
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Game, ..y : This is the real game. When the adversary A terminates, the simulator outputs 1 if A is
successful. We thus have Pr[X, ., = Adv(A).

Gameg : This  game is identical to Game,..q; but we modlfy the generation of the public key. Namely, the

vectors (fla f2) {f?) Z}z O) are chosen by Settlng fl (f17 1@79) and f2 (1G7f27 ) with f17f2 <_ G.
As for { f37z}z~:0, they are obtained as

ﬁ,O _ ﬁﬁo,l ‘f—iéfo,z -, Lg)éo,s (1, 179)#-4—/)0 (11)
- &1 &, ) s .
f3,’i:f1 1'f2 2'(17179)&73'(171%9) pz’ ZG{]‘?"‘?L}

with 1% (i {0, ey L}, {071751’1, e ,§L,1 (i Zp, 5072,61’2, e ,§L72 (ﬁ Zp, 5073,61’3, e >§L,3 (i Zp and
005 P15 PL & {0,...,¢ — 1}, with ¢ = 2¢ and where ¢ is the number of distinct tags across all
signing queries. Note that this change is only conceptual since { ﬁ7i}f:0 have the same distribution
as in Game,.q,. We thus have Pr[Xy] = Adv(A).

Game; : In this game, we first raise an event Fp, which causes the simulator B to abort if it does not
occur. Let 71,...,7, be the distinct tags successively involved in 4’s queries throughout the game
and let 7% be the tag involved in A’s forgery. We know that, for a Type II forger, 7% € {7y,..., 74}
whereas 7* & {71, ..., 7,} for a Type I adversary. For each string 7 € {0, 1}, we consider the function
J(1) = p-¢—po— oK pir[i]. We also define F} to be the event that

Jr) =0 A A J(j) # 0.
T €{T1 T P\ {T*}

We note that the exponents pg, p1, .. ., pr, are independent of A’s view: as a consequence, the simulator
could equivalently define { ﬁ,i}iL:o first and only choose {p;}~, — together with values {&3,;}X
explaining the { ﬁ7i}f:0 — at the end of the game, when 7%, 71, ..., 7, have been defined. In the case
of a Type I attack, the same analysis as [60] (after the simplification of Bellare and Ristenpart [14])
shows that Pr[X; A Fy] > Adv(A)?/(27-q- (L +1)).

This follows from the fact that, for any set of queries, a lower bound on the probability of event
Fy is 1/(2¢(L + 1)). In the case of Type II attacks, a lower bound on the probability of F; for
any set of queries is given by n > 1/(2(¢ — 1)(L + 1)) > 1/(2¢(L + 1)). Indeed, after re-ordering,
the set of queried tags can be written {7*,7i,...,7,_1} and, from the known results [60,50] on
the programmability of Waters’ hash function, we know that the probability, taken over the choice
of (i, po,--.,pr), to have J(7*) = 0 and /\?;}J(Tj) # 0 for any distinct 7*,7,...,7, is at least
1/(2(¢—1)(L+1)) > 1/(2¢(L + 1)). In the following, we denote by F; the counterpart of event F}
in Game;.

Games : In this game, we modify the distribution of the public key. Namely, f1 = (f1,1,9) and
fa = (1, fa,¢g) are chosen as before but, instead of generating the vectors { f3 i}E, as previously, we
choose them as

7 »&,1 2o, -
fao= R0 R0 (1,1, gy (12)
7 &1 &, . .
fa=A"" R (1,1,9)77, ie{l,...,L}
which amounts to setting {p3 = {13 = ... = {13 = 0. This change should not significantly affect

A’s behavior if the DLIN assumption holds. More precisely, if events X; A F} and Xs A F5 occur
with noticeably different probabilities in Game; and Games, this contradicts the DLIN assumption.
Concretely, consider a DLIN instance (g, fl,fz,ffl,f§2,Z), where 81,89 & Zyp and Z = g1 to%2 or
7 €pr G. Using the random self-reducibility of DLIN, we can create L+ 1 independent DLIN instances
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by picking o, ¢y, 1; & Z,, for i € {0,..., L} and setting

f30— (( 51) if’t)? ( 62) f20’ ALRY do+o | (1,179>N'C—po)
f31 - (( 51) fi, ( 52) fd’z VAL .g¢z+¢i . (1’ 139)—,)1-)’ i e {1’ N 7L}

If Z er G, {]‘?,71}520 is distributed as in Game;. If Z = ¢% 192 the distribution of {]‘?,71}520 is the
same as in (12). For this reason, we can write | Pr[Xy A Fy] — Pr[X; A F1]| < AdvPYN(A) as we
assumed that the challenger B can always detect when a targeting adversary is successful.

Gameg : In this game, we modify the treatment of signing queries. We note that, for a given message
(r,M = (My,...,M,)), there is an exponential number of witnesses (z,7,u) € G* satisfying the
verification equations

e(gza gm z - 1GT (13)

H e(gi, M,
e(hs, ) - f[ (hi, Mi) = 1g,.

Specifically, each z €p G determines a unique pair (r,u) for which (13) holds. However, in Games,
the simulator B answers all signing queries using the witness (z,r,u) such that

n

n n
a=]]M r=]M u=[[ M7
i=1 =1

i=1

Note that this amounts to choosing § = 0 at step 1 of the signing algorithm. Still, B has a valid
witness for the statement to be proved. It thus assembles a Groth-Sahai CRS f = ( fi, fé, f;) by
computing fT = ﬁ,yo . HiL:1 f:;’TZ-[Z]. Using f, it computes Groth-Sahai commitments (7;, C’}, C, to zZ, T
and u. Using the randomness of these commitments, it faithfully generates proofs 71 and 7o satisfying
the verification equations (9).

We argue that this change does not affect A’s view whatsoever. Indeed, if event F3 occurs we have
J(7*) = 0 and J(7;) # 0 for each 7; # 7*. Moreover, when J(7;), the Groth-Sahai CRS (f1, fa, ﬁj) is
a perfectly hiding Groth-Sahai CRS. This means that C:, ér, C, are perfectly hiding commitments
and proofs (71, 72) are perfectly witness indistinguishable proofs. In other words, although the proofs
(71, 72) are always generated using the witnesses (z, 7, u) for which # = 0, their distribution does not
depend on which specific witness is used.

In contrast, in the case of Type II attacks, signing queries involving 7*, (C_"Z, C_"r, C_"u, 1,75 ) reveal
the underlying (z,r,u) in the information theoretic sense since ( ﬁ, f;, f_;*) is a perfectly binding
CRS when J(7*) = 0. However, at most n — 1 signing queries on linearly independent vectors Mj are
made for the tag 7*, so that A only obtains n — 1 linearly independent equations in the exponent.
As a consequence, A does not obtain a sufficient amount of information to recognize that § = 0 in
the underlying signatures. For this reason, we find that Pr[Xs A F3] = Pr[Xa A F3].

In Games, we show that a successful forger A implies an algorithm B solving a given SDP instance
(92, gr, hz, h) with non-negligible advantage, which contradicts the DLIN assumption.

Recall that, when the adversary A terminates, it outputs (7%, M*, 0*), where M* = (M7, ..., M})
and o* = (C*,C*, C*, @, 7%) € G5 satisfies the verification equatlons At this point, if the event F

introduced in Game; occurs, we must have J(7*) = 0, which means that fT* = f370 . HZL:JFI1 3. ™ s in

span( fi, fé) This implies that é;, C_";f and C_"; are perfectly binding commitments. Moreover, using
(log,(f1),log,(f2)), B can extract the underlying group elements (2*,7*,u*) € G? by performing
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BBS decryptions of ciphertexts (C¥,C*,C*). Since (7F,73) are valid proofs for a perfectly sound
Groth-Sahai CRS, the extracted elements (z*,7*, u*) necessarily satisfy

n n

Loy = e(gz, =) - elgr,r) - [ [ elgin MP) = e(hz, 2*) - el u®) - T elhi M), (14)
=1 i=1

Having extracted (z*,r*,u*), B also computes

n n n

A= [ AR | T | i (15)

i=1 i=1 i=1

so that (21,77, u') also satisfies (14). Since (27,77, u’) and (2*,7*,u*) both satisfy (14), the triple

Pt b = Z*T*“*>
(Z7T’U)_(ZT7T’T7U,T

necessarily satisfies e(g., 2%) - e(gy, ) = e(hs, 2}) - e(h,u?) = 1g,.. To conclude the proof, we argue
that 2! # 1g with all but negligible probability.

To do this, we remark that, if the event F} defined in Game; occurs, the only information that
B leaks about (x1,...,xn) resides in the unique signing query involving 7* if the case of Type II
attacks. Indeed, for all signing queries (7, M ) involving tags 7 such that 7 # 7*, we have J(7) # 0 so
that ( f1, fa, f;) is a perfectly hiding Groth-Sahai CRS, for which proofs (71, 72) and commitments
are perfectly witnesses indistinguishable. In other words, the signatures (éz, C_"T, (ZM 71, 79) for which
J(7) # 0 leak nothing about (x1,...,Xn). In contrast, in the case of Type II attacks, signing queries
involving 7, (éz,ér,éu,ﬁl,ﬁ) reveal the underlying (z,7,u) in the information theoretic sense.
However, at most n — 1 linearly independent vectors ]\;fj are signed w.r.t. 7%, so that A only obtains
n—1 linearly independent equations in the exponent for the unknowns (x1, ..., x»). As a consequence,
we can apply the same arguments as in the proof of Theorem 1 and Lemma 1. With probability 1—1/p,
we thus have 2% # 2*.

To recap, we find

—1
Pr[X;3 A F3] = AdvSPP(B) - (1 - ]19) .

When putting the above altogether, we find

Adv(A)?

1\ -1
< SDP 12y (1 _ * DLIN (13
S (LT S ATE) (1-2)  +Aav™N(B)

b

Since any SDP algorithm By yields a DLIN distinguisher B; such that AdvPY™N(B;) > 2-Adv PP (B)),
we find

Adv(A) < \/27 (L) 1+ % (1~ ;)_1} - AdvPUN ()

and the announced result follows O
C Definitions for Trapdoor Commitments
Formally, a non-interactive commitment scheme (Setup, Com, Verify) is a triple of probabilistic poly-

nomial-time (PPT) algorithms where, on input of a security parameter A\, Setup outputs a public key
pk; Com takes as input a message Msg, a public key pk and outputs a commitment/de-commitment

pair (com, dec) & Com(pk, Msg), and Verify(pk, Msg, com, dec) is deterministic and outputs 0 or 1.
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The correctness property guarantees that Verify always outputs 1 whenever (com,dec) is obtained
by committing to Msg using honestly generated parameters.

The binding property demands that, given pk, no PPT adversary should be able to produce a
commitment that can be opened to two distinct messages. More precisely, for any PPT adversary A,
the following advantage function should be negligible as a function of A.

AdvPid (A) := Pr| Verify(pk, Msg, com, decy) = Verify(pk, Msg;, com, dec;) = 1 A
Msg, # Msg; : pk & Setup()); (com, Msg,, decy, Msg,, decy) & A(pk) |

A commitment is also said hiding if commitment to distinct messages have computationally indis-
tinguishable distributions. Formally, for any PPT adversary A = (A1, Asg), the following advantage
term is negligible as a function of A.

Adviide (A) ;= [Pr[ b=V : pk & Setup(\); b & {0,1}; (Msgg, Msgy, st) & Ay (pk);

1

(com, dec) & Com(pk,my); b & Ay(com, st) | — 3

A trapdoor commitment is a perfectly hiding commitment for which a trapdoor tk makes it

possible to break the binding property and open a commitment to any arbitrary value. However,

this should remain infeasible without the trapdoor. More formally, a trapdoor commitment uses two
additional algorithms (FakeCom, FakeOpen) that proceed as follows.

Definition 7. A trapdoor commitment is a tuple (Setup, Com, FakeCom, FakeOpen, Verify) of efficient
algorithms where Com and Verify proceed as in an ordinary commitment and other algorithms proceed
as follows.

Setup: is a randomized algorithm that takes as input a security parameter . It produces a public
key pk and a trapdoor tk.

FakeCom: is a randomized algorithm that takes as input a public key pk and the trapdoor tk. It
outputs a fake commitment string com and some auxiliary information aux.

FakeOpen: takes as input a fake commitment produced by FakeCom and the corresponding auxiliary
information aux. It also takes as inpul a message Msg and the trapdoor tk and outputs a fake
de-commitment dec such that Verify(pk, Msg, com,dec) = 1. Moreover, the two distributions

Dyake := {(pk,tk) < Setup()); (com, aux) <— FakeCom(pk, tk);
dec «+ FakeOpen(aux, tk,com, Msg) : (pk, Msg, com, GE:)}

and
D;ear := {(pk, tk) < Setup(X); (com,dec) <— Com(pk, Msg) : (pk, Msg, com, dec)}
should be indistinguishable.

We now recall the definition of independence for commitment schemes, which is known (see,
e.g., [44] for a proof) to imply re-usable non-malleability with respect to opening.

Definition 8 ([32]). A trapdoor commitment scheme (Setup, Com, FakeCom, FakeOpen, Verify) pro-
vides L-independence if, for any PPT adversary (A1, A2) and any pair of (-tuples (Msgy, ..., Msg,),

24



(Msg), ..., Msg,), the following probability is a negligible function of the security parameter \:

Pr[(pk, tk) < Setup(\); Ry, ..., Ry & {0,1}PoY0;
(com;, aux;) < FakeCom(pk, tk, R;)
(st,com*) « A;(pk,comy,...,com,) with com* & {com;}5_,
dec; < FakeOpen(aux;,tk,com;, Msg;) Vie {1,...,¢}
dec] < FakeOpen(aux;, tk,com;, Msg;) Vi € {1,...,¢}
(Msg7, decy) < As(st, pk, Msg;,decy, ..., Msg,, decy)
(Msg3, decy) < Aa(st, pk, Msg, dec], ..., Msg), dec)) :
Msg] # Msg3 A Verify(pk, Msg}, com*, dec}) = 1 A Verify(pk, Msg5, com*, decs) = 1]

A trapdoor commitment is independent if it provides £-independence for any arbitrary ¢ € poly(X).

It is known (see, e.g., [54]) that, when a SSTC scheme and a secure one-time signature are
combined to build an ordinary commitment scheme, the simulation-sound binding property and the
security of the one-time signature imply the notion of independence.

D Proof of Theorem 3

Proof. We first observe that the commitment satisfies the trapdoor property if the homomorphic
SPS is regular. Indeed, in the distribution D4, the commitment com is obtained as

Nz Ny n
¢ =[] eFjw Z) - [ e(Tjs Vi) - [ [ e(Gi, M) jefl,....,m} (16)
pn=1 v=1 i=1
where (Ml, e ,Mn) €r G" and for a uniformly random tuple (Zl, ce an, Vlj ce Am) €R Gne=tnv,
We also know that, for any (Mi,...,M,) # (M,...,M,), the vector (M;/M,,...,M,/M,) has a
valid signature o' = (Z1,...,2,_,V{,...,V, ), so that there exists

dec = (Z1y oy Zns Viy oo s Vi) = (24 - 2y 2 T V- ViV V)

that explains com as a commitment to (M, ..., M,). Moreover, since (Zl, e va, Vi,... ,\A/nv) was
chosen uniformly in G™* 7™, dec is uniform among values (Zl, ey an Vi, an such that
Ny ~ Ty n
;=1 e@in:Z) - [ Ty Vi) - [ [ €(Ga, M) je{l,...,m}h. (17)
pn=1 v=1 =1

In other words, the joint distribution of (&)\r/n,cg:) is the same as if it were obtained by choosing
(Zyy s Zns Vi, ooy Vi) & G and computing {c; Ty as per (17).

We now turn to the simulation-sound binding property and show that, if there exists a PPT
adversary A that breaks this property with non-negligible advantage ¢, there exits a non-independent
Type I forger B against the signature scheme.

Concretely, our adversary B obtains a public key pk from its own challenger and sends the
commitment key pk = pk to A. Whenever A sends a query (commit,tag) to the Oy, oracle, B
faithfully runs the SSTC.FakeCom algorithm and thus computes com = {¢;}2; according to (16)
for randomly chosen (Ml,...,Mn) &£ G", dec = (21,...,an,171,...,‘7nv) & Gt and retains
the information aux = ((Ml, e ,Mn),déc). When the oracle Oy, 1, subsequently receives a query
of the form (decommit,com, (Mi,...,M,)), the reduction B invokes its own signing oracle on the
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input (tag, (M, /Mj, ..., M,/M,)). Upon receiving the resulting signature (Z/,. .., ZL Vi V),
B computes and returns dec = (Z; - Z . T, - Z;Lz,ffl Vi Vi, Vi)

Eventually, the adversary A outputs a commitment of its own com* = (cj, ..., c,) along with
valid openings dec = (Z1,...,Zn,, Vi,...,Va,), dec’ = (Z1,...,Z]_,V{,...,V, ) to distinct vectors
(M, ..., M,) # (Mj,...,M,) for some tag tag* that has never been used in any query to O sk.
Since both openings successfully pass the verification test, we find that

(Z1)2,.... 20, ]2}, ..., VAV, Vi [ Vi)

forms a valid homomorphic signature on the vector (M;/M{,...,M,/M)) # (1g,...,1g) for the
identifier 7 = tag*. By construction, 7 was never the input of a signing query made by B to its
own oracle. Consequently, B is indeed a Type I non-independent forger with advantage . O

E Non-Interactive Simulation-Sound Trapdoor Commitments from Linearly
Homomorphic Signatures in Groups of Public Order

MacKenzie and Yang [54] showed that simulation-sound trapdoor commitments imply digital sig-
natures. In the converse direction, constructions of SSTCs are only known for signature schemes
admitting efficient X' protocols. In fact, as noted by Fujisaki [39], all known constructions of non-
interactive simulation-sound or multi-trapdoor [41] commitments build on signature schemes for
which an efficient X protocol allows proving knowledge of a signature.

The idea is to commit to a message m by using m as the challenge of a X protocol for proving
knowledge of a signature o = Sig(sk, tag) on the tag. The commitment is given by the first message
a of the X protocol transcript (a, m, z), which is obtained by simulating a proof of knowledge of a
valid signature o on the message tag. The commitment is subsequently opened by revealing z. By
the special soundness of the X' protocol, unless the sender actually knows a valid signature on tag,
it can only open a given commitment a to one message m.

While simple, the above construction (which extends to give identity-based trapdoor commit-
ments, as noted in [24]) does not readily extend to commit to vectors. Fujisaki [39] gave an alter-
native construction based on encryption schemes. However, this construction is interactive. Groth
and Ostrovsky [46] finally defined the notion of simulation-extractable commitments by additionally
requiring adversarially-generated commitments to be extractable instead of simply binding. A conse-
quence of this strengthened property is that, just like UC commitments [25], simulation-extractable
commitments cannot be length-reducing any longer.

This section shows that ordinary (i.e., non-structure-preserving) linearly homomorphic signatures
also make it possible to construct non-interactive simulation-sound (and thus non-malleable) commit-
ments if they satisfy a certain template. Moreover, they make it possible to commit to vectors while
preserving the ability of efficiently proving properties about committed vectors. We notably obtain
efficient constructions based on the Diffie-Hellman and strong Diffie-Hellman [15] assumptions.

E.1 Definition and Template

We first consider a definition of unforgeability which is obtained by simplifying Definition 2 and
removing the SignDerive and Reveal oracles. As we will see, this simplified definition will be sufficient
for the construction of simulation-sound trapdoor commitments. On the other hand, unlike the
definition used in [17-19], Definition 9 allows the adversary to choose the file identifiers in his signing
queries.

Definition 9. A linearly homomorphic signature scheme X = (Keygen, Sign, SignDerive, Verify) is se-
cure if no probabilistic polynomial time (PPT) adversary has non-negligible advantage (as a function
of the security parameter A € N) in the following game:
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1. The adversary A chooses an integer n € N and sends it to the challenger who runs Keygen(\,n)
and obtains (pk,sk) before sending pk to A.

2. On a polynomial number of occasions, A chooses a tag T € T and a vector ¥. The challenger
returns o = Sign(sk, 7, 7) to A.

3. A outputs an identifier T, a signature o* and a vector i € ZY,. The adversary A is deemed
successful if Verify(pk, 7%, y*,0*) = 1 and either of the following holds:

o (Type 1): T # 1; for any i and y* # 0.
o (Type II): 7" = 7; for somei € {1,...,q} and §* € V;, where V; denotes the subspace spanned
by all vectors U1, ..., Uk, that have been queried for ;.

Note that, in some cases, it may be sufficient to use a non-adaptive definition of unforgeability
where the adversary has to declare all the file identifier 71, ..., 7, involved in signing queries at the
very beginning of the attack (before seeing the public key pk).

Again, we say that the adversary is independent if

— For any given tag 7, it is restricted to only query signatures on linearly independent vectors.
— Each pair (7,m) is queried at most once.

n
p

large prime p > 2*. We assume that IT uses groups G; and G4 of public orders p* and p, respectively,
for some k£ € N. We also assume that each signature o lives in ;. The verification algorithm takes
as input a purported signature o € Gy, a file identifier 7 and a vector m. It returns 1 if and only if

Let IT = (Keygen, Sign, SignDerive, Verify) be a linearly homomorphic signature over Z, for some

F(o,m,pk,7) = 1g,, (18)

where F' is a function ranging over the group G and satisfying certain linearity properties. Namely,
for each pk produced by Keygen and each 7, we require that

F(o1 - 02,m1 + g, pk, ) = F(01, 71, pk, 7) - F'(02, 112, pk, T)
for any vectors my,m2 € Z;; and any 01,02 € G1. As a consequence, we also have
F(o,m,pk,7)" = F(c“,w-m,pk,T)

for any w € Z, and any o € Gy. Finally, the derivation algorithm SignDerive proceeds by computing
SignDerive(pk, 7, { (wi, o)} ,) = [T'_, @

We remark that the above template only captures schemes in groups of public order, so that
constructions based on the Strong RSA assumption [26,27] or on lattices [18,19] are not covered.
The reason is that, when working over the integers, messages and signature components may increase
at each homomorphic operation. This makes it harder to render trapdoor openings indistinguishable
from original de-commitments.

E.2 Simulation-sound Trapdoor Commitments from Linearly Homomorphic
Signatures

From a linearly homomorphic signature scheme IT = (Keygen, Sign, SignDerive, Verify) satisfying the
template of Appendix E.1, we construct a non-interactive length-reducing SSTC as follows.

SSTC.Setup(A, n): given the required dimension n € N of committed vectors, run I1.Keygen(\,n)

to obtain a public key pk and a private key sk. The commitment key is pk = pk and the trapdoor
tk consists of the private key sk of I1.
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SSTC.Com(pk, tag,m): to commit to a vector m € Zy, choose o £ G4 in the signature space.
Compute and output

¢ = F(o,m,pk, tag)

by evaluating F' as in the left-hand-side member of the verification equation (18). The commitment
string is com = ¢ whereas the decommitment is dec = o.

SSTC.FakeCom(pk, tk,tag): proceeds identically to SSTC.Com but using a randomly chosen vec-
tor M fake & Zy. If (com, déc) denotes the resulting commitment/decommitment pair, the algo-
rithms sets com = com and aux = (17 ke, dec).

SSTC.FakeOpen(aux, tk, tag, com,m): the algorithm parses com as ¢ € Gy and aux as (T?Lfake, déc),
where dec = 6 € Gy. It first generates a linearly homomorphic signature on the difference vector
m — Mfake € Z,, for the tag tag = 7. Namely, using the trapdoor tk = sk, compute

o' < I1.Sign(sk, 7,1 — M fake)-

Finally, it computes & = SignDerive(pk, 7, {(1,6),(1,0")}) = 6 - ¢’ € G; and returns dec = 5.

SSTC.Verify(pk, tag, m,com, dec): parse the commitment com as ¢ € Go and the opening dec as
o € Gq. If these cannot be parsed properly, return 0. Otherwise, return 1 if ¢ = F(o, m, pk, tag)
and 0 otherwise.

For completeness, we prove the following result in a similar way to the proof of Theorem 3.

Theorem 5. The above construction is a secure SSTC assuming that 11 is both regular and unforge-
able against non-independent Type I attacks.

Proof. The proof is very similar to the proof of Theorem 3. We first show that the commitment is
a trapdoor commitment if IT is a regular homomorphic signature. Indeed, in the distribution D,
the commitment is obtained as

com = F(&amfakea pkutag) (19)

where M fope €r Z;, and 6 €g Gi. Since II is regular, we also know that, for any m # Mifage, the
vector m — M fqke has a valid signature ¢’ € G;. As a consequence, there exists

dec = & = SignDerive(pk, 7, {(1,5),(1,0')}) =6 - o

such that com = F(&,m, pk, tag), so that com can be explained as a commitment to 7. Moreover,
since 6 was chosen uniformly in G, the obtained de-commitment ¢ is uniform among values such
that

com = F(a,m, pk, tag)

Said otherwise, (¢om, dec) has the same distribution as if it were obtained by choosing dec = & & G4
and computing com = F(&,m, pk, tag).

To establish the simulation-sound binding property, we show that, if there exists a PPT adversary
A that breaks this property with advantage ¢, the homomorphic signature scheme IT can be broken
by a non-independent Type I forger B with the same advantage ¢.

Algorithm B takes as input a linearly homomorphic signature public key pk and sends pk = pk
to the simulation-binding adversary A. When A sends a query (commit,tag) to the Oy i oracle,
B runs the SSTC.FakeCom algorithm and computes com = F(&, M fqke, Pk, tag) for randomly chosen

6 & Gy and m Fake & Zy,. 1t retains the state information aux = (M fake, 0). For each invocation of
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the oracle Oy, for an input of the form (decommit, com, ), B sends the query (tag, m — M fqre) to

its own signing oracle. Upon receiving the latter’s response ¢’, B computes and returns dec = o’ - 5.

Eventually, A comes up with a commitment of its own com* with valid openings dec = o, dec’ = o’
to distinct vectors m # mi for a tag tag* that it never submitted to Oy . Since M # m' and dec
and dec” are valid openings of com* to 73 and 7/, respectively, the triple

(%,0/0 i — )

forms a valid Type I forgery for the linearly homomorphic scheme I7. O

E.3 Instantiations

CONSTRUCTION FROM THE DIFFIE-HELLMAN ASSUMPTION. Previously, non-malleable commit-
ments based on the CDH assumption were — implicitly or explicitly — described in [34,57] but it is
not immediate how to extend them to commit to vectors in a modular way.

In [12], Attrapadung et al. described a linearly homomorphic signature which is notably secure
against Type I independent adversaries — as implicitly proved by [12, Lemma 8] — under the com-
putational Diffie-Hellman (CDH) assumption.

Keygen(\, n): given a security parameter A € N and an integer n € poly()), choose bilinear groups
(G,Gr) of prime order p > 2*. Choose « £ Lp, g, & G and wo,ut,...,ur & G, for some
L € poly()\). These elements (uo,...,ur) € G¥*! will be used to implement a programmable
hash function Hg : {0,1}* — G such that any L-bit string 7 = 7[1]...7[L] € {0,1}” is mapped
to the hash value Hg(7) = ug - H{;l uzm. Pick g; & G for i = 1 to n. Finally, define the identifier
space T := {0, l}L. The private key is sk := « and the public key consists of

pki= ((G,Gr), g, g v, gk, {witheo).

Sign(sk, 7,7): given a vector 7 = (m1,...,my) € Z2, a file identifier 7 € {0,1}* and the private

key sk = a € Zp, return L if m = 0. Otherwise, choose r, s £ Zy. Then, compute a signature
o= (01,09,8) € G x Z, as

o1 =(g{" - gpm - 0°)* - He(r)", oa=yg".

SignDerive(pk, 7, {(8i, 0:) }{_,): given pk, a file identifier 7 and ¢ tuples (8;, 0;), parse each signa-
ture o; as 0; = (04,1, 042, 5;) for i =1 to £. Then, choose 7 & Zp and compute

‘ ¢
or =[] ol Ho(r)" oy =[ols g s=> Bi-si
i1 i=1 ;

and output (o1, 09, s).
Verify (pk, 7, M, 0): given pk, a signature o = (01,09, s) and a message (7,7), where 7 € {0,1}
and m is a vector (mq,...,my) € (Zy)", return 0 if m = 0. Otherwise, return 1 if

e(o1,9) = e(gy" - g™ - v*, g%) - e(Hg(7), 02).
and 0 otherwise.

This scheme can be seen as a specific instantiation of the template where the group Gy is a
product G; = G* x Z,, which is a group for the operation (,-,+), and Go = Gr. Here, G; and G
thus have order p? and p, respectively. As for the linear function F, it can be instantiated as

F((0170275)7T7L7 pkaT) = 8(0'1,9_1) : e(HG(T)702) : 6(971’”1 o g'r?;nn ' US’gOt)
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As a result, we obtain a new non-interactive simulation-sound trapdoor commitment to vectors under
the CDH assumption. We note that the scheme can be optimized by removing the terms v* and s,
so as to have (o1,02) = (72, 9;"")* - Hg(7)", ¢") and

F((Ulv 0_2)7m7 pk7T) = 6(0179_1) : e(HG(T)7U2) ' e(g{nl o _g;ﬂn’ga)

Indeed, in the proof of Lemma 8 in [12], we observe that, if the signature scheme only needs to be
secure against Type I attacks, the terms (v®,s) € G x Z,, can be eliminated.

Unlike the CDH-based construction of [39], the above commitment scheme is non-interactive and
allows committing to vectors with a constant-size commitment string. Unlike the solution consisting
in committing to a short string obtained by hashing the vector, our solution makes it possible for
the sender to prove properties (using X protocols or Groth-Sahai proofs) about committed vectors
in an efficient way.

We also remark that, for vectors of dimension n = 1, we obtain a simplification of existing
multi-trapdoor (or identity-based) trapdoor commitments [34,57] based on the Waters signature:
instead of starting from a 3 protocol for proving knowledge of a Waters signature, we obtain a more
efficient scheme by building the commitment algorithm on the verification equation of the underlying
signature: recall that the verification equation of Waters signatures (o1, 02) returns 1 if and only if
it holds that e(o1,g) = e(g*, h) - e(Hg(M), 02), where M € {0,1}* is the message and ¢g®, h are part
of the public key. Now, to commit to a message m € Z, the sender can pick random 61,602 € G and
compute com = e(g*, h)"™ - e(g,01) - e(Hg(7),02) € Gr and dec = (61,02). It is easy to see that a
signature (01,02) on 7 allows trapdoor opening com. Moreover, the resulting scheme gives shorter
commitment string and a faster verification algorithm than in [24, 57].

CONSTRUCTION FROM THE STRONG DIFFIE-HELLMAN ASSUMPTION. As mentioned earlier, in the
application to non-malleable commitments, simulation-sound trapdoor commitments only need to
be secure against adversaries that choose beforehand (before receiving the public key) on which tags
they will see equivocations of commitments produced by FakeCom. In this case, we only need the
underlying linearly homomorphic signature to be secure against non-adaptive Type I independent
adversaries. The construction of Catalano, Fiore and Warinschi [27] is an example of such system.
In [27], it was implicitly® proved that the scheme is secure against non-adaptive (independent) Type
I adversaries under the strong Diffie-Hellman assumption [15].

Keygen(\, n): given a security parameter A € N and an integer n € poly()), choose bilinear groups
(G, Gr) of prime order p > 2*. Choose « & Ly, g, L Gand g; £ G for i =1 to n. Finally,
define the identifier space 7 := Z,. The private key is sk := a and the public key consists of

pk := ((G, Gr), 9, 9% v, {gi}?zl)-

Sign(sk, 7,m): given a vector m = (m,...,my) € Zy,

sk = « € Zj, choose s £ Zp. Then, compute a signature o = (01, s) € G x Z, where

a file identifier 7 € Z, and the private key

o= (G g )T

SignDerive(pk, 7, {(8i, ai)}le): given pk, a file identifier 7 and ¢ tuples (3;, 0;), parse each signa-
ture o; as 0; = (0,1, s;) for i =1 to £. Then, compute

l 4
o =]o s=2 Bisi
i=1 =1

8 Catalano et al. [27] consider a model where the file identifiers are always chosen by the challenger at each signing
query in the security game. However, the security proof of [27, Lemma 1] does not require the file identifiers to be
uniformly distributed and it goes through if they are chosen by the adversary at the outset of the game instead of
being chosen by the reduction.
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and output (o1, s).
Verify(pk, 7, m, o): given the public key pk, a signature o = (01, s) and a message (7,m), where
T € Zp and m = (my, ..., my) € (Zp)", return 1 if and only if

e(o1,9" - 9%) =e(gi™ - gy - v, g). (20)

This construction can also be seen as a special case of our template where Gy = G x Z, is a
group for the operation (-, +) and Gy = Gr is a multiplicative group. Here, we thus have |G| = p?
and |Gz| = p. The linear function F' is now defined as

F((O’]_,S),T?L, pka T) = 6(01797— : ga) : 6(971”1 o qun . Us’g_l)'

The linearly homomorphic signature of [27] thus implies a non-interactive non-adaptive simulation-
sound trapdoor commitment to vectors based on the strong Diffie-Hellman assumption. Again, the
scheme can be simplified by removing the term v*® since the underlying signature only needs to
be secure against non-adaptive Type I attacks. In the case n = 1, the resulting non-malleable
commitment is a variant of the one of [41, Section 4.2].
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Abstract. Verifiability is central to building protocols and systems with integrity. Initially, efficient
methods employed the Fiat-Shamir heuristics. Since 2008, the Groth-Sahai techniques have been the
most efficient in constructing non-interactive witness indistinguishable and zero-knowledge proofs for al-
gebraic relations in the standard model. For the important task of proving membership in linear subspaces,
Jutla and Roy (Asiacrypt 2013) gave significantly more efficient proofs in the quasi-adaptive setting (QA-
NIZK). For membership of the row space of a t x n matrix, their QA-NIZK proofs save §2(¢) group elements
compared to Groth-Sahai. Here, we give QA-NIZK proofs made of a constant number group elements —
regardless of the number of equations or the number of variables — and additionally prove them unbounded
simulation-sound. Unlike previous unbounded simulation-sound Groth-Sahai-based proofs, our construc-
tion does not involve quadratic pairing product equations and does not rely on a chosen-ciphertext-secure
encryption scheme. Instead, we build on structure-preserving signatures with homomorphic properties. We
apply our methods to design new and improved CCA2-secure encryption schemes. In particular, we build
the first efficient threshold CCA-secure keyed-homomorphic encryption scheme (i.e., where homomorphic
operations can only be carried out using a dedicated evaluation key) with publicly verifiable ciphertexts.

Keywords. NIZK proofs, simulation-soundness, chosen-ciphertext security, homomorphic cryptography.

1 Introduction

Non-interactive zero-knowledge proofs [8] play a fundamental role in the design of numerous cryp-
tographic protocols. Unfortunately, until breakthrough results in the last decade [31-33], it was not
known how to construct them efficiently without appealing to the random oracle methodology [7].
Groth and Sahai [33] described very efficient non-interactive witness indistinguishable (NIWI) and
zero-knowledge (NIZK) proof systems for algebraic relations in groups equipped with a bilinear map.
For these specific languages, the methodology of [33] does not require any proof of circuit satisfiability
but rather leverages the properties of homomorphic commitments in bilinear groups. As a result, the
length of each proof only depends on the number of equations and the number of variables.

While dramatically more efficient than general NIZK proofs, the GS techniques remain signifi-
cantly more expensive than non-interactive proofs obtained from the Fiat-Shamir heuristic [26] in the
random oracle model [7]: for example, proving that ¢ variables satisfy a system of n linear equations
demands ©(t+n) group elements where X-protocols allow for @(t)-size proofs. In addition, GS proofs
are known to be malleable which, although useful in certain applications [5, 18], is undesirable when
NIZK proofs serve as building blocks for non-malleable protocols. To construct chosen-ciphertext-
secure encryption schemes [50], for example, the Naor-Yung/Sahai [46,51] paradigm requires NIZK
proofs satisfying a form of non-malleability called simulation-soundness [51]: informally, this property
captures the inability of the adversary to prove false statements by itself, even after having observed
simulated proofs for possibly false statements of its choice.

Groth-Sahai proofs can be made simulation-sound using constructions suggested in [32, 15, 34].

* This work was done while this author was at Technicolor (France).
** This author was supported by the CAMUS Walloon Region Project.



However, even when starting from a linear equation, these techniques involve proofs for quadratic
equations, which results in longer proofs. One-time simulation-soundness (i.e., where the adversary
only sees one simulated proof) is more economical to achieve as shown in [39,42]. Jutla and Roy
suggested a more efficient way to achieve a form of one-time simulation-soundness [37].

QUASI-ADAPTIVE NIZK PrOOFS. For languages consisting of linear subspaces of a vector space, Jutla
and Roy [38] recently showed how to significantly improve upon the efficiency of the GS paradigm
in the quasi-adaptive setting. In quasi-adaptive NIZK proofs (QA-NIZK) for a class of languages
{L,} parametrized by p, the common reference string (CRS) is allowed to depend on the particular
language £, of which membership must be proved. At the same time, a single simulator should be
effective for the whole class of languages {£,}. As pointed out in [38], QA-NIZK proofs are sufficient
for many applications of Groth-Sahai proofs. In this setting, Jutla and Roy [38] gave very efficient
QA-NIZK proofs of membership in linear subspaces. If A € Z;X” is a matrix or rank ¢t < n, in
order to prove membership of the language £ = {v € G" | Jx € Z; st. v = g®A), the Jutla-Roy
proofs only take O(n — t) group elements — instead of ©(n + t) in [33] — at the expense of settling
for computational soundness. While highly efficient in the case ¢t ~ n, these proofs remain of linear
size in n and may result in long proofs when ¢ < n, as is the case in, e.g., certain applications of
the Naor-Yung paradigm [15]. In the general case, we are still lacking a method for building proofs
of size O(t) — at least without relying on non-falsifiable assumptions [45] — which contrasts with the
situation in the random oracle model.

The problem is even harder if we aim for simulation-soundness. While the Jutla-Roy solutions [38]
nicely interact with their one-time simulation-sound proofs [37], they do not seem to readily extend
into unbounded simulation-sound (USS) proofs (where the adversary can see an arbitrary number
of simulated proofs before outputting a proof of its own) while retaining the same efficiency. For
this reason, although they can be applied in specific cases like [15], we cannot always use them in a
modular way to build CCA2-secure encryption schemes in scenarios where security definitions involve
many challenge ciphertexts.

OuRr CONTRIBUTIONS. Recently, in [43], it was pointed out that structure-preserving signatures
(SPS) [3,2] with (additive) homomorphic properties have unexpected applications in the design of
non-malleable structure-preserving commitments. Here, we greatly extend their range of applications
and demonstrate that they can surprisingly be used (albeit non-generically) in the design of strongly
non-malleable primitives like simulation-sound proofs and chosen-ciphertext-secure cryptosystems.

Concretely, we describe unbounded simulation-sound QA-NIZK proofs of constant-size for linear
subspaces. The length of a proof does not depend on the number of equations or the number of
variables, but only on the underlying assumption. Like those of [38], our proofs are computationally
sound under standard assumptions®. Somewhat surprisingly, they are even asymptotically shorter
than random-oracle-based proofs derived from X-protocols.

Moreover, our construction provides unbounded simulation-soundness. Under the Decision Linear
assumption [10], we obtain QA-NIZK arguments consisting of 15 group elements and a one-time
signature with its verification key. As it turns out, it is also the first unbounded simulation-sound
proof system that does not involve quadratic pairing product equations or a CCA2-secure encryption
scheme. Efficiency comparisons (given in Appendix E) show that we only need 20 group elements per
proof where the best USS extension [15] of Groth-Sahai costs 6¢ + 2n + 52 group elements. Under the
k-linear assumption, the proof length becomes O(k?) and thus avoids any dependency on the subspace
dimension. Our proof system builds on the linearly homomorphic structure-preserving signatures of
Libert, Peters, Joye and Yung [43], which allow signing vectors of group elements without knowing
their discrete logarithms.

5 Note that these results do not contradict the impossibility results of Gentry and Wichs [30] because, in the quasi-
adaptive setting, the CRS may hide a trapdoor that allows recognizing elements of the language. The proof of [30]
applies to reductions that cannot efficiently detect when the adversary breaks the soundness property.



For applications, like CCA2 security [46, 51], where only one-time simulation-soundness is needed,
we further optimize our proof system and obtain a relatively simulation-sound QA-NIZK proof sys-
tem, as defined in [37], with constant-size proofs. Under the DLIN assumption (resp. the k-linear
assumption), we achieve relative simulation-soundness with only 4 (resp. k + 2) group elements!

As the first application of USS proofs, we construct a chosen-ciphertext-secure keyed-homomorphic
encryption scheme with threshold decryption. Keyed-homomorphic encryption is a primitive, sug-
gested by Emura et al. [24], where homomorphic ciphertext manipulations are only possible to a
party holding a devoted evaluation key S K} which, by itself, does not enable decryption. The scheme
should provide IND-CCAZ2 security when the evaluation key is unavailable to the adversary and re-
main IND-CCA1 secure when SK} is exposed. Other approaches to reconcile homomorphism and
non-malleability were taken in [47-49, 12, 18] but they inevitably satisfy weaker security notions than
adaptive chosen-ciphertext security [50]. The results of [24] showed that CCA2-security does not rule
out homomorphicity when the capability to compute over encrypted data is restricted.

Emura et al. [24] gave realizations of chosen-ciphertext-secure keyed-homomorphic schemes based
on hash proof systems [21]. However, these do not readily enable threshold decryption — as would be
desirable in voting protocols — since valid ciphertexts are not publicly recognizable, which makes it
harder to prove CCA security in the threshold setting. Moreover, these solutions are not known to
satisfy the strongest security definition of [24]. The reason is that this definition seemingly requires a
form of unbounded simulation-soundness. Our QA-NIZK proofs fulfill this requirement and provide
an efficient CCA2-secure threshold keyed-homomorphic system where ciphertexts are 65% shorter
than in instantiations of the same high-level idea using previous simulation-sound proofs.

Using our relatively simulation-sound QA-NIZK proofs, we then build adaptively secure non-
interactive threshold cryptosystems with CCA2 security and improved efficiency. The constructions
of Libert and Yung [42] were improved by Escala et al. [25]. So far, the most efficient solution is ob-
tained from the Jutla-Roy results [37, 38] via relatively sound proofs [37]. Using our relatively sound
QA-NIZK proof system, we shorten ciphertexts by ©(k) elements under the k-linear assumption.

OUR TECHNIQUES. In our unbounded simulation-sound proofs, each QA-NIZK proof can be seen as
a Groth-Sahai NIWI proof of knowledge of a one-time linearly homomorphic signature on the vector
that allegedly belongs to the linear subspace. Here, the NIWI proof is generated for a Groth-Sahai
CRS that depends on the verification key of a one-time signature (following an idea of Malkin et al.
[44]), the private key of which is used to sign the entire proof so as to prevent re-randomizations. The
reason why it provides unbounded simulation-soundness is that, with non-negligible probability, the
CRS is perfectly hiding on all simulated proofs and extractable in the adversarially-generated fake
proof. Hence, if the adversary manages to prove membership of a vector outside the linear subspace,
the reduction is able to extract a homomorphic signature that it would not have been able to compute
itself, thereby breaking the DLIN assumption. At a high level, the system can be seen as a two-tier
proof system made of a non-malleable proof of knowledge of a malleable proof of membership.

In our optimized relatively-sound proofs, we adapt ideas of Jutla and Roy [37] and combine the
one-time linearly homomorphic signature of [43] with a smooth-projective hash function [21].

Our threshold keyed-homomorphic cryptosystem combines a hash proof system and a publicly
verifiable USS proof that the ciphertext is well-formed. The keyed-homomorphic property is achieved
by using the simulation trapdoor of the proof system as an evaluation key S K}, allowing the evaluator
to generate proofs without knowing the witnesses. As implicitly done in [24] in the case of hash proof
systems, the simulation trapdoor is thus used in the scheme and not only in the security proof.

2 Background and Definitions

2.1 Quasi-Adaptive NIZK Proofs

Quasi-Adaptive NIZK (QA-NIZK) proofs are NIZK proofs where the CRS is allowed to depend on
the specific language for which proofs have to be generated. The CRS is divided into a fixed part I,



produced by an algorithm Ky, and a language-dependent part 1. However, there should be a single
simulator for the entire class of languages.

Let X be a security parameter. For public parameters I" produced by Kg, let Dy be a probability
distribution over a collection of relations R = {R,} parametrized by a string p with an associated
language £, = {z | Jw : R,(z,w) = 1}.

We consider proof systems where the prover and the verifier both take a label Ibl as additional in-
put. For example, this label can be the message-carrying part of an Elgamal-like encryption. Formally,
a tuple of algorithms (Ko, K1, P, V) is a QA-NIZK proof system for R if there exists a PPT simulator
(S1,S2) such that, for any PPT adversaries A;,. 42 and A3z, we have the following properties:

Quasi-Adaptive Completeness:

Pr[I" <= Ko(N); p < Dr; ¢ « Kyi(I, p);
(,w, Ibl) <= A1 (I, p); m = P(yp,z,w,Ibl) : V(¢,z, 7, Ibl) =1 if Ry(z,w) =1] = 1.

Quasi-Adaptive Soundness:

Pr[I" < Ko(\); p < Dp; o« Ky (I, p); (x,7,1bl) « Aa(L, 0, p) :
V(,z,mlbl) =1 A ~(Fw: Ry(z,w) = 1)] € negl(X).

Quasi-Adaptive Zero-Knowledge:

Pr[I" < Ko(N); p+ Dp; o+ Ki(L,p) :+ AEW)(0 . p) = 1]
~ Pr[l  Ko(A); p = Drs (0, 7sim) < S1(Ihp) = A3V (04, p) = 1],

where
- P(4,.,.,.) emulates the actual prover. It takes as input (z,w) and Ibl and outputs a proof 7 if
(z,w) € R,. Otherwise, it outputs L.
- S(®, Tsim -, -, -) 1s an oracle that takes as input (x,w) and Ibl. It outputs a simulated proof

So(, Tsim, x, Ibl) if (z,w) € R, and L if (z,w) € R,.

We assume that the CRS v contains an encoding of p, which is thus available to V. The definition of
Quasi-Adaptive Zero-Knowledge requires a single simulator for the entire family of relations R.

2.2 Simulation-Soundness and Relative Soundness

It is often useful to have a property called simulation-soundness, which requires that the adversary be
unable to prove false statements even after having seen simulated proofs for possibly false statements.

Unbounded Simulation-Soundness: For any PPT adversary Ay, it holds that

Pr[I" < Ko(\); p < Dr; (¥, Teim) < S1(L,p); (x, 7, 1bl) = AZ*CTsim=d (P )
V(,z,mIbl) =1 A =(3w : Ry(z,w) =1) A (z,m,Ibl) € Q] € negl(N),

where the adversary is allowed unbounded access to an oracle Sq(,7,.,.) that takes as input
statement-label pairs (z,lbl) (where 2 may be outside £,) and outputs simulated proofs 7 <«
So2(v, Tsim, @, Ibl) before updating the set @ = Q U {(z, 7, Ibl)}, which is initially empty.

In the weaker notion of one-time simulation-soundness, only one query to the So oracle is allowed.
In some applications, one may settle for a weaker notion, called relative soundness by Jutla and
Roy [37], which allows for more efficient proofs, especially in the single-theorem case. Informally,



relatively sound proof systems involve both a public verifier and a private verification algorithm,
which has access to a trapdoor. For hard languages, the two verifiers should almost always agree on
any adversarially-created proof. Moreover, the private verifier should not accept a non-trivial proof
for a false statement, even if the adversary has already seen proofs for false statements.

A labeled single-theorem relatively sound QA-NIZK proof system is comprised of a quasi-adaptive
labeled proof system (Kg, K1, P, V) along with an efficient private verifier W and an efficient simulator
(S1,S2). Moreover, the following properties should hold for any PPT adversaries (A1, A2, A3, A4).

Quasi Adaptive Relative Single-Theorem Zero-Knowledge:

Pr[I" + Ko(A); p < Dri ¥ < Ki(I,p); (z,w,1bl, s) < AY Y (1, p):
w4 P, p,z,w, bl) : AY ) (7, 5) = 1]
~ Pr[l « Ko(A); p < Dri ($,7)  S1(Ip); (z,w,1bl,5) = AY 7D, p)
7 < So(¢, p, 7,2, 1bl) : .A\QNW’T"”)(W, s) =1],

Here, A; is restricted to choosing (z,w) such that R,(xz,w) = 1.

Quasi Adaptive Relative Single-Theorem Simulation-Soundness:

Pr[I" + Ko(A); p < Dy (0,7) < Si(L,p); (2, 1bl,s)  AY W) (T 4, p);

T < Sa(¢, p, 7,2, Ibl) : (2, b, 7) sz(w’T"")(s, )
(z,m,Ibl) # (2,7, Ibl') A Auw' st. Ry(a’,w') =1 A W(p, 7,2, 1bl',7") = 1] € negl())

Note that the definition of relative simulation-soundness does not require the adversary to provide
a witness but the definition of single-theorem zero-knowledge does.

2.3 Definitions for Threshold Keyed-Homomorphic Encryption
A (t, N)-threshold keyed-homomorphic encryption scheme consists of the following algorithms.

Keygen(\,t, N): takes as input a security parameter A and integers ¢, N € poly(\) (with 1 < ¢ < N),
where N is the number of decryption servers and ¢t < N is the decryption threshold. It outputs
(PK,SK}p, VK,SK,), where PK is the public key, SK} is the homomorphic evaluation key,
SK,; = (SKg41,...,5KN) is a vector of private key shares and VK = (VK;,...,VKy) is a
vector of verification keys. For each ¢, the decryption server ¢ is given the share (i, SK;). The
verification key V K; will be used to check the validity of decryption shares generated using SKg ;.

Encrypt(PK, M): takes a input a public key PK and a plaintext M. It outputs a ciphertext C.

Ciphertext-Verify(PK, C): takes as input a public key PK and a ciphertext C. It outputs 1 if C'
is deemed valid w.r.t. PK and 0 otherwise.

Share-Decrypt(PK,i,SKg;,C): on input of a public key PK, a ciphertext C' and a private-
key share (i,5K,;), this (possibly randomized) algorithm outputs a special symbol (i,L) if
Ciphertext-Verify (PK,C) = 0. Otherwise, it outputs a decryption share u; = (i, fi;).

Share-Verify(PK,VK;,C, u;): takes in PK, the verification key V K;, a ciphertext C' and a pur-
ported decryption share p; = (i, fi;). It outputs either 1 or 0. In the former case, yu; is said to be
a valid decryption share. We adopt the convention that (i, L) is an invalid decryption share.

Combine(PK, VK, C, {u;}ics): takes in (PK, VK, C) and a t-subset S C {1,..., N} with decryp-
tion shares {u;}ies. It outputs either a plaintext M or L if {u;};es contains invalid shares.

Eval(PK,SK),,C1) C®): takes as input PK, the evaluation key SKj, and ciphertexts C), C(2).
If Ciphertext-Verify(PK, C(j)) = 0 for some j € {1,2}, the algorithm returns L. Otherwise, it
conducts a binary homomorphic operation over C) and C® and outputs a ciphertext C.



The above syntax assumes a trusted dealer. It generalizes that of ordinary threshold cryptosystems.
By setting SKj, = ¢ and discarding the evaluation algorithm, we obtain a classical threshold system.

Definition 1. A threshold keyed-homomorphic public-key cryptosystem is secure against chosen-
ciphertext attacks (or KH-CCA secure) if no PPT adversary has noticeable advantage in this game:

1. The challenger runs Keygen(\) to obtain a public key PK, vectors SKq = (SKg1,...,SKqnN),
VK = (VK;,...,VKy) and a homomorphic evaluation key SKp,. It gives PK and VK to the
adversary A and keeps (SKp,SKy) to itself. In addition, the challenge initializes a set D < 0,
which is initially empty.

2 The adversary A adaptively makes queries to the following oracles on multiple occasions:

- Corruption query: at any time, A may decide to corrupt a decryption server. To this end, it
specifies an index i € {1,..., N} and obtains the private key share SKg ;.

- Bualuation query: A can invoke the evaluation oracle Eval(SKy,,.) on a pair (C,CR)) of
ciphertexts of its choice. If there exists j € {1,2} such that Ciphertext-Verify(PK,C)) =0,
return L. Otherwise, the oracle Eval(SKy,,.) computes C + Eval(SK;,,CM), C®) and returns
C. In addition, if CY) € D or C? € D, it sets D < DU {C}.

- Reveal query: at any time, A may also decide to corrupt the evaluator by invoking the RevHK
oracle on a unique occaston. The oracle responds by returning SKjp,.

- Decryption query: A can also invoke the partial decryption oracle on arbitrary ciphertexts C
and indexes i € {1,...,n}. If Ciphertext-Verify(PK,C) = 0 or if C € D, the oracle returns
L. Otherwise, the oracle returns the decryption share p; < Share-Decrypt(PK,i,5Kq,,C).

3. The adversary A chooses two equal-length messages My, My and obtains C* = Encrypt(PK, Mg)
for some random bit B & {0,1}. In addition, the challenger sets D <+ D U {C*}.

4. A makes further queries as in step 2 with some restrictions. Namely, A cannot corrupt more than
t — 1 servers throughout the entire game. Moreover, if A chooses to obtain SKj (via the RevHK
oracle) at some point, no more post-challenge decryption query is allowed beyond that point.

5. A outputs a bit 8’ and is deemed successful if B = B. As usual, A’s advantage is measured as the
distance Adv(A) = |Pr[8' = B8] — 3|.

It is important to note that, even if A chooses to obtain SK} immediately after having seen the
public key PK, it still has access to the decryption oracle before the challenge phase. In other words,
the scheme should remain IND-CCAL if A is given PK and SKj}, at the outset of the game. After the
challenge phase, decryption queries are allowed until the moment when the adversary obtains SKj,.

In [24], Emura et al. suggested a weaker definition where the adversary is not allowed to query
the evaluation oracle on derivatives of the challenge ciphertext. As a consequence, the set D is always
the singleton {C*} after step 3. In this paper, we will stick to the stronger definition.

2.4 Hardness Assumptions

For simplicity, we use symmetric bilinear maps e : G x G — G over groups of prime order p, but
extensions to the asymmetric setting e : G x G — G are possible.

Definition 2 ([10]). The Decision Linear Problem (DLIN) in G, is to distinguish the distribu-
tions (g% g°, 9%, "%, g°*%) and (g%, g", 9%, g"*, 97), with a,b,c,d <= Ly, z <= L.

We sometimes use the Simultaneous Double Pairing (SDP) assumption, which is weaker than DLIN.
As noted in [17], any algorithm solving SDP immediately yields a DLIN distinguisher.

Definition 3. The Simultaneous Double Pairing problem (SDP) in (G,Gr) is, given group
elements (g, gr, hz,hy) € G*, to find a non-trivial triple (z,7,u) € G*\{(1g, lg,1g)} such that
e(9z,2) - e(gr,7) = 1g, and e(hy, z) - e(hy,u) = 1g,.



2.5 Linearly Homomorphic Structure-Preserving Signatures

Linearly homomorphic SPS schemes are homomorphic signatures where messages and signatures live
in the domain group G (see Appendix B for syntactic definitions) of a bilinear map. Libert et al. [43]
described the following one-time construction and proved its security under the SDP assumption. By
“one-time”, we mean that only one linear subspace can be safely signed using a given key pair.

Keygen(\, n): given a security parameter A and the dimension n € N of vectors to be signed,
choose bilinear group (G, G7) of prime order p > 2*. Choose ¢., g, h-, hy & G. Then, for i = 1
to n, pick i, 7,0 & Zy, and compute g; = g.Xg,” and h; = hz’“hu‘si. The private key is
sk = {(xi, Vi, 9i) }—; while the public key is pk = (gz,gr, hzy ha, {(gi, hi)}?zl).

Sign(sk, (M1, ..., My)): to sign a vector (M, ..., M,) € G™ using sk = {(xs,7i,d)}1—,, compute
and return (z,7,u) = ([T7, M; %, TT, M, TTi, Mi_(s") €G3

SignDerive(pk, { (w;, o) }£_,): given a public key pk and ¢ tuples (w;,o(), where w; € Z, for
each i, parse ¢ as (¥ = (zi,m-, uz) € G for i = 1 to £. Then, compute and return o = (z,7,u),
where z = Hle z = Hle rt and u = Hle u

Verify(pk, o, (M1, ..., My)): given a signature 0 = (z,7,u) € G* and a vector (Mjy,..., M,),
return 1 if and only if (My,...,M,) # (1g,-..,1lg) and (z,7,u) satisfy

n n

lg, = e(9gz, 2) - e(gr,7) - He(gi, M), lg, = e(hz, 2) - e(hy,u) - H e(hi, M;). (1)
i=1 =1

One particularity of this scheme is that, even if the private key is available, it is difficult to find
two distinct signatures on the same vector if the SDP assumption holds: by dividing out the two
signatures, one obtains the solution of an SDP instance (g, gr, bz, hy) contained in the public key.

Two constructions of full-fledged (as opposed to one-time) linearly homomorphic SPS were given
in [43]. One of these will serve as a basis for our proof system and is recalled in Appendix C. In these
constructions, all algorithms additionally input a tag which identifies the dataset that vectors belongs
to. Importantly, only vectors associated with the same tag can be homomorphically combined.

3 Unbounded Simulation-Sound Quasi-Adaptive NIZK Arguments

In the following, vectors are always considered as row vectors unless stated otherwise. If A € Z;X" is
a matrix, we denote by ¢ € G**™ the matrix obtained by exponentiating ¢ using the entries of A.

We consider public parameters I = (G, Gr, g) consisting of bilinear groups (G, Gr) with a gen-
erator g € G. Like [38], we will consider languages £, = {"AecGn|xc Z;} that are parametrized
by p = g™ € G, where A € ZZX” is a t X n matrix of rank ¢t < n.

As in [38], we assume that the distribution Dr is efficiently samplable: there exists a PPT algo-
rithm which outputs a pair (p, A) describing a relation R, and its associated language £, according
to Dr. One example of such a distribution is obtained by picking a uniform matrix A & Z;X" -
which has full rank with overwhelming probability — and setting p = g*.

Our construction builds on the homomorphic signature recalled in Appendix C. Specifically, the
language-dependent CRS v contains one-time linearly homomorphic signatures on the rows of the
matrix p € G'*". For each vector v € L,, the prover can use the witness x € Z;, to derive and prove
knowledge of a one-time homomorphic signature (z,r,u) on v. This signature (z,7,u) is already a
QA-NIZK proof of membership but it does not provide simulation-soundness. To acquire this prop-
erty, we follow [44] and generate a NIWI proof of knowledge of (z,r,u) for a Groth-Sahai CRS that
depends on the verification key of an ordinary one-time signature. The latter’s private key is used
to sign the NIWI proof so as to prevent unwanted proof manipulations. Using the private key of the
homomorphic one-time signature as a trapdoor, the simulator is also able to create proofs for vectors



v & L,. Due to the use of perfectly NIWI proofs, these fake proofs do not leak any more information
about the simulation key than the CRS does. At the same time, the CRS can be prepared in such a
way that, with non-negligible probability, it becomes perfectly binding on an adversarially-generated
proof, which allows extracting a non-trivial signature on a vector v € L,,.

Like [38], our quasi-adaptive NIZK proof system (Ko, Ky, P,V) is a split CRS construction in that
K; can be divided into two algorithms (Kjg, Ki1). The first one Kip outputs some state information
s and a first CRS CRSy which is only used by the verifier and does not depend on the language £,.
The second part Ky1 of Ky inputs the state information s and the output of I' of Ky and outputs
CRS; which is only used by the prover. The construction goes as follows.

Ko(A): choose groups (G, Gr) of prime order p > 2* with g & G. Then, output I' = (G,Gr, g)

The dimensions (¢,n) of the matrix A € Z;X” can be either fixed or part of the language, so that ¢, n
can be given as input to the CRS generation algorithm Kj.

Ki(I, p): parse I' as (G,Gr,g) and p as a matrix p = (Gi7j)1<i<t 1<j<n € G,

1. Generate a key pair (pk,q,q; Skrand) for the randomizable signature of Appendix C in order to
sign vectors of G™. Namely, choose ¢., g,, b=, hy €& G and do the following.

a. For i =1 to n, pick xi, %, 0; & Z, and compute g; = g.X'g,7" and h; = hZXihu‘;".

b. Generate L + 1 Groth-Sahai common reference strings, for some L € poly(A). To this
end, choose f1, fo & G and define f1 = (f1,1,9) € G3, f2 = (1, f2,9) € G>. Then, pick
EY EG3fori=0to L.

Let skyana = {(Xi,7i, 6:) }i—1 be the private key and the matching public key is

pkrand: <927 gr, hZa hu? {(gz; ) =1 f= (f17f27{f31}z ))

2. Use skyqnq to generate one-time linearly homomorphic signatures {(z;, r;, u;) };_; on the vectors
pi = (Gi1,...,Gin) € G" that form the rows of p. These are obtained as

n

(ZiaTzAUi):(HG,JXJ, HG””, HGJ Vie{1,...,t}.

Jj=1 j=1

3. Choose a strongly unforgeable one-time signature X' = (G, S, V) with verification keys consist-
ing of L-bit strings.
4. The CRS ¢ = (CRS1, CRS>) consists of two parts which are defined as

CRS1 = (p, Phyanas {(z170u)}ir, ). CRS: = (Pkygut: T,

while the simulation trapdoor Tgim, is skrana = {(Xi, Vi, 0i) }iq-
P(I',4,v,z,lbl): given a candidate v € G" and a witness © = (x1,...,2¢) € Zg such that v = g&4
generate a one-time signature key pair (SVK, SSK) < G(\) and do the following.
L. Using {(2,7,u;)}}—,, derive a one-time linearly homomorphlc signature (z,r, u) on v. Namely,

mz

compute z = [[t_, 27, r = [['_, r{" and u = [[', vl
2. Using SVK = SVKI1]...SVK[L] € {0,1}%, define the vector fsyk = f0- [I2, F4p " and
assemble a Groth-Sahai CRS fsyk = (f1, f2, fsvk). Using fsyk, generate commitments C,
C., C, to the components of (z,7,u) € G* along with NIWI proofs (w1, 7s) that v and
(z,7,u) satisfy (1). Let (C, Cy,Cy, w1, m2) € G be the resulting commitments and proofs.
3. Generate 0 = S(SSK, (v,C,,C,,C,, 1,2, Ibl)) and output

™= (SVKa027CTaCua7r177r27J) (2)



V(I',¢,v, 7, Ibl): parse m as per (2) and return 1 if (i) V(SVK, (v,C,,C,,C,, 7, w,lbl),0) = 1;
(ii) (C,,C,,Cy, w1, m2) forms a valid NIWI proof for the CRS fsyx = (f1, f2, fsvk) (see (4) in
Appendix C for the detailed verification equations). If either condition fails to hold, return 0.

In order to simulate a proof for a given vector v € G", the simulator uses Tgim = Skrand t0 generate
a fresh one-time homomorphic signature on v € G"™ and proceeds as in steps 2-3 of algorithm P.

The proof 7 only consists of 15 group elements and a one-time pair (SVK, o). Remarkably, its
length does not depend on the number of equations n or the number of variables ¢. In comparison,
Groth-Sahai proofs already require 3t + 2n group elements in their basic form and become even more
expensive when it comes to achieve unbounded simulation-soundness. The Jutla-Roy techniques [38]
reduce the proof length to 2(n — t) elements — which only competes with our proofs when t ~ n —
but it is unclear how to extend them to get unbounded simulation-soundness without affecting their
efficiency. Our CRS consists of O(t +n+ L) group elements against O(t(n —t)) in [38]. More detailed
comparisons are given in Appendix E between proof systems based on the DLIN assumption.

Interestingly, the above scheme even outperforms Fiat-Shamir-like proofs derived from X-protocols
which would give ©(t)-size proofs here. The construction readily extends to rely on the k-linear as-
sumption for k£ > 2. In this case, the proof comprises (k + 1)(2k + 1) elements and its size thus only
depends on k, as detailed in Appendix D.

Moreover, the verification algorithm only involves linear pairing product equations whereas all
known unbounded simulation-sound extensions of Groth-Sahai proofs require either quadratic equa-
tions or a linearization step involving extra variables.

We finally remark that, if we give up the simulation-soundness property, the proof length drops
to k + 1 group elements under the k-linear assumption.

Theorem 1. The scheme is an unbounded simulation-sound QA-NIZK proof system if the DLIN
assumption holds in G and X is strongly unforgeable. (The proof is given in Appendix F).

We note that the above construction is not tightly secure as the gap between the simulation-
soundness adversary’s advantage and the probability to break the DLIN assumption depends on the
number of simulated proofs obtained by the adversary. For applications like tightly secure public-key
encryption [34], it would be interesting to modify the proof system to obtain tight security.

4 Single-Theorem Relatively Sound Quasi-Adaptive NIZK Arguments

In applications where single-theorem relatively sound NIZK proofs suffice, we can further improve
the efficiency. Under the k-linear assumption, the proof length reduces from O(k?) elements to O(k)
elements. Under the DLIN assumption, each proof fits within 4 elements and only costs 2n+6 pairings
to verify. In comparison, the verifier needs 2(n — t)(¢ + 2) pairing evaluations in [38].

As in [37], we achieve relative soundness using smooth projective hash functions [21]. To this end,
we need to encode the matrix p € G as a 2t x (2n + 1) matrix.

Ko(\): choose groups (G,Gr) of prime order p > 2* with ¢ & G. Then, output I" = (G, Gr, g).

Again, the dimensions of A € Z;X” can be either fixed or part of £,, so that ¢,n can be given as
input to the CRS generation algorithm Kj.

Ki(I',p): parse I" as (G,Gp,g) and p as p = (Gij) € G and do the following.

1<i<t, 1<j<n
1. Choose two n-vectors d = (dy,...,d,) & Zy and e = (e1,...,en) & Zy in order to define

W =W,...,.W;) = A4 c Gl and Y = Y1,....%) = g€’ € G'. These will be used to
define a projective hash function.



2. Generate a key pair (pk,;s,Skots) for the one-time linearly homomorphic signature of Section
2.5 in order to sign vectors in G*"*!. Let pk,,, = ((G, Gr), 9z, 9rs hzy hu, {(gi, hl)}fifl) be the
public key and let skors = {(X4, V4, )}2”'H be the corresponding private key.

3. Use skots to generate one-time linearly homomorphic signatures {(z;,r;,u;)}?.; on the inde-
pendent vectors below, which are obtained from the rows of the matrix p = (Gm) L<i<t, 1<j<n’

Hy 1= (Git,...,Gin, Vi, 1, 1) eG! ie{l,...,t}
HQZ‘ = (1 y e ,1 ,Wi,GiJ,.. ,G%n) S GQnJrl

4. Choose a collision-resistant hash function H : {0,1}* — Z,,.

5. The CRS ) consists of a first part CRS; that is only used by the prover and a second part
CRS, which is only used by the verifier. These are defined as

CRS, = (,0, pkores W, Y, {(25, 71, ui) 2L, H) CRS, — (pkots, W, Y, H)

The simulation trapdoor Tsy, is skes and the private verification trapdoor is 7, = {d, e}.

P(I,4,v,z,lbl): given a candidate v € G", a witness € = (z1,...,2;) € Z{ such that v = g4
and a label Ibl, compute o = H(p,v,Ibl) € Z,. Then, using {(z;,7,u;)}%,, derive a one-time
linearly homomorphic signature (z,r,u) on the vector v = (vl, ey Up, T, VT, . ,vg) € G2t

where my = Hle(VVfYZ)xZ Namely, compute and output the proof 7 = (z,7,u,79) € G*, where

t t t

[ 7 o X,
H Z9i—1 - 255)"%, H roi—1 - T9;)"%, U = H(UQi—l - ug;)" T = H(Wz Y;)*

i=1 i=1 =1 =1

~+

V(I',4,v,7,Ibl): parse v as (vi,...,v,) € G" and 7 as (z,r,u,m) € G*. Compute o = H(p, v, Ibl)
and return 1 if and only if (z,7,u) is a valid signature on @ = (vy, ..., v,, 70, v, .. .,0%) € G+,
Namely, it should satisfy the equalities 1g, = e(gz, 2) - e(gr,7) - [Ti=; €(9i - 951, Vi) - €(gnt1,70)
and 1g, = e(h:, 2) - e(hy,u) - TTizq e(hi - B, 1, vi) - e(hng1, mo)-

W(I, 4, 7, v, 7, 1bl): given v = (v1,...,v,) € G, parse 7 as (z,7,u,m9) € G* and 7, as {d, e}, with
d = (di,...,dy) € Zy and e = (e1,...,e,) € Zy,. Compute a = H(p, v,Ibl) € Z; and return 0 if

n e]—l—adj

=17 and 0 otherwise.

the public verification test V fails. Otherwise, return 1 if 7o = [

We note that, while the proving algorithm is deterministic, each statement has many valid proofs.
However, finding two valid proofs for the same statement is computationally hard, as will be shown
in the proof of Theorem 2.

The scheme readily extends to rest on the k-linear assumption with £ > 2. In this case, the proof
requires k + 2 group elements — whereas combining the techniques of [37,38] demands k(n + 1 —t)
elements per proof —and a CRS of size O(k(n+t)). From a security standpoint, we prove the following
result in Appendix G.

Theorem 2. The above proof system is a relatively sound QA-NIZK proof system if the SDP as-
sumption holds in (G,Gr) and if H is a collision-resistant hash function.

As an application, we describe a new adaptively secure CCA2-secure non-interactive threshold
cryptosystem based on the DLIN assumption in Appendix I. Under the k-linear assumption, the
scheme provides ciphertexts that are ©(k) group elements shorter than in previous such constructions.
Under the DLIN assumption, ciphertexts consist of 8 elements of G, which spares one group element
w.r.t. the best previous variants [37, 38] of Cramer-Shoup with publicly verifiable ciphertexts.
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5 An Efficient Threshold Keyed-Homomorphic KH-CCA-Secure Encryption
Scheme from the DLIN Assumption

The use of linearly homomorphic signatures as publicly verifiable proofs of ciphertext validity in the
Cramer-Shoup paradigm [20, 21] was suggested in [43]. However, the latter work only discusses non-
adaptive (i.e., CCA1l) attacks. In the CCA2 case, a natural idea is to proceed as in our unbounded
simulation-sound proof system and use the verification key of a on-time signature as the tag of a ho-
momorphic signature: since cross-tag homomorphic operations are disallowed, the one-time signature
will prevent illegal ciphertext manipulations after the challenge phase.

To obtain the desired keyed-homomorphic property, we use the simulation trapdoor of a simulation-
sound proof system as the homomorphic evaluation key. This approach was already used by Emura
et al. [24] in the context of designated verifier proofs. Here, publicly verifiable proofs are obtained
from a homomorphic signature scheme of which the private key serves as an evaluation key: anyone
equipped with this key can multiply two ciphertexts (or, more precisely, their built-in homomorphic
components), generate a new tag and sign the resulting ciphertext using the private key of the homo-
morphic signature. Moreover, we can leverage the fact that the latter private key is always available
to the reduction in the security proof of the homomorphic signature [43]. In the game of Definition
1, the simulator can thus hand over the evaluation key SKj} to the adversary upon request.

Emura et al. [24] gave constructions of KH-CCA secure encryption schemes based on hash proof
systems [21]. However, these constructions are only known to provide a relaxed flavor of KH-CCA
security where evaluation queries should not involve derivatives of the challenge ciphertext. The reason
is that 2-universal hash proof systems [21] only provide a form of one-time simulation soundness
whereas the model of Definition 1 seemingly requires unbounded simulation-soundness. Indeed, when
the evaluation oracle is queried on input of a derivative of the challenge ciphertext in the security
proof, the homomorphic operation may result in a ciphertext containing a vector outside the language
L,. Since the oracle has to simulate a proof for this vector, each homomorphic evaluation can carry
a proof for a potentially false statement. In some sense, each output of the evaluation oracle can be
seen as yet another challenge ciphertext. In this setting, our efficient unbounded simulation-sound
QA-NIZK proof system comes in handy.

It remains to make sure that CCA1 security is always preserved, should the adversary obtain the
evaluation key SK} at the outset of the game. To this end, we include a second derived one-time
homomorphic signature (Z, R,U) in the ciphertext without including its private key in SKj.

Keygen(\,t, N): Choose bilinear groups (G, Gr) of prime order p > 2*. Then, do the following.

1. Pick f,g,h & G, xg, x1, 22 & Z, and set X1 = f*1g* € G, X2 = h"g" € G. Then, define
f=(f1,9) €G?®and h = (1,h,g) € G>.

2. Choose random polynomials P;[Z], P,[Z], P[Z] € Z,[Z] of degree t — 1 such that P;(0) = z1,
P5(0) = 22 and P(0) = zg. For each i € {1,...,N}, compute VK; = (Y;1,Y;2) where
Yii = @) PG and Yio = RP2(0) gP ()

3. Choose fr1,fr2 ¢ G in order to define vectors f.1 = (fr1,1,9), fro = (1, fr2,9) and
fr3= ffll . f% -(1,1,9)7 ", where ¢1, ¢ & Zp. These vectors will be used as a Groth-Sahai
CRS for the gevneration of NIZK proofs showing the validity of decryption shares.

4. Choose a strongly unforgeable one-time signature X = (G, S, V) with verification keys consist-
ing of L-bit strings, for some L € poly()\).

5. Generate a key pair for the one-time linearly homomorphic structure-preserving signature of
Section 2.5 with n = 3. Let pk,;, = (GZ,GT,HZ,HU, {(Gy, Hy) ?:1) be the public key and let
skot = { (4, Vi, ;) }3_; be the corresponding private key.

6. Generate one-time homomorphic signatures {(Z;, Rj,Uj)};j=1,2 on the vectors f = (f,1,9)
and h = (1, h, g). These signatures consist of (Z1, R1,U;) = (f‘“olg_‘%, f1gVs, f‘wlg_m)
and (Zy, Re,Us) = (h_‘”g_%, hV2¢g Vs, h_mg_m) and erase sko;.
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7. Generate a key pair (pk,qnd> Skrand) @s in step 1 of the proof system in Section 3 with n = 3.
Let skyanda = {(Xi,7i,0:)}2_; be the private key for which the corresponding public key is

pkrand = <g27 gr, hZa hu7 {(givhi)}?:lv f= (flana{f?),i}iL:O) )

8. Use skyqng to generate one-time linearly homomorphic signatures {(z;,rj,u;)};=1,2 on the
independent vectors f = (f,1,9) € G and h = (1, h, g) € G3. These are obtained as

(z1,71,u1) = (f—Xlg—XL%’f—”/lg—73’f—51g—53)’ (22,72, up) = (h X2g7X3 B2 073 02 —63)

9. The public key is defined to be
PK = (ga f7 h7 .fT,l? .f'l‘,27 fT,37 X17 X27 pkgtv pkra,nd7 {(ZJ7R]7UJ)}?:1 {(Zjvrjauj)}?zl)

The evaluation key is SKj = skrana = {(Xi»7i,di)}3_; while the i-th decryption key share
is defined to be SKy; = (Pi(i), P2(7), P(i)). The vector of verification keys is defined as
VK = (VKy,...,VKy), where VK; = (Y;1,Y;2) fori =1 to N.

Encrypt(M, PK): to encrypt M € G, generate a one-time signature key pair (SVK, SSK) « G(\).
1. Choose 6,6, & Zy, and compute

Co=M - X161 . )(2927 Cy = f@l7 Cy = h92, Cy = 901+92'

2. Construct a first linearly homomorphic signature (Z, R,U) on the vector (Cy,Cs,C3) € G3.
Namely, compute Z = 2% . 78 R = Rf" . R%? and U = U* - UL,
3. Using {(zj,7j,u;)}j=1,2, derive another homomorphic signature (z,r,u) on (C1, Ca, C3). Namely,

compute z = z? zg , T = rfl 92 and u = ue1 qu.
4. Using SVK = SVK[1]...SVK[L] € {0,1}%, define the vector fsvk = fao0-[12y f3; SVKE ond

assemble a Groth-Sahai CRS fsyk = (f1, f2, fsvk). Using fsyk, generate commitments C o

C,, C, to the components of (z,7,u) € G> along with proofs (71, 72) as in step 2 of the

proving algorithm of Section 3. Let (C,, C,, C\, 1, m™2) € G be the resulting NIWT proof.
5. Generate 0 = S(SSK, (Cy, C1,Co,Cs, Z, R, U, C,,C,,C,,m, 7)) and output

C = (SVK7 COv Cl? CZ: C37 Za RJ U? CZ7 CT7 Cua 771777270-) (3)

Ciphertext-Verify (PK , C’): parse C' as in (3). Return 1 if and only if these conditions are satisfied:
(i) V(SVK, (Co, C1,Ca,C3, Z, R, U, C,,C,,C,,, 1, m3),0) = 1; (ii) (Z, R,U) € G? is a valid homo-
morphic signature on (Cy, Cy, C3); (iii) (C., C,., Cy, 71, 72) € G'9 is a valid proof w.r.t. the CRS

(f1, f2, fsvk) that committed (z,7,u) satisfy the relations (1) for the vector (Cy,Ca,C3) € G3.
Here, we define fsvk = f30- HZ 1 3SZVK[Z].

Share-Decrypt(PK,i,SKg;,C): on inputs SKg; = (Pi(i), P2(7), P(3)) € Zg and C, return (7, 1)
if Ciphertext-Verify (PK, C) = 0. Otherwise, compute [i; = (Z/Z', Cp,Cp,, Cp,ﬂ'ui) which con-

sists of a partial decryption v; = C’f 1) . CQP 2(0) . Cf @ as well as commitments C r,Cp,,Cp to

exponents P (i), P>(i), P(i) € Zy, and a proof m,, that these satisfy the equations
v =C} Pi(7) CPz(z) C?I)D(i)7 fpl P(z Yo = pP2(0) gP(i)'

The commitments Cp,,Cp,, Cp and the proof m,, are generated using the CRS (f, 1, fr2, fr3)
(see Appendix A for details). Then, return p; = (4, fi;)-

Share-Verify(PK, VK, C, (z',/ii)): parse C as in (3) and VK; as (Y;1,Yi2). If fi; = L or fi; cannot
be parsed as (Z/Z', Cp,Cp,,Cp, 7%), return 0. Otherwise, return 1 if and only if m,, is valid.
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Combine(PK, VK, C, {(i, fi;) }ies): for each i € S, parse the share fi; as (Vi,Cpl,CPQ,CP,ﬂ'M)
and return L if Share-Verify (PK, C, (z,,ti,)) = 0. Otherwise, compute v = [],.¢ Z-Ai’S(O), which
equals v = C¥1 . 052 - C5° = X . X2 and in turn reveals M = Cp/v.

Eval(PK, SK;,, C), C®): parse SKj, as {(xi, 7,0}, For each j € {1,2}, parse C0) as

o) — (SVK(j),Céj),C’{j),Céj),Céj), ZW RY gl ¢ oW, Cg)7ﬂgj)7ﬂgj)’g(j))

and return L if either CV) or C® is invalid. Otherwise,

1. Compute Cy = [[2, CF, 1 = T2, €, Gy = 12, G and C3 = [[2_, O as well as
Z =112, 29, R=[}-; RY and U = [[7_, U.

2. Generate a new one-time signature key pair (SVK, SSK) < G()\). Using SK;, = {(xi, Vi, 0i) }oq,
generate proof elements C,C,,C,, w1, w2 on the vector (Cy,Ca,Cs) using the simulator of
the proof system in Section 3 with the one-time verification key SVK.

3. Return the derived ciphertext C' = (SVK, Cy, C1,C9,Cs3, Z, R, U,C,,C,,C,, 71, 72,0) where
o= S(SSKv (OOa Cla 027 037 Z7 R7 Ua Cza CT‘7 Clw ™, 7‘-2))

In Appendix H, we prove the KH-CCA security of the scheme assuming that X' is a strongly unforge-
able one-time signature and that the DLIN assumption holds in G.

In some applications, it may be desirable to add an extra randomization step to the evaluation
algorithm in order to make sure that derived ciphertexts will be indistinguishable from freshly gener-
ated encryption (similarly to [48]). It is straightforward to modify the scheme to obtain this property.

If the scheme is instantiated using Groth’s one-time signature [32], the ciphertext consists of 25 ele-
ments of G and two elements of Z,,. It is interesting to compare the above system with an instantiation
of the same design principle using the best known Groth-Sahai-based unbounded simulation-sound
proof [15][Appendix A.2], which requires 65 group elements in this specific case. With this proof sys-
tem, we end up with 77 group elements per ciphertexts under the DLIN assumption (assuming that
an element of Z, has the same length as the representation of a group element). The above realization
thus saves 50 group elements and compresses ciphertexts to 35% of their original length.

We note that it is possible to adapt the scheme to rely on the Symmetric eXternal Diffie-Hellman
assumption in asymmetric pairings e : G x G — Gr. In this case, the ciphertext contains 9 elements
of G, 2 elements of G and a one-time key pair (SVK, o). Using the one-time signature of [32], the
ciphertext overhead amounts to 4096 bits on Barreto-Naehrig curves [4] if each element of G (resp.
each element of G) has a 256-bit (resp. 512-bit) representation.
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A Groth-Sahai Proofs

In the notations of this section, when vectors A and B are vectors of group elements, A - B denotes
their entry-wise product.

Under the DLIN assumption in symmetric bilinear groups (G, Gr), the Groth-Sahai (GS) proof
systems [33] use a CRS consisting of three vectors g1, g2, g3 € G3, where g1 = (91,1, 9), g2 = (1, 92, 9)
for some g1,g92 €r G. In this setting, a commitment to a group element X € G is computed as
C=(1,1,X)-g1" - g2° - g3’ with r,s,t & Zy. In order to obtain perfectly sound proofs, g3 is chosen

as gg = g1 - 92°%, with &, & <~ Z3, so that the commitment C = (gIJrélt,g;Jr&t,X - grTett&te))
is extractable as it is distributed as a Boneh-Boyen-Shacham (BBS) ciphertext [10] that can be
decrypted using the discrete logarithms a; = log,(g1), a2 = log,(g2). In order to switch to the
witness indistinguishability setting, the vectors g1, g2, g3 must be linearly independent so as to span
the entire space where C' lives and make sure that C' is a perfectly hiding commitment. Under the
DLIN assumption, the two kinds of reference strings are computationally indistinguishable.

When it comes to commit to an exponent x € Z,, the prover computes C' = ¢* - g7 - g5, with
rs & Z,, using a CRS comprising vectors ¢, g1, gz. In the soundness setting ¢, g1, g2 are linearly
independent vectors while, in the perfect WI setting, choosing ¢ in span(gi,g2) yields a perfectly
hiding commitment as C' is always a BBS encryption of 1g.

To prove that committed group elements or exponents satisfy certain relations, the Groth-Sahai
methodology [33] requires one commitment per variable and one proof element per relation. Efficient

NIWI proofs are available for multi-exponentiation equations of the form

m n m n

. b oy
||.A?’-||ij‘||-||)(]y””:T,
i=1 j=1 i=1 j=1

for variables &1,..., &, € G, y1,...,Ym € Z, and constants T, Ay,..., A, € G, by,...,b, € Z, and
Yij € Ly, for i € {1,...,m},j € {1,...,n}.
For linear equations (.e., where ;; = 0 for all 4, j) depends on the form of the considered equation.
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Namely, linear multi-exponentiation equations of the type H?Zl X;’j =T (resp. [[", AV = T)
demand 3 (resp. 2) group elements.

Multi-exponentiation equations admit NIZK proofs. On a simulated CRS, the representation
(&1,&) € Zg of pas p = g? -g§2 can serve as a trapdoor that makes it possible to perfectly simulate
proofs without knowing the witnesses.

Efficient NIWI proofs also exist for pairing-product relations, which are the form

n n n
ITecA: %) H H (A, &))" = tr,
=1 i=1 j=1

for variables X1,..., X, € G and constants t7 € Gp, A1,..., A, € G, a;5 € Zp, for i,j € {1,...,n}.
For each linear pairing product equation (where a;; = 0 for all ¢,5), a proof fits within 3 group
elements. Quadratic equations are somewhat more space-consuming and take 9 group elements each.
At the cost of introducing extra variables, pairing product equations can also have NIZK proofs.

B Definitions for Linearly Homomorphic Structure-Preserving Signatures

Let (G,Gr) be groups of prime order p such that a bilinear map e : G x G — Gp can be efficiently
computed.

A signature scheme is structure-preserving [3,2] if messages, signatures and public keys all live in
the group G. In linearly homomorphic structure-preserving signatures, the message space M consists
of pairs M := T x G", for some n € N, where T is a tag space. Depending on the application, one
may want the tags to be group elements or not. In this paper, they can be arbitrary strings.

Definition 4. A linearly homomorphic structure-preserving signature scheme over (G, Gr) is a tuple
of efficient algorithms X = (Keygen, Sign, SignDerive, Verify) for which the message space consists of
M =T x G", for some integer n € poly(\) and some set T, and with the following specifications.

Keygen(\, n): is a randomized algorithm that takes in a security parameter A € N and an integer
n € poly(\) denoting the dimension of vectors to be signed. It outputs a key pair (pk,sk), where
pk includes the description of a tag space T, where each tag serves as a file identifier.

Sign(sk, 7, M): is a possibly randomized algorithm that takes as input a private key sk, a file identifier
T € T and a vector M = (My,...,M,) € G". It outputs a signature o € G"s, for some ng €
poly(A).

SignDerive(pk, T, {(wi, @) }_,): is a (possibly randomized) derivation algorithm. It inputs a pub-
lic key pk, a file identifier 7 as well as £ pairs (wi,a(i)), each of which consists of a coefficient
w; € Zy and a signature o) € G™. It outputs a signature o € G" on the vector M = Hle M,
where o is a stgnature on M.

Verify(pk, 7, M, 0): is a deterministic verification algorithm that takes as input a public key pk, a
file identifier T € T, a signature o and a vector M = (M, ..., M,). It outputs 0 or 1 depending
on whether o is deemed valid or not.

In a one-time linearly homomorphic SPS, the tag 7 can be omitted in the specification as a given
key pair (pk,sk) only allows signing one linear subspace.

As in all linearly homomorphic signatures, the security requirement is that the adversary be unable
to create a valid triple (7%, M*,0*) for a new file identifier 7* or, if 7* is recycled from one or more
honestly generated signatures, for a vector M* outside the linear span of the vectors that have been
legitimately signed for the tag 7*.

An important property is that the SignDerive algorithm must operate on vectors that are all
labeled with the same tag.
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C Randomizable Linearly Homomorphic Structure-Preserving Signatures

This section recalls the randomizable linearly homomorphic structure-preserving signature of [43].
In the scheme, each signature basically consists of a Groth-Sahai NIWI proof of knowledge of a
one-time signature (z,r,u) on the signed vector (M, ..., M,). This proof of knowledge is generated
for a Groth-Sahai CRS which depends on the tag that identifies the subspace being signed.
In the following notations, for each h € G and any vector g = (g1, g2, 93) € G>, we denote by
E(h, g) the vector (e(h, g1),e(h, g2),e(h, g3)) € G3.

Keygen(\, n): given a security parameter A and the dimension n € N of the subspace to be signed,
choose bilinear group (G, Gr) of order p > 2* with a generator g & G as well as g., g, bz, hy & G
and do the following.

1. For ¢ =1 to n, pick x4, Vi, 6; & Z, and compute g; = g.X'g,7" and h; = hZXihu‘si.

2. Generate L+ 1 Groth-Sahai common reference strings, where L € poly()) is the length of each
tag 7 € T = {0,1}*. To this end, choose f1, fo €& G and define vectors f1 = (f1,1,g) € G3,
Ff2 = (1, fa,9) € G3. Then, pick f3; < G for i = 0 to L.

The public key consists of

pk = ( (G7 GT>7 9z Gr, hyy B, {gi,hi}?:p f= (f17f27{f3,i}iL:O) )

while the private key is sk = (hzo"“, {xi, Vi 51‘}?:1)-
Sign(sk, 7, (M1, ...,M,)): to sign a vector (Mi,...,M,) € G" using sk = (hzaT, {Xia')’ia(si}?:l)

with the file identifier 7, conduct the following steps.

1. Choose 6 & 7Z, at random and compute z = g,/ - [\, M; X, r = ¢,=% - [, M, 7" and
u = hz_e'aT ' H?:l Miiéi’

2. Using the bits 7[1]...7[L] of 7 € {0,1}*, define the vector f, = fz0 - [, 3771.[4 so as to
assemble a Groth-Sahai CRS f. = (f1, f2, f+)-

3. Using f. = (f1, f2, f+), compute commitments C, = (1g, 1g,2) - f17' - 5> - f7°° and

Vr1 Vr2 Vr3 o Vy,1 Vy,2 Vy,3
C,=g,1g,r)- f1" - f" - f~ C.=(1g,1g,u) - f1* - fo"° - f+

to the derived z, r and u, respectively. Generate NIWI proofs 7 = (m1,1,m1,2,m13) € G? and
o = (w1, Mo 2, ma3) € G3 that (2,7, u) satisfy the verification equations

n n

lg, = e(9z,2) - e(gr,7) - He(gi, M;) lg, = e(hz, 2) - e(hy,u) - He(hi, M;).
i=1 i=1

These proofs are obtained as

—v —v —v —v —v —v
m = (m1, T2, T3) = (g7 - gr Y, g VR gp R, g TR g )
T = <7T2,17 772,2771'2,3) = (hzil/z’l : huiyu’la hziyz’z : huiyu’Qa hziyz’?’ : huiyu’s)‘

The signature consists of ¢ = (C., C,, Cy, ™1, m2) € G2,
SignDerive(pk, T, {(wi,a(i))}le): given pk, a file identifier 7 and ¢ tuples (w;, o), parse each
signature o as a tuple of the form o(? = (C.i,Chi,Cy i, 14, T2,) € G for i =1 to ¢.
1. Compute C, = Hle c, C, = Hiil C5, Cy= Hle C,i,m = Hle " as well as
4 i
m = [[imy "fz’ .

2. Re-randomize the above commitments and proofs and return o = (C,,C,,C,, w1, m2).
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Verify(pk, o, 7, (M1, ..., M,)): given (1,(Mi,...,M,)) and a purported signature o, parse o as
(c,,C,, C,,m,m). Return 1 iff (My,...,M,) # (1g,..., 1g) and the proofs (71, ) satisfy

HE(gla (1G7 1G) Mi))_l - E(927 CZ) . E(gT) CT) : E(T['L]_, fl) . E(ﬂ-l,27 f?) . E(Trl,37 .fT) (4)
i=1

HE(hz', (lg, 1G,Mi))_1 =E(h.,C.) - E(hy,Cy) - E(m21, f1) - E(m22, f2) - E(m23, fr).

i=1

We remark that the scheme can be simplified by setting § = 0 in all algorithms: since all non-
interactive proofs are generated for a perfectly NIWI Groth-Sahai CRS, this modification does not
affect the distribution of signatures whatsoever. In Sections 3 and 5, we use this simplified version of
the scheme.

The scheme is only known [43] to be secure in a relaxed model where the adversary is only deemed
successful if it additionally provides evidence that its output vector is indeed independent of those
for which it obtained signatures with respect to the target tag 7*. In our applications, this restriction
will not be a problem at all since, in all security proofs, the reduction will always be able to detect
when the adversary has won without requiring explicit evidence for it.

D Extensions Based on the k-Linear Assumption

To instantiate our proof systems using the k-linear assumption with k& > 2, we first need to extend
the one-time linearly homomorphic structure-preserving signature of [43]. To this end, we need to
define the following assumption which is implied by the k-linear assumption in the same way as SDP
is implied by DLIN.

Definition 5. The Simultaneous k-wise Pairing (k-SDP) problem is, given a random tuple

(91,27 s s 9k 2y 91y - - - 7gk‘,7”) €R G2k7

to find a non-trivial vector (z,r1,...,rE) € GFH1 such that

e(9j.z:2) - e(gjr i) = ler jedl,....k} (5)
and z # 1g.
Given a k-linear instance (g1, - - -, Ghrs 91 - - - ,ng;, n) € G?**1 for any non-trivial tuple (z,71,...,7%)

satisfying e(g;-l’jr, z) - e(gjr,rj) = lg, for each j € {1,...,k}, we have

k
k )
n=g==1% o e(g,[[r) elzn) =1,
j=1

Hence, any algorithm solving k-SDP with non-negligible probability implies a k-linear distinguisher.
Under the k-SDP assumption, the one-time linearly homomorphic structure-preserving signature
of [43] can be extended as follows.

Keygen(\, n): given a security parameter A and the dimension n € N of vectors to be signed, choose
bilinear group (G, Gr) of prime order p > 2*. For j = 1 to k, choose generators Gj,zs Gjor & G.
Then, for each i = 1 to n, j = 1 to k, pick y; & Ly  Vji & Zyp and compute g;j; = g; X' g; 7.
The private key is sk = ({x, {7j7i}?:1}?:1) while the public key is

pk = <{9j,m Gjrs {gj,z‘}?:1}§:1>~
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Sign(sk, (M3, ..., M,)): to sign (M, ..., M,) € G" using sk = ({xi, {’Yj,i}?:l}?:l)v compute and

output o = (2,71,...,7) € GF1, where
n
z= H M;X,
i=1
n
’I”j:HMi_WjJ jE{l,,k}
i=1
SignDerive(pk, {(cqi,a'(i))}le): given a public key pk and ¢ tuples (w;,o®), where w; € Zy for
each ¢, parse o as o) = (zi,rijl, .. .,n,k) € G**! for i = 1 to £. Then, compute and return
o=(z,r1,...,7%), where z = Hle z = Hle 7";“; for j =1 to k.

Verify(pk, o, (M1, ..., My)): given 0 = (z,r1,...,r) € G*1 and (Mjy,..., M,), return 1 if and
only if (My,...,M,) # (1g,...,1g) and, for each j € {1,...,k}, the following equality holds:
n
lgy = e(jz 2) - €(Gjrs75) - He(gj,i, M;). (6)
i=1
In order to adapt the unbounded simulation-sound proof system of Section 3, we need to commit
to the components of (z,71,...,7,) and NIWI arguments showing that committed group elements
satisfy the pairing product equations (6). Under the k-linear assumption, committing to a group
element requires k + 1 group elements (see, e.g., [15] for details) whereas each equation of the form
(6) costs k+ 1 elements to prove. Overall, we thus need (k+1)(2k+1) group elements and a one-time
verification key pair (SVK, o).
In the relatively-sound QA-NIZK proof of Section 4, the proof element 7y remains unchanged
and we simply need to replace the triple (z,7,u) by a one-time linearly homomorphic signature
(z,71,...,7r). Hence, we only need k + 2 group elements.

E Comparisons

This section compares the various NIZK proofs of linear subspace membership based on the DLIN
assumption. Comparisons are given in terms of CRS size, proof size, the number of pairing evaluations
for the verifier and the need for a computational assumption to prove the soundness property.

In the table, we consider our basic proof system (without any form of simulation-soundness, where
each proof is a one-time linearly homomorphic signature (z,r,u)), its unbounded simulation-sound
variant and the relatively simulation-sound variant of Section 4. We compare these with the original
Groth-Sahai proofs, their most efficient unbounded simulation-sound extensions due to Camenisch et
al. [15] and the Jutla-Roy techniques [38] with and without relative soundness.

Table 1. Comparison between proof systems for linear subspaces

Proof systems CRS size® * Proof length® # of pairings’ Soundness
at verification property
Groth-Sahai [33] 6 3t+2n 3n(t+3) perfect
Jutla-Roy [38] dt(n—1t)+3 2(n—1t) 2(n-t) (t+2) computational
Jutla-Roy RSS [38] + [37] dn+1—-t)+3 2n+1-¢t)+1 2(n+1—-t)(t+2) computational
Groth-Sahai USS [15] 18 6t + 2n + 52* O(tn) computational
Our basic QA-NIZK proofs 2n+3t+4 3 2n+4 computational
Our RSS QA-NIZK proofs In+8t+6 4 2n +6 computational
Our USS QA-NIZK proofs 2n + 3t + 3L + 10 20* 2n + 30 computational
n: number of equations; t: number of variables; L: length of a hashed one-time verification key

{ These sizes are measured in terms of number of group elements.

* The description p € Gt*™ of the language is not counted as being part of the CRS here.

1 The table does not consider optimizations using randomized batch verification techniques here.

1 We consider instantiations using Groth’s one-time signature [32], where verification keys and signatures consist of 3
group elements and two elements of Z;, respectively.
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As can be observed in the table, our constructions all yield constant-size arguments. Moreover, the
number of pairing evaluations is always independent of the number of variables ¢, which substantially
fastens the verification process when ¢t ~ n/2.

We also note that randomized batch verification techniques can be used to drastically reduce the
number of pairing computations. In our USS system, for example, the number of pairings drops to
n + 18 if the two verification equations are processed together and further optimizations are possible.

Our common reference strings always fit within O(t + n) group elements (with another O(L)
elements in the USS variant) and thus provide significant savings w.r.t. [38] when ¢ ~ n/2.

F  Proof of Theorem 1

Proof. The quasi-adaptive completeness property follows directly from the correctness of the ran-
domizable linearly homomorphic signature of Section 2.5. We thus focus on the quasi-adaptive zero-
knowledge and quasi-adaptive unbounded simulation-soundness properties.

Quasi-Adaptive Zero-Knowledge. To prove this property we consider a sequence of two games
which begins with a game where the adversary has access to a real prover P on a real CRS . In the
second game, the adversary will be faced with a simulator (Si, S2).

Game;: is a game where the adversary A is given the description of the language £, and is granted
access to a real CRS 9 and an actual prover P(1),.,.) which takes as input a vector v along with
a witness @ € Z}‘; such that v = ¢®#. At each invocation, the oracle outputs a genuine proof 7 by
running the legal P algorithm. The adversary is allowed to query P(%,.,.) a polynomial number
of times and eventually outputs a bit 5 € {0,1}. We denote by S; the event that 5 = 1.

Gamey: This game is identical to Gamey with the difference that, when the P(¢, .,.) oracle is queried
on a pair (v, x), it does not use the witness x € Z;, anymore at step 1 of the proving algorithm.
Instead, it uses the the private key skyqna = {(Xi,7i,di)};-; to compute a one-time signature

(z,7,u) = (H?:l vj_Xj, = ’Uj_’Yj A= vj_éj) on the vector v = (v1,...,v,) € G". The remaining
parts of 7 are generated as in the real P(v,.,.) oracle in steps 2 and 3 of the proof generation
algorithm. Although, the witness « € Z; is never used, it is easy to see that (z,r,u) has exactly
the same distribution as in Gamey if v € £, (i.e., as long as v = g=A for some x € Z;,). We thus

have Pr[S3] = Pr[S1].

We define the simulator (S1,S2) by having S; generate the CRS 1 as in Game; (so that v has the
same distribution as the real CRS) and letting Sy generate proofs without using the witnesses as in
Games. It easily comes that the system is perfectly quasi-adaptive zero-knowledge as, for all language
members v € G", simulated proofs are distributed as real proofs.

Quasi-Adaptive Unbounded Simulation-Soundness. To prove this property, we proceed again
with a sequence of games.

Game: is the real game where the adversary A is given the description of the language £, and is
granted access to a simulated CRS 1 and a simulated prover Sy (v, Tsim, -, .) which takes as input
a vector-label pair (v, Ibl) and returns a simulated proof 7 that v € £,. To generate p € G'*"
according to the distribution D, the challenger generates a matrix A € Z;;X” with the appropriate
distribution (recall that Dy is efficiently samplable by hypothesis) and computes p = g®. In
addition, the challenger B computes a basis W € ZZX(TL%) of the right kernel of A and retains it for
later use. The adversary is allowed to query the simulated prover So(), Tsim, -, -) on polynomially
many occasions. The game ends with the adversary A outputting an element v*, a proof 7* and

a label Ibl*. The adversary is deemed successful if v* ¢ L, (i.e., v* is not in the row space of
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p € G*™) but (7*, Ibl*) is a valid proof. We denote by S1 the latter event, which B can recognize
by testing if v = (vy,...,v,) € G™ satisfies H] 10; 7" = 1g for each column w, = (Wigy oy W)

of W. Indeed, the vectors y € Zj in the row space of A are exactly those for which y - W = 0.

Gamey: This game is identical to Game; but the challenger B aborts if the adversary A outputs
a fake proof 7* that recycles one of the one-time verification keys appearing in outputs of
the Sao(v, Tsim, -, .) oracle. Clearly, Games and Game; are identical until the latter event occurs
and this event contradicts the strong unforgeability of X': if ¢ denotes the number of queries to
So (1), Tsim, -» -), a standard argument shows that | Pr[So] — Pr[S1]| < g - Advs™'(B).

Gameg: This game is identical to Games but we modify the generation of pk,,,q when the public
key is set up. Namely, the vectors (f1, fa,{fs3.i}~,) are chosen by setting f1 = (f1,1g,g) and
F2 = (1g, f2,g) where f1, fo & G are chosen at random. As for {fs;}L ,, they are obtained as

Fao=FP0 - F902 - (1,1,9)%08 - (1,1, g) ¢ (7)
f3,i = f%l : &2 (1 1 9)613 : (1’1,9)—,01" AS {LvL}

with g ¢ {0,..., L}, &o,1, 81,15+ €01 € Zp,y E0.2:€1,2, - - -1 EL2 € Lp, £0,3,613, - -+, EL,3 4= Ly and
00, P15 - > pL & {0,...,¢ — 1}, with ¢ = 2(¢ + 1) and where g is the number of queries to the
So(1, Tsim, -) oracle. Note that this change is only conceptual since the distribution of {f3,}%,
has not changed since Gamez. We thus have Pr[S3] = Pr[Ss].

Gamey: This game is like Games but we consider an event Good which causes the challenger B to
abort if it does not occur. Let SVKy,...,SVK, be the distinct one-time verification keys appearing
in outputs of the Sy oracle throughout the game. Let also SVK* be the verification key involved in
the fake proof 7* produced by A. We know that SVK* ¢ {SVKj,...,SVK,} unless the failure event
introduced in Gamey occurs. For each verification key SVK € {0,1}¥, we consider the function
J(SVK) = p- ¢ —po — ZiL:1 pi - SVK[i], where {p;}£, are the values internally defined by the
simulator in Games. We also define Good to be the event that

J(SVK*) =0 A /\  J(SVK;) #o. (8)
je{lr"'VQ}
We remark that the random exponents pg, p1, ..., pr, are chosen independently of A’s view: this

means that the simulator could equivalently define {f3;}%, first and only choose {p;}L, —
together with values {&3,;}F, explaining the {fs;}, — at the very end of the game, when
SVK*,SVK{y,...,SVK,, SVK have been defined. The same analysis as [54] (using the simplifications
of Bellare and Ristenpart [6, Theorem 3.1]) shows that Pr[S;AGood] > Pr[S3]?/(27-(q+1)-(L+1)).

This follows from the fact that, for any set of queries, a lower bound on the probability of event
Good is 1/(2¢(L +1)). Indeed, from the known results [54, 35] on the programmability of Waters’
hash function, we know that the probability, taken over the choice of (u, po,. .., pr), to meet the
conditions (8) is at least 1/(2¢(L + 1)).

Games: We modify again the way to compute pk,,,, in the generation of the public key. Namely,
the vectors f1 = (f1,1g,9), f2 = (1g, f2,9) are chosen as before. However, instead of generating
{fS,i}iL:o as in Gamey, we set them as

Fao=F0 - £57 - (11, g) e (9)
f3,i:f§i’l' 512 (1,179) pz’ iE{l,...,L}
which amounts to setting {p3 = §13 = ... = &3 = 0. Clearly, {f37i}iL:0 are no longer uniform

in the span of (fl, a2, (1, 1,g)). Still, this change should not be noticeable to A if the DLIN
assumption holds in G. Concretely, if the adversary wins (recall that the challenger can still detect
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this event using the matrix W € an(n D as explained in Game;) with substantially different

probabilities in Games and Gamey, we can construct a DLIN distinguisher BPYN in the group
G. This distinguisher uses the random self-reducibility of DLIN to construct many independent-
looking instances from the same distribution out of a given instance. The distinguisher then runs
A on input of the CRS that was generated using the DLIN instances and it eventually outputs 1
if the adversary wins. We can thus write | Pr[S; A Good] — Pr[Ss A Good]| < Advgprin ().

In Games, we show that a successful adversary implies an algorithm B solving a given SDP instance
(92, gr, bz, hy) with non-negligible probability, which a fortiori breaks the DLIN assumption in G.

By hypothesis, we know that A manages to create a proof 7* = (SVK*,C%,C7,C», ww}, w5, 0%)
for a vector v* = (vf,...,v}) outside the row space of p but (C%, C%,C%, w3, 7w5) € GY and o*
satisfy the verification equations. At this point, if the event Good introduced in Gamey occurs, we
must have J(SVK*) = 0, which implies that fsyks = fao - [[- far " " lies in span(fi, f2).
Consequently, C%, C7 and C7 are necessarily perfectly binding and extractable commitments. Using
(log,(f1),10g,(f2)), algorithm B can thus extract the committed group elements (z*,r*,u*) € G* by
BBS-decrypting the ciphertexts (C%, C, C7). Since (7], w5) are perfectly sound Groth-Sahai proofs,
the extracted elements (z*,7*, u*) necessarily satisfy

n

]-GT = e(gm g’r‘a He 9i, U z — 6 hZ)Z ) (h’u)U*) : He(hlvv:) (10)

i=1 =1

Having extracted (z*,r*,u*), B also computes

2= HU;‘_Xi rf = Hvi*_%' ul = va_ai, (11)

so that (zf,rf, uf) also satisfies (10). Since (27,71, ut) and (2*,7*,u*) both satisfy (10), the triple

* * *

(24, b ub) = (i r l)

207t t

necessarily satisfies e(g.,2%) - e(gr, %) = e(hs, 2}) - e(hy, ut) = 1g,. To conclude the proof, we argue
that 2! # 1g with overwhelming probability.

To do this, we observe that, if the event Good defined in Game, actually comes about, then B never
leaks any more information about (x1,...,x») than A can infer by just observing {(z;,7;, “j)}§'=1 in
the public key. Indeed, in this case we have J(SVK*) = 0 and J(SVK;) # 0 for each j € {1,...,¢}.
This means that, in the simulated proofs returned by So (¢, Tgim, -, -), the proofs (71, w2) are perfectly
witness indistinguishable as they are generated for a perfectly hiding Groth-Sahai CRS. For these
simulated proofs, the built-in homomorphic signatures (C,,C,,C,, 71, w2) leak nothing about the
specific vector (x1,...,Xn) used by B. As a consequence, the same arguments as in [43, Theorem 1]
show that 2T # 2* with probability 1 — 1/p. Specifically, in the CRS, {(gi, hi)}?_; and {(z;, 7, wi)}_,
provide the adversary with a system of 2n +¢ < 3n equations in 3n unknowns {(xi, Vi, ;) }1_;, which
leaves z! completely undetermined as long as v* is linearly independent of the rows of (Gm-)m. We
thus find

Pr[S5 A Good] = AdviP" (V) - (1 - ;) g

In turn, in Games, B implies a PPT distinguisher BPLUN for the DLIN assumption such that we
have the inequality Pr[S5 A Good] < 5+ Adv oL (A) - (1— %)_1. If AdvPH N ()\) denotes the maximal
advantage of any PPT distinguisher against the DLIN assumption in G, the probability of event
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Sy A Good can be bounded as Pr[Sy A Good] < 3 - AdvPHN()) . (1- %)_1 in Games in Gamey. This
in turn yields

Pr[Sg] <7 \/q. (L+ 1) . AdvDLIN(/\) . (1 _ ]1))1’

so that A’s advantage in breaking the unbounded simulation-soundness of the system is at most

AquSS(A) < Advsuf—otS()\) 4+ 7. \/q . (L + 1) . AdVDLIN()\) . (1 _ 7)—1. (12)

G Proof of Theorem 2

Proof. The completeness property is straightforward to verify. To establish the result, we separately
prove the relative quasi-adaptive zero-knowledge and relative quasi-adaptive simulation-soundness
properties.

Quasi-Adaptive Relative Zero-Knowledge. We consider a sequence of two games which begins
with a game where the adversary has oracle access to the actual prover P and a public verifier on
a real CRS . In the last game, the adversary will be interacting with a simulator (S;,S2) and the
private verifier.

Game: is a game where the adversary A is given the description p of the language £, and a real CRS
1 = (CRS;, CRS3). In addition, the adversary has access to a public verification oracle V(1, ., .),
even though it can run the verification algorithm by itself. This will be useful to show that the
private verifier always agrees with the public one when it interacts with a PPT adversary. At
some point, the adversary chooses a pair (v, Ibl) along with a witness & € Zﬁ, such that v = gT4.
The challenger replies by returning an actual proof 7 produced by running P(, v, x, Ibl). When
A terminates, it outputs a bit 8 € {0,1}. We denote by S; the event that § = 1.

Gamey: is like Game; but the adversary’s public verification oracle V(1, ., .) is replaced by the private
verification oracle W(v, 7y, .,.). Since the private verification algorithm begins by running the
public one, both games are clearly identical until A queries the verification oracle on input of a
candidate (v, (2,7, u,m), Ibl) that is accepted by V(1,.,.) but rejected by W (v, 7, ., .). If we call
this event F, we have | Pr[S;] — Pr[Sq]| < Pr[F3].

Claim 1. The probability of event F; can be bounded as Pr[Fy] < Adv PP () + 2.
Proof. We first remark that event F5 can only occur for a candidate ('v, (z,7,u,m), Ibl) such that
the vector (vy,...,vp, mo, vy, ..., v%) is not in the span of {Ho;—1, Ho;}!_;. Indeed, otherwise, there

would exist € = (21,...,2;) € Z! such that (vi,...,v,) = g% A and 1y = [['_; (W£Y;)®. In this case,

we would also have
t

R | ([0
i=1
and the private verifier W(1), 7y, ., .) would accept the proof (z,r, u,m).

It comes that the only way for the adversary to cause a divergence between W (1), 7,,.,.) and
V(1,.,.) is to create a valid-looking one-time linearly homomorphic signature (z,r,u) on a vector
outside span ({Hi—1, Ha;}!_,). The result of [43][Theorem 1] shows that this occurs with probability
at most Pr[Fy] < AdvSPP(\) + %. ]
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Games: This game like Gamey but, when the adversary outputs its triple (v, «, Ibl), the challenger
does not use the witness x € Zf) any longer. To simulate the proof for (v, x, Ibl), it first computes

a = H(p,v,Ibl). Then, using the private vectors d, e € Zy, it computes my = H?Zl v;ﬁa'dj before
using the private key skois = {(Xi, Vi, 0:) 21" to compute a one-time signature
2n+1 2n+1 2n+1 s
i i 5
(o) = ([ o IT o™ I ™)
j=1 j=1 j=1
on the vector ¥ = (v1,...,v2n+1), Where vy = 1o and vp4i+1 = 0§ for i = 1 to n. The resulting

proof is easily seen to have the same distribution as in Gamez when v € L,. We thus have
PI’[Sg] = PI‘[SQ]

We define the simulator (Si,S2) by having S; generate the CRS v as in Games (observe that it
has not changed since Game;) and So generate compute the proof without using the witnesses as
in Games. The verification oracle is implemented as in Game, and Games. It easily comes that the
system is computationally quasi-adaptive relatively zero-knowledge if the SDP assumption holds.

Quasi-Adaptive Relative Simulation-Soundness. We have to prove that, even if the simulator
(S1,S2) provides the adversary A with a simulated proof 7 for a pair (v, Ibl), where v € G™ may not
be in £,, A will remain unable to produce a new proof (v*,n*, Ibl*) # (v, m, Ibl) such that v* & L.

To prove the result, we rely on the smoothness of the projective hash function and on a specific
property of the one-time linearly homomorphic signature of Section 2.5: namely, unless the SDP
assumption is false, it is hard to compute two distinct signatures on the same vector, even when the
private key is available.

We thus proceed with a sequence of games where the first game is the actual game and the last
one is a game where the adversary has statistically no advantage. In Game;, we denote by S; the event
that the adversary wins.

Game: is the real game where the adversary A is given the description of £,, a simulated CRS ) and
access to a simulated prover Sy (v, Tgim, ., .) which is queried only once. On this occasion, Sy takes
as input a vector vf € G" and a label Ibl" and it produces a simulated proof 7 = (zT,rT,uT,W(T))
that v € L,. To generate p € G™*™ according to the distribution Dy at the beginning of the game,
the challenger computes p = g after having sampled a matrix A € Z;;X" with the appropriate
distribution (which is possible since Dp is efficiently samplable). Moreover, the challenger B

computes a basis W € ZZX("_t) of the right kernel of A. The adversary is allowed to query

S2(v, Tsim, -» -) exactly once and the private verifier W(v, 7, .,.) on polynomially many occasions.

When A terminates, it outputs a triple (v*,7*,Ibl*). The adversary is successful if v* ¢ £, but

(7*, Ibl*) passes the private verification test and (v*, 7, Ibl*) # (v, 7T, IbIT). We denote by S; the

latter event. Note that B can recognize this event as it can test if v* ¢ £, by checking whether

v* = (v],...,v;) € G" satisfies [[}_, vj"7" = 1g for each column w; = (wi,...,wp;) " of W.

Indeed, the vectors y € Z in the row space of A are exactly those for which y - W = 0.

Gamey: In this game, we modify the behavior of the private verification oracle W(1), 7, .,.) . At each
invocation (including the final invocation on the adversary’s output (v*,7*,|bl*)) on input of a
triple (v, Ibl), the modified private verification oracle outputs 0 if (v, 7, Ibl) # (v, 1, IbI") but
H(p,v,Ibl) = H(p, v, IbIT). Clearly, Game; and Games proceed identically until the latter event,
called F3, occurs. We have | Pr[Sa] — Pr[S;]| < Pr[Fy]. Moreover, F} is unlikely to occur if H is a
collision-resistant hash function: we have Pr[Fy] < Adv R(\).

Games: This game is identical to Games with the following difference. When the private verification
oracle W(v, 7y, .,.) is run on input of the adversary’s proof (v*,7*,1bl*), it returns 0 in the event
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that 7 = (2*,7%,u*, 7%) is such that (z*,r%,u*) # (zf, 7T, ) but (v*,IbI*) = (vf,IbI). If we
call F3 the event that the private verification oracle W(v, 7, ., .) rejects a proof that would have
been accepted in Gamey, we have |Pr[S3] — Pr[Sq]| < Pr[F3]. Moreover, F3 implies a breach in
the SDP assumption. Indeed, if 75 # 7r(T), W(¢, Ty, .,.) would not accept 7* in Gamey either,
regardless of whether (2*,r*,u*) # (27,77, uf) or not. If G = 718, event F3 provides the challenger
with two distinct linearly homomorphic signatures (z*,7*,u*) and (2,7, u') on the same vector
(vy,...,v5, ﬂg,v{a*, .. ,v;a*) as we also have a* = af. As mentioned in Section 2.5 (and as can
be easily observed from the verification equations), this would contradict the SDP assumption

and we thus have | Pr[S3] — Pr[Sy]| < Adv PP ().

Gamey: In this game, we further modify the behavior of W(1), 7y, .,.) when it assesses the the ad-
versary’s output (v*, 7%, Ibl*). Using the basis W of the right kernel of A, the challenger B first
checks if v* ¢ L, and forces W(1), 7y, .,.) to return 0 whenever this is the case. If we denote by
Fy the event that W(v, 7y, .,.) rejects an adversarially-generated triple (v*,7*,bl*) that would
have survived the private verification test of Games, we have | Pr[Sy] — Pr[Ss]| < Pr[F}y]. Since
Pr[S4] = 0 by construction, we are left with the task of bounding Pr[Fy].

Claim 2. The probability of event Fy is at most Pr[Fy] < 1/(p — ¢), where ¢ denotes the number of
private verification queries.

Proof. The proof of the claim is a standard argument based on the smoothness of the projective
hash function. If we consider the information that A can infer about the private evaluation key
Ty = (d = (dy,...,dn), e = (eq,.. .,en)) by observing the CRS and the proof 7 = (zT,rT,uT,wg), it
amounts to the first 2¢ + 1 rows of the left-hand-side member of the following linear system:

Y' A

w' A el

ﬂg - log(vT) ol -log(vT) . <dT> (13)
s log(v*) a* - log(v*)

Let us assume that ', v* & L£,. Since the above (2t +2) x 2n matrix has full rank when o* # «a (which
is the case unless the failure event F; of Game; occurs), we see that the only value of 7y that would
trick the private verification oracle W(#, 7, .,.) of Games into accepting 7* is completely independent
of the information provided by the CRS and the simulated proof 7' for . However, A can also take
advantage of its private verification queries throughout the game. Without any verification query,
(e, d) is constrained by the first 2¢ 4+ 1 rows of (13) to live in a subspace of dimension 2(n—t)—1>1
in Z%”, so that 7y has p equally likely values in A’s view. Each private verification query provides
A with an inequality, which allows it to rule out one candidate for the value of 75 that W(¢, 7y, ., .)
would accept. After ¢ queries, A is thus left with p — ¢ equally likely candidates for 7;. We thus find

Pr[Fy] <1/(p — q), as claimed. ]

Putting the above altogether, A’s advantage is breaking the quasi-adaptive relative simulation-
soundness property is bounded as

Adv™(A) < AdvCR(\) + AdvSPP () +

2X — ¢’

H Proof of KH-CCA Security for the Keyed-Homomorphic Scheme

Instead of relying on the simulation-soundness of the proof system in a modular manner, our proof
of KH-CCA security uses a direct security analysis in order to obtain a tighter reduction.
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Theorem 3. The threshold keyed-homomorphic cryptosystem of Section 5 provides KH-CCA security
in the sense of Definition 1 assuming that: (i) X is a strongly unforgeable one-time signature; (ii)
The DLIN assumption holds in G. Concretely, the advantage of any PPT adversary A is at most

3
AdVITER(A) < (ge +1) - AdVTTE() + 0 AdvPHR ()

+7- \/(qe +1) - (L4+1)- AdvPPNN) - (1- =) 1,

where AdeUf’OtS()\) denotes A’s probability to break the strong unforgeability of X and q. is the
mazximal number of evaluation queries involving derivatives of the challenge ciphertext.

Proof. The proof uses of a sequence of games starting with the real attack game and ending with a
game where the adversary A has no advantage. For each i, we also denote by S; the event that the
challenger outputs 1 in Game;.

Game;: is the actual attack game with the only difference that the challenger B does not erase sk
during the key generation phase. In details, the adversary is given the public key PK and the set of
verification keys VK = (VKy,...,VKy). If A decides to query the RevHK oracle at some point,
B reveals SKj. At each corruption query i € {1,..., N}, B reveals the queried private key share
SK; = (Pi(i), P5(i), P(i)). At each decryption query, B faithfully runs the real shared decryption
algorithm. At each evaluation query, A supplies two ciphertexts C'1), C'2) which are processed
by B as in the evaluation algorithm. We denote by CI, ceey C’ge the outputs of the Eval(SKp,.)
oracle when the latter is queried on a pair (C(), C®) such that C¥) € D for some j € {1,2} (in
other words, {C’lT }ie | are the results of evaluation queries which increase |D|). We also denote by
SVK‘;, cee SVKL the one-time verification keys appearing in these ciphertexts and assume w.l.o.g.
that they are chosen by B at the very beginning of the game.

When the first phase is over, the adversary A chooses two distinct messages My, M7 € G and
obtains C* = (SVK*,C§,Ct,C5,C%, 2%, R*, U*,C%, C*, Cr, 7y, 75, 0*) which is an encryption of
Mg, for some random coin (3 <= {0, 1} flipped by B.

In the second phase, A makes more decryption, evaluation and corruption queries under the
restriction of not asking for a partial decryption of a ciphertext in D or for more than ¢ — 1
private key shares throughout the entire game. Eventually, A halts and outputs 3’ € {0,1}. The
challenger B outputs 1 if and only if 8 = 5’. We denote this event by Sj.

Games: This game is identical to Game; with the difference that the challenger B rejects all decryption
queries involving ciphertexts C' = (SVK, Cy,C1,Cy,Cs,Z, R, U,C,,C,,C,, ™, 72,0) such that
SVK € {SVK*, SVKJ{7 . ,SVK:;E}. It also returns L at each evaluation query (C'), C®) for which
there exists j € {1,2} for which C¥) contains a verification key SVKY) such that SVKU) = SVK}L,
for some SVK] € {SVK*,SVKI,...,SVKI }, but V) £ ¢

If we define F5 to be the event that B rejects a ciphertext that would not have been rejected
in Game;, we see that Gamey and Game; proceed identically until event Fy occurs. We thus
have the inequality |Pr[Ss] — Pr[Si1]| < Pr[F:]. Moreover, event Fy would imply a breach in
the strong unforgeability of the one-time signature. Indeed, since A is not allowed to query the
partial decryption of any ciphertext in D, a standard argument allows proving the inequality
|Pr[Ss] — Pr[S1]] < Pr[Fy] < (ge + 1) - Adv®"™°%()\). In the forthcoming games, we will assume

that SVK & {SVK*,SVKI,...,SVK} } at each decryption query.

Gamez: We modify the generation of the challenge ciphertext C*. Namely, instead of computing
Cy = Mg - X! - X4, using the encryption exponents 61 = log;(C}) and 62 = log,(C3), B uses
the private key (zo, 1, 22) and computes C§ = Mg - C7*' - C5%2 - C3"°. Likewise, instead of using
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(01,02) to derive the triple (z*,7*,u*) at step 3 of the encryption algorithm, B uses the simulation
trapdoor skyana = {(Xi,7i, 6i) }i_; of the USS proof system and computes

3 3 3
2F = HC’i*_Xi r* = HCZ-*_% ut = HCZ-*_(S". (14)
i=1 i=1 i=1

Finally, (Z*, R*,U*) is generated using skot = {(i, ¥i, ;) }5_, as

3 3 3
zr=1]c; R =][cr U=
=1 =1 =1

Then, B conducts steps 4-6 as in the actual encryption algorithm. It is easy to see that this
change does not modify A’s view since Cf still equals Cj = Mg - X 10 L. X292 and the distributions
of (z*,r*,u*) and (Z*, R*,U*) remain the same as in Games. We thus have Pr[S3] = Pr[Ss].

Gamey: This game is identical to Gamez with a new modification in the challenge ciphertext. Namely,
instead of setting C% = ¢%17% where 6; = log(C7) and 0y = log,(C3), we choose it as C§ ¢~ G.
At the third step of the encryption algorithm, the linearly homomorphic signature (z*,7*, u*) is
computed according to (14), as previously. Under the DLIN assumption in G, this modification
should not significantly alter A’s behavior. In particular, we have |Pr[S;] — Pr[S3]| < AdvPMN()).

Games: From this point forward, we make explicit use of the discrete logarithms oy = logg( f) and
ap = log,(h), which is allowed since we are done with the transition consisting in tampering
with C3% in the challenge ciphertext. In Games, we first change the treatment of ciphertexts
C = (SVK,(Cy,C1,Cy,Cs,Z, R, U, C,,C,,C,,m,7,0) involved in pre-challenge decryption and
evaluation queries. Namely, B simply ignores the linearly homomorphic signatures contained these
ciphertexts and returns | if C5 # C11 fog 021/ “h Otherwise, it responds as in earlier games.

If we call F5 the event that B rejects a ciphertext that would not have been rejected in Gamey,
Games and Gamey are clearly identical until F5 occurs, so that | Pr[S5] — Pr[S4]| < Pr[F5]. At the
same time, Lemma 1 shows that Pr[F5] < 1 - AdvP™N()) + 1/p.

The proof of Lemma 1 implies that, even if A chooses to expose the evaluation key SKj, at the
very beginning of the game, it should not be able to create valid-looking ill-formed ciphertexts
before the challenge phase unless the DLIN assumption is false. This will help us prove that the
scheme remains IND-CCAL1 if SKj}, is revealed to the adversary when the game begins.

Gameg: We now modify the treatment of post-challenge queries and introduce yet another event Fg.
In this game, the challenger B halts and outputs a random bit in the event that the adversary
A manages to query the partial decryption oracle or the evaluation oracle on a ciphertext C° =
(SVK®,C§,Cy,C8,C5, Z°, R°,U°, C¢, C?, CS,, ws, 75, 0°) where SVK® ¢ {SVK*, SVKI, ce SVng}
and C§ # cover.cgt/en although (C2, C2, CS, ¢, w5) is a valid linearly homomorphic signature
on the vector (CY, C3, CS). We say that C° is a fatal query in this case. Since Gameg is identical to
Games until event Fg occurs, we have | Pr[Ss] — Pr[Ss|| < Pr[Fs]. Lemma 2 demonstrates that the
DLIN assumption can be broken in the group G if event Fg occurs with non-negligible probability.

More precisely, Lemma 2 shows that Pr[Fg] <7 - \/(qe +1)- (L+1)- AdvPMNON) - (1 - %)71,

Gameyr: We now modify the partial decryption oracle and replace the non-interactive proofs contained
in decryption shares 4i; by simulated NIZK proofs. This entails to turn (f1, f2, f3) into a perfectly
hiding Groth-Sahai CRS (where f3 is in the span of f; and f3) and non-interactive proofs for
multi-exponentiation equations are simulated using the trapdoor of the simulated CRS. Under the
DLIN assumption, this change is not noticeable to A and we have | Pr[S7] —Pr[Sg]| < AdvPMN()).

In Gamey, it is easy to see that A has no advantage whatsoever, so that Pr[S7] = 1/2. Indeed, in
the challenge phase, we have (Ct,C3,C%) = (f%1, h%, g%1702%03) where 61, 04,05 € Z,. This implies
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that Cj can be written as Cj = Mg - Xfl . ng - g%®0_ The latter equality implies that, as long as
xo € Zy remains independent of A’s view, so does the challenger’s bit 5 € {0,1}.

To see why A does not learn anything about xzy € Z,, we first note that the homomorphic
evaluation key S K}, is independent of xg, so that homomorphic evaluation queries leak nothing about
it. We also remark that, in Game;, decryption shares f; contain NIZK proofs that are simulated
without using private key shares. Hence, as long as A does not corrupt more than ¢t — 1 servers, the
only possible way to infer information about xzy = P(0) is to trick the partial decryption oracle into
accepting an invalid ciphertext. However, in Gamey, all invalid ciphertexts are explicitly rejected.

We thus find the announced result

1 3
|PriS1] = 5| < (g0 +1) - Adv TR (N) + - AdvPEN (Y

+7- \/(qe +1) - (L+1) - AdVPENO) - (1) 4 2

AdvPIN(N) + 1.

Lemma 1. In Games, the probability of event Fy is at most Pr[F5] < % .
Proof. We show that, if event F5 occurs with non-negligible probability in Games, there exists an
efficient algorithm B that solves a SDP instance (G.,G,, H,, H,) with nearly the same probability.
In turn, B implies a distinguisher for the DLIN assumption in G.

Algorithm B generates public key components are defined as in the actual scheme. In particular,
B sets G; = G.¥'G," and H; = H,? H,™ with ¢;,9;, w; & Zy for i € {1,2,3}.

Throughout the game, the reduction B answers A’s decryption queries in the same way as in
Games. Moreover, since B has generated (skyqnd, PK,qnq) faithfully, it is able to consistently reveal the
evaluation key SKj, in case A decides to corrupt the evaluator. If event F5 occurs with non-negligible
probability, we know that, before the challenge phase, A must query the partial decryption or the
homomorphic evaluation of a ciphertext C' = (SVK, Cy, C1,Co,Cs, Z, R, U,C,,C,,C,, 7, ™2,0) such
that (Z, R, U) is a valid one-time linearly homomorphic signature on (C1, Ca, C3) although (C4, Ca, Cs)
is outside the span of (f,1,g) and (1, h,g). When algorithm B detects this event (by observing that

Cs # 011 /o 021/ “M), it computes its own signature

3 3 3
(z", RN, U = ([ ci e T ¢ ™) (15)
i=1 i=1 i=1

on (C1,C4,C3). We claim that, with overwhelming probability,

Z R U
)
is a non-trivial solution to the SDP instance since Z! # 1g with overwhelming probability.

Indeed, we remark that the vector (1,2, 3) is independent of A’s view before the challenge
phase. Consequently, since (C1, Cs, C3) is linearly independent of (f,1,¢g) and (1, h, g), the adversary
A is only able to predict the value ZT of (15) with probability 1/p. Given that we also have the
inequality AdvSPP()\) < 1 AdvPMN()), we thus find Pr[F3] < - AdvPHN()) 4 % as claimed. O

(7, Rt UY) = (

In the transition from Games; to Gameg, we could rely on the unbounded simulation-soundness
of the underlying QA-NIZK proof to argue that fatal decryption or evaluation queries only occur
with negligible probability. To do this, we would have to build a reduction algorithm that interacts
with a simulation-soundness challenger for a given matrix p € G?*3 and simultaneously emulates A’s
challenger in the KH-CCA game. Since the reduction would not have the matrix A € ZIQ)X3, it would
have no way to detect fatal queries. Consequently, the reduction would have to guess this query, which
would introduce an extra degradation factor in the reduction.
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Lemma 2. In Gameg, the probability of event Fg is at most

Pr[Fs) < 7- \/(Qe +1)- (L+1)- AdvPYN(N) - (1 - ]19)‘1.
Proof. The key argument of the proof is that, conditionally on a certain desirable event, the evaluation
oracle Eval(SKj},.) will never information-theoretically reveal its evaluation key SKj,.

Assuming that event Fg occurs with non-negligible probability in Gameg, we show that there
exists a distinguisher for the DLIN assumption in G. To this end, we consider a subsequence of games
starting with Gameg and ending with Gameg ». For each j € {0, 1,2}, we define Fp ; as the counterpart
of event Fg in Gameg ; (note that Fg ; is efficiently detectable for each j). We first show that, as long
as the DLIN assumption holds, if Pr[F] is non-negligible, so is Pr[Fg 2].

Gameg o : This game is identical to Gameg but we modify the generation of pk,,,; when the public
key is set up. Namely, the vectors (f1, fa, {f3.i},) are chosen by setting f1 = (fi,1g,9) and
f2 = (1g, f2,9) where fi, fo ¢~ G are chosen at random. As for {f3,}Z, they are obtained as

Fao=F1" - F9 - (1,1,)00 - (1,1, )00 (16)
.f3,i = f?’l ' f2iY2 ' (17 lvg)éiyg ' (17 17.9)7,%7 (RS {17 o 7L}

with 1% & {0, e ,L}, 50,1,§171, . 7§L71 @ Zp, €072,§172, e 7§L,2 & Zp, §073,€1,3, e 7§L,3 & Zp and
00,01, pL &= 1{0,...,( =1}, with ¢ = 2(g.+1) and where ¢ is the number of evaluation queries
that increase the cardinality of D. Note that this change is only conceptual since the distribution
of {fs:}L , has not changed since Gameg. We thus have Pr[Fs o] = Pr[Fg].

Gameg 1: This game is like Gamegy but we consider another event Good which causes the chal-
lenger B to abort and output a random bit if it does not occur. Let SVKJ{, . ,SVK:SE be the
distinct one-time verification keys appearing in outputs of the Eval(SKj},.) oracle when the latter
is invoked on a ciphertext in D. Let also SVK* be the verification key involved in the chal-
lenge ciphertext C* and let SVK® be the one involved in the first fatal query C°. We know that
SVK® & {SVK*, SVKI7 ey SVKIJE}. For each verification key SVK € {0,1}¥, we consider the func-

tion J(SVK) = - ¢ — po — ZZ'L:1 pi - SVK]i]. We also define Good to be the event that

J(SVK®)=0 A JSVK"#0 A N\ J(svKh) #o. (17)
J€{1, e}
We remark that the random exponents pg, p1, ..., pr, are chosen independently of A’s view: this

means that the simulator could equivalently define {fs;}%, first and only choose {p;}L, —
together with values {&;}r, explaining the {fs;}, — at the very end of the game, when
SVK*, SVKT, ce SVK(T]E, SVK? have been defined. The same analysis as [54] (using the simplifica-
tions of Bellare and Ristenpart [6]) shows that Pr[Fs1 A Good] > Pr[Fs0]?/(27 (ge +1) - (L +1)).

This follows from the fact that, for any set of queries, a lower bound on the probability of event
Good is 1/(2(ge + 1)(L + 1)). Indeed, from the known results [54, 35] on the programmability of
Waters’ hash function, we know that the probability, taken over the choice of (u, po,...,pr), to
meet the conditions (17) is at least 1/(2(ge + 1)(L + 1)).

Gameg 2: We modify again the way to compute pk,,,4 in the generation of the public key. Namely,
the vectors f1 = (f1,1G,9), f2 = (1g, f2,9) are chosen as before. However, instead of generating
{fs.i}L, as in Gameg 1, we set them as

Fso=Fi - 392 (1,1, g)rc (18)
Fai=F7" £52 - (1,1,9) 77, ie{l,..., L}
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which amounts to setting o3 = &13 = ... = 1,3 = 0. Clearly, {f37i}iL:0 are no longer uniform in
the span of (fl, fo, (1,1, g)) Still, this change should have no noticeable effect on A if the DLIN
assumption holds in G. Concretely, if a fatal decryption/evaluation query occurs with substantially
different probabilities in Gameg.» and Gameg 1, we can construct a DLIN distinguisher BPYN in the
group G (recall that the reduction can detect fatal queries using oy = log,(f) and oy, = log,(h)).
This distinguisher uses the random self-reducibility of DLIN to construct many independent-

looking instances from the same distribution out of a given instance. For this reason, we can write
| PI“[F@Q VAN GOOd] — PI"[F(,J A GOOd” < AdVBDLIN ()\)

In Gameg.o, we show that an occurrence of event Fg o implies an algorithm B solving a given SDP
instance (g, gr, hz, hy,) with non-negligible probability, which a fortiori breaks the DLIN assumption
in G as the latter is implied by SDP.

By hypothesis, we know that the adversary A somehow manages to produce a fatal decryp-
tion/evaluation query on a ciphertext C° for which (C7,C5,C5) is outside the span of (f,1g,g)
and (1g,h,g) but (CS,C2,C¢, s, m5) € G satisfies the verification equations. At this point, if
the event Good introduced in Gameg; occurs, we must have J(SVK®) = 0, which implies that
fsvke = f30- Hf’;ll B?Z.VKO[Z] lies in span(fi, f2). Consequently, C¢, C? and C%, are necessarily
perfectly binding and extractable commitments. Using (log,(f1),log,(f2)), B can thus extract the
committed group elements (2°,7°,u®) € G* by BBS-decrypting the ciphertexts (C¢, C2, C?). Since
(mg, ®5) are perfectly sound Groth-Sahai proofs, the extracted elements (z2°,r°, u®) necessarily satisfy

3 3
1GT = 6(937 z<>) : e(QTa TO) : H e(gi7 Cf) = e(hZ7 ZQ) : B(h,,“ UQ) : H e(hia Cf) (19)
i=1 i=1

Having extracted (z°,7°,u®), B also computes

3 3 3
= H cy X rf = H cym ulh = H Cfféi, (20)
=1 i=1 i=1

so that (zf,rf, uf) also satisfies (19). Since (27,71, ut) and (2°,7°,u®) both satisfy (19), the triple

Pt by = ZO?”O“O)
(Z,T’U)_(ZTv’I"T”U,T

satisfies e(g., %) - e(gr, %) = e(h., 2%) - e(hy, u*) = 1g,.. To conclude the proof, we argue that 2% # 1g
with overwhelming probability.

To do this, we observe that, if the event Good defined in Gameg 1 actually comes about, then B
never leaks any more information about (x1, x2, x3) than A can infer by just observing {(z;,r;, uj)}jzz1
in the public key. Indeed, in this case we have J(SVK*) # 0 and J(SVK}) # 0 foreach j € {1,...,¢c}.
This means that, in the challenge ciphertext and all its homomorphic evaluations, the proofs (71, 7w2)
are perfectly WI as they are generated for a perfectly hiding Groth-Sahai CRS. For these cipher-
texts, the built-in homomorphic signatures (C,,C,,C,, 71, w2) leak nothing about the specific vec-
tor (x1, x2,X3) € Zf; used by B. As a consequence, we can apply the same arguments as in the proof

of Lemma 1 when it comes to argue that 2z # 2° with probability 1 — 1/p. We thus find

1\ -1
Pr[Fs.2 A Good] = AdvSPP()) - (1 - 7) .
b

In turn, B implies a PPT distinguisher BPLIN" for the DLIN assumption such that we have the
inequality Pr[Fs 2AGood] < 3-Advgornw (V) (1— %) I AdvPHMN()\) denotes the maximal advantage
of any PPT distinguisher against the DLIN assumption in G, the probability to have Fgs1 A Good can
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be bounded as Pr[Fs1 A Good] < 2 - AdvPM™()) - (1 — }3)‘1 in Gameg ;. This eventually yields the
stated result

PrlFe) < 7o (a+ 1) (1) AdVPINO) - (1= 1))

I More Efficient Adaptively Secure CCA2-Secure Threshold Cryptosystems
from the DLIN and k-Linear Assumptions

As a use case for our relatively sound QA-NIZK proofs, we can construct a new robust non-interactive
threshold encryption scheme based on the DLIN assumption and prove it secure against chosen-
ciphertext attacks in the adaptive corruption setting [16, 28].

Threshold cryptosystems were initially suggested in [13,22,23]. In the static corruption setting,
several non-interactive CCA-secure threshold systems have been described in the random oracle model
[53,27] and in the standard model [9, 14, 55].

Adaptively secure distributed cryptosystems with chosen-ciphertext security were proposed in [36,
1] but they require some interaction during the decryption process. Non-interactive solutions were
put forth in [41,42] but, as we will see, they are less efficient than the solution proposed here.

Consider the DLIN-based cryptosystem based on 1-universal hash proof systems where the ci-
phertext (C1, Cy, Cs, Co) = (01, h¥%2, g?1+02 M. X9 . X082 is decrypted as M = Cj - CcyCy"ey™,
where (X1, X2) = (f*1¢¥, h*2g™) is the public key and (x1, x2,x¢) is the private key. In [42], chosen-
ciphertext security was achieved using a publicly verifiable one-time simulation-sound proof of well-
formedness for (C1,C2,C3). In the security proof, the one-time simulation-soundness property guar-
antees that the adversary is unable to trick the decryption oracle into returning the decryption of
an invalid ciphertext, by generating a fake proof for an invalid triple (Cy,Cq,C3). For this reason,
the specific private key (z1,z2, o) used by the reduction remains perfectly hidden. Consequently, if
the challenge ciphertext is computed by choosing a random tuple (Cy, C, C3) €g G and computing
Co = M -Ci* - Cy*2 - C3%°, the plaintext M is independent of the adversary’s view. To prove adaptive
security in the threshold setting, [42] took advantage of the fact that the private key (more precisely,
all private key shares) is known to the reduction at all times in the Cramer-Shoup paradigm.

A similar approach was taken in® [37], where a different method was used to achieve a form of
one-time simulation-soundness. In combination with relatively sound proofs [37], the techniques of
Jutla and Roy [38] reduce the size of ciphertexts to 9 group elements under the DLIN assumption.

Here, as already suggested in [43], we obtain shorter ciphertexts by using linearly homomorphic
signatures. We include in the public key the verification key of a one-time linearly homomorphic SPS
for n = 3 as well as signatures on (f,1g,¢) and (1g, h, g). This allows publicly deriving a homomor-
phic signature (z,r,u) on the vector (C1, Cy, C3) = (f, h%, ¢"17%2) and each ciphertext consists of
(z,7r,u,Cy, C1,Co,C3). In the security proof, the signature (z,r, u) serves as evidence that (C, Co, C3)
has the right form at each pre-challenge decryption query: in order to generate a proof for a false
statement, the adversary has to break the security of the homomorphic signature, by deriving a sig-
nature on a vector (C7,Cy, C3) outside the span of (f,1,¢g) and (1, h, g).

While this technique does provide IND-CCA1 security, the scheme remains malleable and thus
vulnerable to post-challenge decryption queries. This is where the relatively sound proof system of
Section 4 comes into play. By using (Cy,Cy,Co,C3) as a label in the relatively sound proof that
(C1,C4, Cs) lives in span((f, 1, 9), (1, h,g)), we can make sure that, with all but negligible probabil-
ity, the reduction will never accept a proof for a malformed (C7,Cs,C3) after the challenge phase
without breaking the DLIN assumption. The key idea of the techniques of [37] is to guarantee that

6 Although it was not mentioned in [37], relatively sound proofs can be used to acquire CCA2 security in the threshold
setting as well, as will be emphasized later on.
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the adversary will not be able to send a decryption query for which the private verifier and the public
verifier disagree on (C1, Cy, Cs).

I.1 Construction

In the threshold setting, the construction can be seen as a DLIN-based version of the Cramer-Shoup
encryption scheme [20] (which is identical to the scheme in [52]), where the ciphertext components
(C1,Cq,C3) and the designated verifier proof Cy are additionally signed using a homomorphic signa-
ture. The scheme goes as follows.

Keygen(\,t, N): choose bilinear groups (G, Gr) of prime order p > 2* and do the following.

1. Choose g, f,h & G.

2. Choose random xg, z1,xs & Lipy Yo, Y1, Y2 & Zy, and wo, w1, wa & Zy, in order to compute
Xp = [P, Xy = h®2g%, Y} = fYigh, Yy = h¥2g% and Wy = f@igwo, Wy = hW2gwo.

3. Generate a Groth-Sahai CRS (f1, f2, f3) to be used for proving the validity of decryption
shares. Namely, choose fi, fo ¢ G as well as ¢1, ¢ < Z,, and define vectors

f1= (1,9, Fo= (1, f2,9) fa=f70 £ (L, 1,9).

4. Choose random polynomials P [Z], P»[Z], Py|Z] € Z,|Z] of degree t — 1 such that P;(0) = x4,
Py(0) = x5 and Py(0) = x¢. Set X; 1 = fA0gh@ and X; 5 = K20 g0 for i =1 to N.

5. Choose a collision-resistant hash function H : {0,1}* — Z,.

6. Generate a key pair for the one-time linearly homomorphic signature of Section 2.5 with n = 7.
Let (gz, Grs by by { (g3, hz‘)}i?:1) be the public key and let {(x;,7i,d;)}/_; be the corresponding
private key.

7. Generate one-time homomorphic signatures {(Z;, R;,U;)}4

on the independent vectors

j=1
hi=(f1,9,Y1,1,1,1) € G, hy = (1,h,g,Y,1,1,1) € G
hs = (1,1,1,W1, f,1,9) € G, hy=(1,1,1,Wy,1,h,g) € G".

8. Define decryption key shares SK = (SK1,...,SKy) as SK; = (Pi(i), Px(i), Po(i)) € Z3 for
each i € {1,...,N}. The vector VK = (VKj,...,VKy) of verification keys is defined as
VK; = (Xi1,Xi2) € G? for each i € {1,..., N}. The public key is defined to be

PK = (gu f17 .f27 .f37 Xla X27 Y17 }/27 W17 WQ? 9z, 9r, h27 hua
{90 Yo, {23 By Up) Y, H ).

Encrypt(M, PK): to encrypt a message M € G, conduct the following steps.
1. Choose 6,6, & Zy, and compute

Co=M-X{"-Xy2,  Ci=f"  Co=h" = Cy=g""" Cy=Wiv)" (W5Y)",

where o = H(Co, 4, Cs, 03) € Zp.
2. Construct a linearly homomorphic signature (Z, R,U) on (Cy,Cs,Cs,Cy, C{,CS,CS) € G".
Namely, compute

7 — Zl91 _Zgz . Zgra . ZZTCY, R= R?l _Rgz .nga . RZZ'OC’ U= U191 _U292 . Ugl'a . UEQ-CM
3. Output the ciphertext

C = (Cy,C1,Cy,C3,C4, Z,R,U) € G® (21)
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Ciphertext-Verify(PK, C’): parse C' as per (21). Compute a = H(Cy, C1,C2,C3) € Z;, and return
1 if and only if

[

1GT - 6(9z; Z) . e(g’ra R) ) e(gl : gia+47 C’L) . 6(947 C4>

.

—. I

lgp =e(hz, Z) - e(hy,U) - | | e(hi - hi'y, C;) - -e(ha, Cy),

1

-
Il

Share-Decrypt(PK,i,SK;,C): on inputs SK; = (P1(i), Pa(i), Py(i)) € Zg’, and C, return (7, L) in
the event that Ciphertext-Verify (PK, C) = 0. Otherwise, compute [i; = (VZ', Cp,Cp,,Cp, 7%)
which consists of a partial decryption v; = C’f 1) C’f 2(8) C:f 0(®) , commitments Cp,,Cp,,Cp, to

exponents P (i), P>(i), Py(i) € Zy and a proof m,, that these satisfy the equations

v; = Cfl(l) . 052(1) . Céjo(i)’ Xi,l _ ‘}L‘Pl(i)gpo(i)7 Xz‘,2 — th(i)ng(i)' (22)

The commitments Cp,, Cp,, C p, and the proof m,, are generated using the CRS f = (f, f», f3)-

Share-Verify(PK, VK; C, (z‘,/ii)): parse the ciphertext C' as (Cp,C1,Co,Cs,Cy, Z,R,U) and VK,
as (X1, Xi2) € G2. If 1; = L or fi; cannot be properly parsed as (1/1-, Cp,.Cp,Cp,, 71'”2.), return
0. Otherwise, return 1 if m,, is a valid proof. In any other situation, return 0.

Combine(PK, VK, C, {(i, ji;) }ies): for each i € S, parse the share fi; as (Vi,Cpl,sz,Cp,ﬂ'ui)

and return | if Share-Verify (PK, c, (i, ,LZZ)) = 0. Otherwise, compute v = [[;c4 uiAi’S(O), which

equals v = C7 - C32 - C5° = X% . X2 and in turn reveals M = Cy/v.

If each element has a 256-bit representation on BN curves [4] at the 128-bit security level, the ci-
phertext overhead amounts to 1792 bits. The DLIN-based scheme of [42] has a ciphertext overhead
comprised of 14 group elements and a one-time signature with its verification key (or 4864 bits using
Groth’s one-time signature [32]). The results of Escala et al. [25] reduce this overhead to 3328 bits.
The recent techniques of Jutla and Roy [37,38] — which also work in the threshold setting although
it was not explicitly stated in [37] — lead to ciphertexts comprised of 9 group elements under the
DLIN assumption and 3k + 3 under the k-linear assumption. Under DLIN, we thus further compress
ciphertexts by 11% while relying on the same assumption and retaining tight security”.

Under the k-linear assumption, our improvement becomes more important as the ciphertext re-
duces to 2k + 4 group elements. Specifically, we need k + 1 elements for the homomorphic signature
of Appendix D, another k 4 1 elements to contain the k-linear instance, one element for the Cramer-
Shoup-like proof g and one element to carry the plaintext. This allows saving k — 1 group elements
with respect to the techniques of [37,38].

We believe this result to be of importance as these schemes can potentially serve as building blocks
for protocols in the multi-linear setting [29, 19]. Indeed, the (k — 1)-linear problem is easy in groups
equipped with a k-linear map (as shown in, e.g., [25]) but we can hope for instantiations where the
k-linear assumption holds, as seems to be the case in [19].

From a computational standpoint, the validity of a ciphertext only requires to compute a product
of 7 pairings. Under the the DLIN assumption, the framework of [42] requires a product of 12 pairings
in the ciphertext verification algorithm.

" Note that the techniques of Lewko [40] can be applied to the scheme of [41] to get a DLIN-based system where
ciphertexts contain 7 group elements and a one-time key pair (SVK, o). However, the reduction involves a degradation
factor proportional to the number of decryption queries.
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1.2 Security

We prove security in the sense of a definition which is identical to Definition 1 with the difference
that there is no evaluation key SKj, no evaluation oracle and no RevHK oracle.

As in the scheme of [37], the security proof appeals to the private verification algorithm while the
scheme itself only uses the public verification algorithm.

While it would be possible to rely on the relative zero-knowledge and relative soundness properties
of the proof system in a modular way, we obtain a better exact security via a direct analysis.

Theorem 4. The above threshold cryptosystem is IND-CCA secure against adaptive corruptions
assuming that: (i) H is collision-resistant; (ii) The DLIN assumption holds in G. More precisely, the
advantage of any PPT adversary A is at most

2qg+1
22 — ¢’

Adv(A) < AdvCRDash) 4 3. AdvPLIN()) + (23)
where q is the number of decryption queries and the first term of the right-hand-side member accounts
for the maximal advantage of any PPT collision-finding algorithm for H.

Proof. The proof uses of a sequence of games starting with the real attack game and ending with a
game where the adversary A has no advantage. For each ¢, S; stands for the event that the challenger
B outputs 1 at the end of Game;.

Gamej: is the real attack game. In details, the adversary is given the public key PK and the set of
verification keys VK = (VK,...,VKy). At each corruption query i € {1,...,n}, the challenger
B reveals the queried private key share SK; = (Pi(i), P2(i), Py(7)). At each decryption query,
B faithfully runs the real shared decryption algorithm. In the challenge phase, the adversary A
chooses messages My, M; € G and obtains C* = (C§,CY,C5,C5,Cy, Z*, R*,U*) which is an
encryption of Mg, for some random coin 3 & {0,1} flipped by B. We can assume w.l.o.g. that
(C5,C35,C3) are computed at the beginning of the game as they do not depend on Mg.
In the second phase, A makes more adaptive queries under the restriction of not asking for a
partial decryption of C* or for more than ¢t — 1 private key shares throughout the entire game.
Eventually, A halts and outputs 3’. At this point, B outputs 1 if 3 = 8’ and 0 otherwise.

Gamey: This game is like Game; except that the challenger B halts and outputs a random bit in the
event that, before the challenger phase, A queries the partial decryption oracle on a ciphertext
C = (CQ, Cl, 02, 03, 04, Z, R, U) such that (Cl, CQ, 03) = (CT, 05, Cg) Since (Cf, C;, C?f) are
invisible to A until the challenge phase, this event can only occur with probability ¢/p, so that
| Pr[S2] — Pr[Si]| < q/p.

Games: We introduce another failure event F3 and let B halt and output a random bit if this
event occurs. We define Fj as the event that 4 makes a decryption query involving a valid
ciphertext C = (CQ, Cl, CQ, 03, 04, Z7 R, U) such that H(CQ, Cl, CQ, 03) = H(CS, f, 05, C?f) but
(Cy.Ct,C5,C3%) # (Co, Ch, Ca, Cs).

We see that Gameg and Game, are identical until event F3 occurs, which would contradict the
collision-resistance of H. We thus have |Pr[S3] —Pr[Sy]| < Pr[F3] < AdvCRhash(\) In subsequent
games, if we define the values a = H(Cy, C1,C2,C3) and o* = H(C§, C7,C35,C3), we will hence-
forth assume that o # o* for each decryption query C' = (Cy, C1,C2,C3,Cy, Z, R, U).

Gamey: In this game, we modify the decryption oracle and reject all post-challenge decryption queries
(Co,Cy,Co,C3,Cy, Z, R,U) such that (Cy,Cp,Co,C3,Cy) = (Ca, Ccy, 05, Cg, CZ) Clearly Gamey
is identical to Games until B rejects a ciphertext that would not have been rejected in Games.

If we call the latter event Fy, we find that |Pr[S4] — Pr[Ss]| < Pr[F}y]. Since F) necessarily
implies (Z, R,U) # (Z*, R*,U*), any occurrence of Fj necessarily provides A with two distinct
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signatures on the same vector (C7,C3,C3,C], C’l*o‘*, C’;a*, Cga*), which in turn breaks the SDP
assumption by the specific property of the linearly homomorphic signature (see Section 2.5). It
comes that Pr[Fy] < Adv°PY(B).

Games: We modify the generation of C* = (C§,Cy,C3,C5,Cy, Z*, R*,U*) in the challenge phase.
Specifically, instead of computing Cj = Mg - Xfl ~X292 and C} = (W{'Y1) (W5 Ys)%2, where
t1 = log;(CT) and Oy = log),(C3), the challenger B now computes Cg = Mg - C7*™* - C372 - C3™°
and Cf = Cyyitetwn . gygyataiwz | cayotatvo with o = H(CE,CF,C%,C%). Likewise, instead
of using the encryption exponents (61,63) to derive a one-time linearly homomorphic signature
(Z*, R*,U*) from the public key, the challenger B uses {(xi, i, d:)}_; and computes

7 7 7
zr=1Jcr R =]Jcr™ v =[Jcr (24)
i=1 =1 i=1

where (C%,Cy,C%) = (CF,C5%,C5%).
This change is only conceptual since Cf still equals Cj = Mg - X 19 L. XgQ and the distribution
of (C}, Z*, R*,U*) has not changed either. We thus have Pr[S5] = Pr[S4].

Gameg: Here, we modify the decryption oracle and make use of the exponents (yo, y1, y2, wo, w1, w2)
that were chosen by B during the key generation phase. Namely, the challenger B does not only re-
ject all ciphertexts (Cy, C1,Cs, Cs,Cy, Z, R,U) such that (Z, R,U) does not form a valid signature
on (Cy,C,Cs,Cy, CF,CS, CS) but also rejects those for which

Y1 +owq Y2 t+awa Yo+a-wo

where o« = H(Cy, Cy,Cs,C3). We raise a failure event Fg, which causes B to halt and output a
random bit if it occurs. This event Fy is defined to be the event that the adversary A queries the
decryption oracle on a ciphertext that gets rejected in Gameg and would not have been rejected
in Games. Since Gameg is identical to Games until Fg occurs, we have

1 1
PY[SG] = PI’[S@ A _\FG] + 5 . PI‘[FG] = Pr[S5} + 5 . Pr[F(ﬂ

At the same time, Lemma 3 shows that Pr[Fs] < AdvSPP(\) + %. We remark that a side-effect
of this modified decryption oracle is that it now rejects all post-challenge decryption queries
(Co, Cl, CQ, Cg, C4, Z, R, U) such that (C(), Cl, Cg, Cg) = (CS, Cf, C;, Cg) but C4 7& CZ

Since Fy is always efficiently detectable by the challenger B, we can build an efficient DLIN
distinguisher if the probability of event Fg increases when C is tampered with in the challenge
ciphertext as in the next game.

Gamey;: This game is identical to Gameg with one modification in the challenge ciphertext. Instead
of setting C% = ¢%17%, where 6, = log(CY) and 6 = logy,(C3), we choose it as C§ ¢~ G. The
linearly homomorphic signature (Z*, R*,U*) is computed according to (24), as previously. Under
the DLIN assumption in G, this modification should have no noticeable impact on A’s behavior.
In particular, we have |Pr[S7] — Pr[Sg]| < AdvPMN(N).

Gameg: We modify the partial decryption oracle and replace the non-interactive proofs contained
in decryption shares /i; by simulated NIZK proofs. This entails to turn (f1, fo, f3) into a per-
fectly hiding Groth-Sahai CRS (where f3 is in span(f1, f2)) and non-interactive proofs for multi-
exponentiation equations are simulated using the trapdoor of the simulated CRS. Under the DLIN
assumption, this change is not noticeable by A and we have | Pr[Sg] — Pr[S7]| < AdvPMN()).

Gameg: In this game, we modify again the decryption oracle and make use of the discrete logarithms
ay = log,(f) and ap = log,(h). Since we are done with the transition consisting in replacing
C3 by a random element, we are free to use (o, ) from this point forward. We thus introduce
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a modification in the treatment of decryption queries C' = (Cy, C1,C2,C5,Cy, Z, R,U). This, B

rejects all ciphertexts C such that C5 # C’ll/af . 021/0”1. Otherwise, it answers as in Gameg.

If we define Fy to be the event that B rejects a ciphertext which would not have been rejected
in Gameg, we see that Gameg and Gameg are identical from A’s view until Fy occurs. Therefore it
comes that

PI‘[SQ] < PT[SQ A —|F9] + Pl"[Fg] = PI‘[Sg} + PI‘[FQ]

The same arguments as in the proof of Cramer and Shoup show that Pr[Fy] < ¢/(p — q). More
precisely, after ¢ decryption queries, the adversary is left with p — ¢ equally likely candidates for
the value of C4 that would have been accepted by the private ciphertext validation algorithm.
The probability that the i-th decryption query satisfies the test given that the first ¢ — 1 queries
have failed it is thus at most i/(p — ).

In Gamey, it is easy to see that A has no advantage whatsoever and we have Pr[Sg] = 1/2. Indeed,
in the challenge phase, we have (Cf,C5,C%) = (f%, %, g%110219:) with 01, 04,05 € Z,, so that C§
can be written as Cy = Mg - Xfl : X292 - g% 70 The latter equality implies that, as long as xg € Ly, is
independent of A’s view, so is the bit 5 € {0,1}.

We also note that, in Gameg, decryption shares ji; contain NIZK proofs that are simulated without
using private key shares and thus leak no information about these. It comes that, as long as A does
not corrupt more than ¢ — 1 servers, the only possible way to infer information about z¢o = P(0) is to
make decryption queries on invalid ciphertexts (i.e., for which (Cy, Ca, C3) lies outside the span of f
and h).

We thus find

2¢g+1

1
[Pr[$i] - 5] < AdvORhashy) 1o AdvPHN()) + 2. AdvOPP ()) + .
pP—4q

Since any algorithm solving SDP immediately provides a DLIN distinguisher, we also have the in-
equality Adv PP () < LAdvPHN(N), which yields

IPrS] — 5| < AdvOH R0 3 AdvPEN () 4 21 (25)

and the claimed result follows. O

Lemma 3. In Gameg, the probability of event Fg is at most Pr[Fs] < AdvSPY(\) + %.

Proof. We show that, if event Fg occurs with non-negligible probability € in Gameg, there exists an
efficient algorithm B that solves a SDP instance (g, gr, h-, hy,) with about the same probability. To
this end, we first remark that Fg can only occur for a decryption query (Co, C1,C2,C3,Cy, Z, R, U)
such that (C1,Ca, Cs,Cy, CF, C§, CF) is outside span(hq, ha, h3, ha). Indeed, otherwise, there exist
integers 01,02 € Z, such that (C1,Cq,C3,Cy) = (fgl, ho2, gt +02, (Wf“Yl)gl(Wng)e?), in which case
we always have Cy = CY'Ho%1 . OF2+ew2 . 00+ and the rejection rule of Gameg does not apply.

Using the technique of [43][Theorem 1], we show that event Fg implies an algorithm solving the
given SDP instance with nearly the same probability. Algorithm B begins by setting up ¢g; = g.Xi g,
and h; = h.Xh,%, with x;, v, 8; & Zy for i € {1,...,7}. Other public key components are generated
as in the real scheme and the public key is given to the adversary.

Throughout the game, the reduction B answers A’s decryption queries in the same way as in
Gameg. By hypothesis, A must query the decryption of a ciphertext (Cy, Cy, Co, C3,Cy, Z, R, U) such
that (Z, R,U) is a valid linearly homomorphic signature on the vector (C1, Cy, Cs3,C4, CY, CS, CY),
where o = H(Cy, Cy,Co,C3), but Cy # C’%’Hawl ~C§”+aw2 'C'é/ﬁawo, which implies that the vector is
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not in span(hi, ha, hs, hs). When B detects this event, it defines (Cs, Cg, C7) = (C1¢, C2%, C3“) and

computes its own signature
7 7 7
(z', rUUY = (e [[ e [ ¢ (26)
i=1 i=1 i=1
on (Cy,Cy,Cs,Cy, C5, Cg, C7). We claim that, with overwhelming probability,

(Zi,Ri,Ui):<Z R U)

Z0 RV UT

is a non-trivial solution to the SDP instance since Z* # 1g with all but negligible probability.

To see this, we first note that the vector (xi,...,x7) is independent of A’s view before the
challenge phase. Hence, since (Cy,Cq,C3,Cy,Cs, Cg, C7) is linearly independent of (hi, he, hs, hy),
the adversary A can only predict ZT (as it is computed in (26)) with negligible probability 1/p. The

probability Pr[Fg] can thus be bounded as Pr{Fg] < Adv’"(X) + 1. 0

In the proof of the above theorem, the relative simulation-soundness property of the proof system
is notably used in the transition from Gameg to Gameg. In order to obtain a tighter reduction, we
chose not to rely on this property in a modular way. In the modular approach, we would have to
build an algorithm B™ that contradicts this property using an adversary for which event Fy occurs
with non-negligible probability. This algorithm B"® would have to interact with the relative soundness
challenger for a given language p € G2*3 for which B" does not have the underlying matrix A € sz‘g
of discrete logarithms. For this reason, B would not be able to efficiently detect when Fy occurs. To
break the relative soundness property, B"® would have to guess the decryption query for which this
event occurs, which is only possible with probability 1/¢. In the exact security result (23), we would
thus lose a multiplicative factor of O(q).
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