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Abstract. Universal designated verifier signatures (UDVS) were intro-
duced in 2003 by Steinfeld et al. to allow signature holders to monitor
the verification of a given signature in the sense that any plain signature
can be publicly turned into a signature which is only verifiable by some
specific designated verifier. Privacy issues, like non-dissemination of digi-
tal certificates, are the main motivations to study such primitives. In this
paper, we propose two fairly efficient UDVS schemes which are secure
(in terms of unforgeability and anonymity) in the standard model (i.e.
without random oracles). Their security relies on algorithmic assump-
tions which are much more classical than assumptions involved in the
two only known UDVS schemes in standard model to date. The latter
schemes, put forth by Zhang et al. in 2005 and Vergnaud in 2006, rely on
the Strong Diffie-Hellman assumption and the strange-looking knowledge

of exponent assumption (KEA). Our schemes are obtained from Waters’s
signature and they do not need the KEA assumption. They are also the
first random oracle-free constructions with the anonymity property.

1 Introduction

Many electronic applications have a crucial need for privacy which has been of
central interest in the cryptographic community since the early eighties with
the introduction of “special-purpose signatures”. In 2003, Steinfeld et al. [31]
suggested the idea of transforming a digital signature into a certain special sig-
nature (designated verifier). This notion is very useful in the design of sensitive
e-applications with privacy issues. In this paper, we make a step forward in this
area by designing efficient schemes which are secure without random oracles un-
der more classical assumptions than the previous secure schemes that are secure
in a standard model of computation.

Designated Verifier Signatures. Designated verifier proofs were introduced in
1996 by Jakobsson, Sako and Impagliazzo [20] in order to serve during confir-
mation and denial procedures of undeniable signatures [12] with the motivation
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to face blackmailing or mafia attacks. Designated verifier signatures (DVS) were
built using designated verifier proofs to convince a unique verifier chosen by the
signer so that the verifier cannot transfer his conviction regarding the correctness
of the signature. Roughly speaking, DVS schemes were obtained from Jakobsson
et al.’s designated verifier proofs via the Fiat-Shamir heuristic [16].

Several years after the seminal paper of Jakobsson et al. [20], many new
schemes appeared in the literature, but not always with a precise formaliza-
tion of security requirements. The first “modern” scheme, proposed by Saeednia
et al. in 2003 [29], was based on Schnorr’s signature [30] but it still was not
supported by a formal security model. At Asiacrypt’03, Steinfeld, Bull, Wang
and Pieprzyk [31] gave a new proper definition of unforgeability. Laguillaumie
and Vergnaud [23] subsequently adapted the notion of anonymity for undeni-
able signatures to the context of DVS schemes: they defined the privacy signer’s
identity, which protects the anonymity of the signer and captures the notion of
strong DVS introduced in [20]. The notion of DVS schemes was then extended
in [24] to allow the designation of several verifiers. More recently, Bender, Katz
and Morselli [6] described 2-user ring signatures that immediately give rise to
designated verifier signatures in the standard model.

Universal Designated Verifier Signature. Along with a formal security model for
DVS schemes, Steinfeld et al. [31] defined a new useful property for traditional
signatures. Basically, anyone holding a valid digital signature should be able
to transform it so that only a specific user is able to ascertain the correctness
of the signature. This transformation removes the self-authenticating property
of signatures, and the resulting process was called universal designated verifier
signatures (UDVS). At PKC’04, Steinfeld, Wang and Pierpzyk [32] proposed
UDVS extensions of Schnorr and RSA signatures. A further extension termed
“universal multi-designated verifier signatures” was considered in [27].

Except [6], all aforementioned works conduct security analyzes in the random
oracle model [5] where hash functions are viewed as idealized random functions.
As security in this model does not [10] imply the security in the real world,
an important effort is currently achieved to avoid it and obtain security results
in the standard model. A pairing-based random oracle-free signature algorithm
due to Boneh and Boyen [7] is often used in the design of special-purpose signa-
tures such as UDVS schemes put forth by Zhang et al. [35] and Vergnaud [33].
Nonetheless, the computational assumption (called Strong Diffie-Hellman as-
sumption or SDH for short) underlying the Boneh-Boyen scheme is ad-hoc and
non-standard. Besides, security proofs of schemes in [33,35] additionally need an
even stronger and odd assumption known as the knowledge-of-exponent assump-
tion1 (KEA) [4, 14, 19] which is non-black box in that security reductions from

1 Intuitively, this assumption states that, given (g, h = ga) in a cyclic group G = 〈g〉,
the only way to generate pairs (y1, y2) ∈ G × G s.t. y2 = ya

1 without knowing a is
to set y1 = gr and y2 = hr for a randomly chosen r. Any adversary A producing
such a pair (y1, y2) necessarily “knows” the exponent r that could be extracted by
accessing A’s memory.



this assumption entail some kind of access to the internal state of the adversary.

Our contributions. Avoiding random oracles in security proofs often leads to use
strong and ad-hoc assumptions. Hence, actual security benefits of this break-
through are not always clear. The only secure [33, 35] UDVS schemes in the
standard model rely on the combined SDH and KEA assumptions. The former
was recently reconsidered [13] and the latter is non-black box and so odd that it
is generally disliked and avoided whenever possible although it holds in generic
groups [15]. It was shown in [33] that the KEA may be avoided in [33, 35], but
both constructions then have a security resting on a very exotic assumption.

In this work, we aim at obtaining UDVS schemes satisfying strong security
notions in the standard model and under more classical assumptions. We start
from Waters’s signature [34] which is (not strongly) existentially unforgeable un-
der the Diffie-Hellman assumption in groups equipped with bilinear maps. We
turn it into a UDVS scheme which is unforgeable under an alleviated version
of the Gap Bilinear Diffie-Hellman assumption and protects the anonymity of
signers under the Decisional Bilinear Diffie-Hellman assumption.

In a second step, we use a technique due to Boneh, Shen and Waters [9] to
make our scheme strongly unforgeable. The main motivation to consider such an
enhanced unforgeability is two-fold. First, it allows for a security resting on the
weaker Bilinear Diffie-Hellman assumption (in other words, we bypass the use of
a fancy decision oracle in the proof) at the expense of a loss of “tightness” in the
reduction. Yet, the security of this variant relies on an assumption whose strength
is totally independent of the number of adversarial queries (unlike [33,35]). Un-
derlying assumptions aside, our second scheme features a provable anonymity
in a stronger sense (i.e. in a game where verification queries are allowed to ad-
versaries). Our constructions turn out to be the only random oracle-free UDVS
that meet an anonymity property in the “find-then-guess” sense following [23].
Indeed, solutions given in [33,35] are provably not anonymous in this sense.

2 Ingredients

2.1 Universal Designated Verifier Signatures

Definition 1 (UDVS schemes). A universal designated verifier signature scheme
UDVS is a 5-tuple UDVS = (Σ,Register,VKeyGen,Designate,DVerify) of algo-
rithms parameterized by a security parameter k.

– Σ = (Setup,KeyGen,Sign,Verify) is a traditional digital signature scheme;
– UDVS.Register is a protocol between a “key registration authority” (KRA)

and a user, both taking as input public parameters and the verifier’s public
key pkv. The outcome is a notification decision from the KRA2;

– UDVS.VKeyGen is a probabilistic algorithm which takes public parameters as
input, and produces a pair of keys (skV , pkV ) for the designated verifier;

2 The protocol typically consists in having the KRA check that users know their private
key.



– UDVS.Designate is a (possibly probabilistic) algorithm which takes as inputs
public parameters, a public key pkS, a message m, a putative signature σ
on m with respect to the public key pkS, and the public key of a designated
verifier pkV , and produces a designated verifier signature σ̃;

– UDVS.DVerify is a deterministic algorithm which takes as inputs public para-
meters, a message m, a putative designated verifier signature σ̃, a public key
pkS, a pair of keys (skV , pkV ). The output is 1 if the signature σ̃ is accepted
and 0 otherwise.

The usual correctness requirement imposes that correctly formed plain or
designated signatures are always accepted by the relevant verification algorithm.

In terms of security, an UDVS scheme must fit a natural variant of the
standard notion of existential unforgeability under chosen-message attacks [18].
It should also achieve two anonymity properties: (1) the notion of (unconditional)
source hiding which is the ambiguity about whom among the signer and the
designated verifier a signature emanates from; (2) the signer’s privacy, which is
analogous to the notion of anonymity for undeniable signatures.

Source hiding. An UDVS scheme is source hiding if there exists an algorithm that
takes as input only the secret key of the designated verifier and which produces
bit strings which are perfectly indistinguishable (even knowing all secret keys)
from the distribution of actual designated verifier signatures.

Unforgeability. We consider the notion of unforgeability introduced in [32] which
is an extension of the chosen-message security introduced in [18]. Informally
speaking, an attacker is given a signer’s public key pkS , a designated verifier’s
public key pkV and access to a signing oracle and a verification oracle. He should
be unable to produce a signature on a new message.

Definition 2. An UDVS scheme is said (not strongly) existentially unforgeable
if no PPT adversary F has a non-negligible advantage in the following game.

1. The challenger C takes as input a security parameter k and executes params←
UDVS.Σ.Setup(k), (sk⋆

S , pk⋆
S) ← UDVS.Σ.KeyGen(k, params), (sk⋆

V , pk⋆
V ) ←

UDVS.VKeyGen(k, params). It gives pk⋆
S and pk⋆

V to the forger F and keeps
sk⋆

S and sk⋆
V to itself.

2. The forger F can issue the following queries:
i) a registration query for a public key pk; the attacker engages in the

registration protocol with the KRA;
ii) a signing query for some message m; the challenger C executes σ ←

UDVS.Σ.Sign(k, params,m, sk⋆
S) and hands σ to F ;

iii) a verification query for pairs (m, σ̃) of his choice; C returns to F the
value UDVS.DVerify(k, params,m, σ̃, pk, (sk⋆

V , pk⋆
V ));

3. F outputs a V -designated verifier signature σ̃⋆ for a new message m⋆.

The adversary F succeeds if UDVS.DVerify
(

k, params, pk⋆
S , (sk⋆

V , pk⋆
V )

)

= 1 and
m⋆ has not been asked by F in a signing query in step 2 of the game. An at-
tacker F is said to (τ, qs, qv, ε)-break the unforgeability of the UDVS scheme if he
succeeds in the game within running time τ and with probability ε after having
made qs signing queries and qv verification queries.



Strong Unforgeability. Definition 2 only captures the standard level of unforge-
ability. In the strengthened notion of strong unforgeability [1], the forger is al-
lowed to output a fake designated signature σ̃ on a previously signed message
m⋆. Here, we impose that σ̃ must differ from designated signatures obtained
by applying the (deterministic) designation algorithm to all outputs of signing
queries with input m⋆ during the game. We emphasize that this model only
makes sense for schemes using a deterministic designation algorithm3.

Privacy of signer’s identity/Anonymity. Privacy of signer’s identity was for-
mally defined for designated verifier signatures by Laguillaumie and Vergnaud
[23]. It captures the strong anonymity property introduced by Jakobsson et al.
in [20]. Although designated verifier signatures are signer ambiguous regarding
the signer and the designated verifier, it might remain possible to distinguish
the actual issuer of a given signature between two potential signers. The next
definition captures that it should be (computationally) infeasible. It is analogous
to the notion of anonymity for undeniable signatures [17].

Definition 3. An UDVS has the signer-privacy property if no PPT distin-
guisher D has a non-negligible advantage in the next game.

1. The challenger C takes as input a security parameter k and executes params←
UDVS.Σ.Setup(k), (sk⋆

S,0, pk⋆
S,0), (sk

⋆
S,1, pk⋆

S,1)← UDVS.Σ.KeyGen(k, params),
(sk⋆

V , pk⋆
V ) ← UDVS.VKeyGen(k, params). It hands public keys pk⋆

S,0, pk⋆
S,1

and pk⋆
V to D and keeps sk⋆

S,0, sk
⋆
S,1, sk

⋆
V to itself.

2. The distinguisher D issues a number of queries exactly as in the game mod-
eling the unforgeability property. Those queries may pertain to both of the
challenge public keys pk⋆

S,0, pk⋆
S,1.

3. D produces a message m⋆ of her choosing. The challenger C then flips a
fair coin b⋆ R← {0, 1}, generates a signature in the name of one of the sign-
ers σ ← UDVS.Σ.Sign(k, params,m⋆, sk⋆

S,b⋆) and designates it into σ̃⋆ ←
UDVS.Designate(k, params, pk⋆

S,b⋆ ,m, σ, pk⋆
V ) which is sent to D.

4. D issues new queries with the restriction of not querying σ̃⋆ for verification.

5. Eventually, D outputs a bit b and wins if b = b⋆.

If D has advantage ε = |Pr[b = b⋆]−1/2| when making at most qs and qv signing
and verification queries within running time τ , then we say that he (τ, qs, qv, ε)-
breaks the anonymity of the UDVS scheme.
3 Defining strong unforgeability for schemes with probabilistic designation is more

subtle. A reasonable option is the following. We still forbid plain signature queries
for the message m⋆. Instead, F is equipped with a designated signing oracle taking
as input a message m and some registered verifier’s public key pkB . The latter may
differ from the target verifier’s public key pk⋆

V as long as it was registered and F
proved her knowledge of the matching secret skB . The designated signing oracle first
generates a plain signature σ ← UDVS.Σ.Sign(k, params, m, sk⋆

S) and designates it
into σ̃ ← UDVS.Designate(k, params, pk, m, σ, pkB) which is given to F . The latter
has to come up with a pair (m⋆, σ̃⋆) designated to the target verifier pk⋆

V and (m⋆, σ̃⋆)
may not result from a designated signing query with pk⋆

V as a verifier’s public key.



2.2 Bilinear Maps

We now recall basics about bilinear maps which are the main algebraic tool to
design our new UDVS construction.

Definition 4. Let (G,+) and (H, ·) be groups of prime order q and P ∈ G. A
symmetric admissible bilinear map e : G×G→ H has the following properties:

1. bilinearity: e(aP, bQ) = e(P,Q)ab for any (P,Q) ∈ G×G and a, b ∈ Z;

2. efficient computability for any possible input pair;

3. non-degeneracy: e(P, P ) generates H whenever P generates G.

Definition 5. A BDH-parameter-generator is a probabilistic algorithm that takes
a security parameter λ as input and outputs a 5-tuple (q, P, G, H, e) where q is
a λ-bit prime number, (G,+) and (H, ·) are groups of order q, P ∈ G is a
generator, and e : G×G→ H is an admissible bilinear map.

Complexity assumptions. Let (q, P, G, H, e) be the output of a prime-order-BDH-
parameter-generator for a security parameter k. Basically,

1. the (computational) Bilinear Diffie-Hellman Problem (BDH) [8, 21] is
to compute e(P, P )abc ∈ H given (P, aP, bP, cP ) ∈ G

4;

2. the Decisional Bilinear Diffie-Hellman Problem (DBDH) is to distin-
guish the distribution of BDH tuples (aP, bP, cP, e(P, P )abc) from the distri-
bution of random tuples (aP, bP, cP, e(P, P )z). We say that an algorithm B
solving the DBDH problem has advantage ε if

∣

∣Pr[B(P, aP, bP, cP, e(P, P )abc) = 1|a, b, c R← Z
∗
q ]

− Pr[B(P, aP, bP, cP, e(P, P )z) = 1|a, b, c, z R← Z
∗
q ]

∣

∣ ≥ ε;

3. the Gap Bilinear Diffie-Hellman Problem (GBDH) consists in solving
the BDH problem (P, aP, bP, cP ) with the help of an oracle deciding whether
tuples (P, xP, yP, zP, h) ∈ G

4 ×H satisfy h = e(P, P )xyz;

4. the weak Gap Bilinear Diffie-Hellman Problem (wGDBH) is to solve a
BDH instance (P, aP, bP, cP ) ∈ G

4 using a restricted decision oracle deciding
whether pairs (zP, h) ∈ G×H satisfy h = e(P, P )abz.

The last problem is not easier than the GBDH problem in that fewer degrees of
freedom are allowed when using the decision oracle. We call weak Gap Bilinear
Diffie-Hellman assumption its intractability for any PPT algorithm.

The security of our scheme relies on the wGBDH assumption which, although
non-standard, is a black box assumption (see [28] for the historical definition
of a gap problem). In section 5, we shall explain how to get rid of interactive
assumptions and modify our scheme to end up with a security resting on the
softer Bilinear Diffie-Hellman assumption.



3 Our UDVS Scheme

We present in this section the design of our new universal designated verifier
signatures. It is based on Waters’ signature scheme [34].

In our notation, hashed messages m are always represented as n-bit vectors
(m1, . . . ,mn) with mi ∈ {0, 1} for all i ∈ {1, . . . , n}.

– UDVS.Σ.Setup: public parameters include the output (q, P, G, H, e) of a BDH-
parameter-generator as well as an integer n, a collision-resistant hash func-
tion h : {0, 1}∗ → {0, 1}n, random elements P ′, U ′ ∈ G and a random n-tuple
(U1, . . . , Un) ∈ G

n. We call F : {0, 1}n → G the application mapping strings
m onto F (m) = U ′ +

∑n
i=1 miUi.

params := {n, q, G, H, e, P, P ′, U ′, U1, . . . , Un, F, h}.

– UDVS.Σ.KeyGen: a signer’s private key is a randomly chosen αS
R← Z

∗
q ; his

public key consists of a group element PS = αSP .

– UDVS.Σ.Sign: given a message M ∈ {0, 1}∗, the signer computes m = h(M)
and picks r R← Z

∗
q . The signature is σ = (σ1, σ2) = (αSP ′ + rF (m), rP ) .

– UDVS.Register: a public key is registered by letting the user prove the knowl-
edge of its secret key to the KRA.

– UDVS.Σ.Verify: a plain signature σ = (σ1, σ2) on M is accepted if e(σ1, P ) =
e(PS , P ′)e(σ2, F (m)) where m = h(M).

– UDVS.VKeyGen : a designated verifier’s private key is a random element
αV

R← Z
∗
q ; the matching public key is PV = αV P ∈ G.

– UDVS.Designate: the holder of a signature σ = (σ1, σ2), who chooses V as
designated verifier produces the designated verifier signature σ̃ = (σ̃1, σ2)
with σ̃1 = e(σ1, PV ).

– UDVS.DVerify: given a purported signature (σ̃1, σ2), the designated verifier
checks whether σ̃1 = e(PS , P ′)αV e(σ2, F (m))αV where m = h(M).

4 Security

Correctness and unconditional source hiding are straightforward.

4.1 Unforgeability

The proof of the next theorem follows the same strategy as the security proof of
Waters’s identity based encryption scheme [34].

Theorem 1. Assuming that a forger F is able to (t, qs, qv, ε)-break the scheme,
there is an algorithm B that (t′, ε′)-breaks the wGBDH assumption where

ε′ ≥
ε

4qs(n + 1)
t′ ≤ t + O((qs + qv)τm + qvτp)

and τm, τp respectively denote the cost of a scalar multiplication in G and the
time complexity of a pairing calculation.



Proof. Algorithm B is given a group G together with a generator P , elements
(aP, bP, cP ) ∈ G

3 and an oracle ODBDH(., bP, cP, .) deciding whether tuples of
the shape (aP, bP, cP, h) ∈ G

3 ×H satisfy h = e(P, P )abc. It uses F to extract
e(P, P )abc. The attack environment is simulated as follows.

Setup and key generation: B randomly chooses k ∈ {0, . . . , n} and defines
ℓ = 2qs. We assume4 that ℓ(n + 1) < q which implies 0 ≤ kℓ < q. The
simulator B randomly selects x′ R← Zℓ and a vector (x1, . . . , xn) of elements
with xi ∈ Zℓ for all i. It also chooses at random an integer y′ R← Zq and a
vector (y1, . . . , yn) with yj ∈ Zq for all j. For ease of explanation, we shall
consider two functions

J(m) = x′ +
n

∑

i=1

mixi − kℓ and K(m) = y′ +
n

∑

i=1

miyi.

System-wide parameters are then chosen as P ′ = cP and

U ′ = (x′ − kℓ)P ′ + y′P Ui = xiP
′ + yiP for 1 ≤ i ≤ n

which means that, for any string m ∈ {0, 1}n, we have

F (m) = U ′ +
n

∑

i=1

miUi = J(m)P ′ + K(m)P.

Besides, signer and verifier’s public keys are set to PS = aP and PV = bP .

Queries: once F is started with public parameters and public keys PS , PV as
input, two kinds of queries may occur.

Signing queries: let m = h(M) be a message for which F requests a sig-
nature. If J(m) = 0 mod q, B aborts. Otherwise, it can construct a
signature by picking r R← Zq and computing

σ = (σ1, σ2) =

(

−
K(m)

J(m)
PS + rF (m),−

1

J(m)
PS + rP

)

.

If we define r̃ = r − a/J(m), σ is a valid signature as

σ1 = −
K(m)

J(m)
PS + rF (m)

= −
K(m)

J(m)
PS + r̃F (m) +

a

J(m)
(J(m)P ′ + K(m)P )

= aP ′ + r̃F (m)

and σ2 = (r−a/J(m))P = r̃P . The plain signature σ is then transformed
using the public designation algorithm.

4 This is a realistic requirement as parameters should be chosen s.t. n ≥ 160, q > 2160

and it is common to suppose qs < 230.



Verification queries: at any time, F may enquire for the (in)validity of a
designated signature σ̃ = (σ̃1, σ2) on a message m = h(M) and expects
B to (in)validate it using the (unknown) private key αV = b. To answer
such a query, B evaluates J(m) and K(m), invokes the decision oracle
on the tuple (PS + J(m)σ2, PV , P ′, σ̃1/e(K(m)σ2, PV )) and returns 1
(meaning that σ̃ is a valid designated signature) if ODBDH(.) deems it
as a valid tuple. Otherwise, it returns 0 and declares σ̃ as invalid. We
observe that, whenever σ̃ is correct, we have σ2 = rP and

σ̃1 = e (aP ′ + r(J(m)P ′ + K(m)P ), bP )

= e (aP ′ + rJ(m)P ′, bP ) e (K(m)rP, bP )

= e (acP + J(m)rcP, bP ) e (K(m)rP, bP )

= e(P, P )(a+J(m)r)bce (K(m)σ2, bP )

for some r ∈ Z
∗
q and σ̃1/e(K(m)σ2, PV ) is the solution of the bilinear

Diffie-Hellman instance

((a + rJ(m))P, bP, cP ) = (PS + J(m)σ2, PV , P ′) .

If F ever issues such a verification query where J(m) = 0 and ODBDH(.)
returns 1, B immediately halts and outputs σ̃1/e(K(m)σ2, PV ).

Forgery: if B did not abort, F is expected to come with a fake designated
signature σ̃⋆ = (σ̃1

⋆, σ2) on some new message m⋆ = h(M⋆). At that point,
B reports “failure” if J(m⋆) 6= 0 mod q. Otherwise, F (m⋆) = K(m⋆)P and,
given that σ̃⋆ is a valid designated signature, we have

σ̃1
⋆ = e(aP ′ + rK(m⋆)P, bP ) = e(P, P )abce(K(m⋆)σ⋆

2 , bP )

and σ⋆
2 = rP for some r ∈ Z

∗
q , wherefrom e(P, P )abc = σ̃1

⋆/e(K(m⋆)σ⋆
2 , bP )

is extractable by B.

The simulator B’s probability of success remains to be assessed. We remark that
it terminates without aborting if, J(m) 6= 0 mod q for all messages m submitted
in a signing query. As 0 ≤ kℓ < q and x′ +

∑n
i=1 mixi < ℓ(n + 1) < q, we

note that J(m) = 0 mod q implies J(m) = 0 mod ℓ (and thus J(m) 6= 0 mod ℓ
implies J(m) 6= 0 mod q). Hence, to simplify the analysis, we may force B to
abort whenever J(m) = 0 mod ℓ in a signing query. Besides, B is successful if
the target message happens to satisfy J(m⋆) = 0 mod q.

More formally, if m1, . . . ,mqs
are messages appearing in some signing query

and if we define the events Ai : J(mi) 6= 0 mod ℓ and A⋆ : J(m⋆) = 0 mod q,

the probability that B does not fail is Pr[¬abort] ≥ Pr[

qs
∧

i=1

Ai ∧A∗]. Given that

J(m⋆) = 0 mod q implies J(m⋆) = 0 mod ℓ and that, if J(m⋆) = 0 mod ℓ,
there is a unique value k ∈ {0, . . . , n} that yields J(m⋆) = 0 mod q, we have

Pr[A⋆] = Pr[J(m⋆) = 0 mod ℓ]Pr[J(m∗) mod q|J(m⋆) = 0 mod ℓ] =
1

ℓ

1

n + 1
.



Moreover, Pr[

qs
∧

i=1

Ai|A
⋆] = 1−

qs
∑

i=1

Pr[¬Ai|A
⋆] = 1−

qs

ℓ
, where the rightmost equal-

ity stems from the fact that Ai is independent of A⋆ for any i (hence Pr[¬Ai|A
⋆] =

1/ℓ). Putting the above together, we find that

Pr[¬abort] = Pr[A⋆]Pr[

qs
∧

i=1

Ai|A
∗] =

1

ℓ(n + 1)

(

1−
qs

ℓ

)

=
1

4qs(n + 1)

thanks to the choice of ℓ = 2qs. ⊓⊔

4.2 Anonymity

The following theorem states the signer’s privacy in a weaker sense than def-
inition 3: verification queries are indeed disallowed throughout the game. The
proof follows ideas from [34] and is detailed in the full version of the paper.

Theorem 2. If an attacker D is able to (t, qs, 0, ε)-break the anonymity, there
is an algorithm B that (t′, ε′)-breaks the DBDH assumption where

ε′ ≥
ε

32qs(n + 1)
t′ ≤ t + O(qsτm + ε−2 ln(ε−1)µ−1 ln(µ−1))

where τm denotes the cost of a scalar multiplication in G.

The next section shows a variant of our scheme where the anonymity property
holds in the strong sense of definition 3.

Remark 1. In [25], Lipmaa, Wang and Bao identified a new security requirement
for designated verifier signatures: the non-delegability. This means that neither
the signer nor the designated verifier should be able to produce a “meta-key”
which allows to generate new signatures without revealing their secret. Even if
this requirement is debatable, our scheme is delegatable (for instance the verifier
can publish αV P ′). As suggested in [33], delegability is inherent to all UDVS.

5 Avoiding the gap assumption

In this section, we modify our scheme to obtain a variant which is strongly un-
forgeable under a weaker assumption. This version is obtained using the generic
construction of Boneh, Shen and Waters [9] that makes strongly unforgeable any
weakly unforgeable signature of some particular kind.

As in [9], we assume that group elements have unique encoding as the scheme
would not be strongly unforgeable otherwise.

– UDVS.Σ.Setup is as in section 3 except that it additionally selects a generator
Q R← G. Hash function h is also replaced by a collision-resistant family [H]κ of
hash functions Hκ : {0, 1}∗ → {0, 1}n indexed by keys κ ∈ K. Public parame-
ters consist of params := {n, q, G, H, e, P, P ′, Q, U ′, U1, . . . , Un, F, [H]κ,K}.



– UDVS.Σ.KeyGen: a signer’s private key is a random αS
R← Z

∗
q ; his public key

is made of a group element PS = αSP and a key κ ∈ K.

– UDVS.Σ.Sign: given a message M ∈ {0, 1}∗,

1. Pick at random r, s R← Z
∗
q and set σ2 = rP ∈ G.

2. Compute t = Hκ(M ||σ2) ∈ {0, 1}n and view it as an element of Zq.
3. Compute m = Hκ(tP + sQ) ∈ {0, 1}n.
4. Compute σ1 = αSP ′ + rF (m) ∈ G.

The signature is σ = (σ1, σ2, s) = (αSP ′ + rF (m), rP, s)

– UDVS.Register is as in section 3.

– UDVS.Σ.Verify: given an ordinary signature σ = (σ1, σ2, s) on M ,

1. Set t = Hκ(M ||σ2) ∈ {0, 1}n and view it as an element of Zq.
2. Compute m = Hκ(tP + sQ) ∈ {0, 1}n and accept if and only if

e(σ1, P ) = e(PS , P ′)e(σ2, F (m))

– UDVS.VKeyGen is as in section 3.

– UDVS.Designate: to designate a signature σ = (σ1, σ2, s) for a verifier V , a
signature holder turns it into σ̃ = (σ̃1, σ2, s) with σ̃1 = e(σ1, PV ).

– UDVS.DVerify: given a purported signature (σ̃1, σ2, s) on M , the verifier
computes t = Hκ(M ||σ2) (which is viewed as an element of Zq), m =
Hκ(tP + sQ) ∈ {0, 1}n and checks whether σ̃1 = e(PS , P ′)αV e(σ2, F (m))αV

5.1 Security

The present construction has a security proof under the Bilinear Diffie-Hellman
assumption which is deemed reasonable by now. However, its strength does not
depend on how many signing or verification requests are allowed to adversaries
whatsoever. This is a noticeable improvement over [33, 35] and the scheme of
section 3. The proof uses a technique which goes back to Ogata et al. [22] who
showed how to avoid gap assumptions in the security proof [28] of a variant of
the Chaum-van Antwerpen undeniable signature [12].

Theorem 3. If a forger F can (t, qs, qv, ε)-break the strong unforgeability, there
exits an algorithm B that (t′, ε′)-breaks the BDH assumption where

ε′ ≥
ε

12qs(n + 1)(qv + 1)
t′ ≤ t + O((qs + qv)τm + qvτp)

and τm, τp stand for the same quantity as in theorem 1.

The key idea is that, unless the scheme is not strongly existentially unforgeable,
all verification queries necessarily involve signatures that were obtained from
signing oracles or that are invalid. The simulator’s strategy is to guess which
verification query involves a forged signature and reject signatures involved in
all other queries. Such a proof strategy does not apply to our first UDVS scheme
where signatures obtained from a signing oracle may be publicly turned into
other signatures on the same messages.



Proof. Algorithm B combines the technique of [9] with a strategy introduced
in [22] to prove the security of a variant of the Chaum-van Antwerpen [12]
undeniable signature under the CDH assumption. In the simulation, B maintains
a history LS of all signing queries and their outputs. Whenever F asks for a plain
signature, B also computes and stores in LS the unique (recall that designation
is deterministic) matching designated signature for the target verifier PV ⋆ .

As in theorem 1 of [9], the forger makes her signing queries on messages
M1, . . . ,Mqs

that result in a list of triples ( ˜σi,1, σi,2, si) for i = 1, . . . , n. Let
ti = Hκ(Mi||σ2,i) and wi = tiP + siQ. Let also 〈M⋆, (σ̃1

⋆, σ⋆
2 , s⋆)〉 be the fake

designated signature produced by F and t⋆ = Hκ(M⋆||σ⋆
2), w⋆ = t⋆P + s⋆Q.

Just like the proof of theorem 1 in [9], we distinguish three kinds of forgeries:

Type I: a forgery with w⋆ = wi and t⋆ = ti for some i ∈ {1, . . . , qs}.
Type II: a forgery with w⋆ = wi and t⋆ 6= ti for some i ∈ {1, . . . , qs}.
Type III: a forgery for a new element w⋆ 6= wi for any i ∈ {1, . . . , qs}.

A successful forger comes with a forgery of Type I, Type II or Type III and B
has to guess which kind of forger F will be at the outset of the simulation.

In all cases, F is allowed making up to qv verification queries on triples σ̃j =
( ˜σj,1, σj,2, s) which are likely to be designated signatures intended to the target
verifier V ⋆ and bearing the name of the target signer S⋆. The main difficulty
for B is to deal with those queries without resorting to a decision oracle. For
convenience, F ’s forgery is viewed as her qv +1th query to the verification oracle.
A verification request (Mj , σ̃j), with j ∈ {1, . . . , qv + 1}, is called special if σ̃j is
a valid signature on Mj for signer S⋆ and designated verifier V ⋆ and if it does
not appear in B’s history LS of signing queries. Clearly, a special verification
query is a breach (which is assumed to occur at least once in a real attack) in
the strong unforgeability property. Before the simulation starts, B has to guess
the index j⋆ ∈ {1, . . . , qv + 1} of the first special query.

Upon reception of a verification query (Mj , σ̃j), B distinguishes two cases

- if j < j⋆, B declares the signature as ‘invalid’ if (Mj , σ̃j) does not appear in
the history LS . Otherwise, it returns ‘valid’.

- if j = j⋆, B aborts if (Mj⋆ , σ̃j⋆) appears in LS (which means that B failed to
guess the index of the first special query). Otherwise, B halts and bets that
(Mj⋆ , σ̃j⋆) is indeed an existential forgery of either Type I, Type II or Type
III . In this desired event, the BDH solution is extracted as explained below.

If signing queries are correctly answered, a sufficient condition for B to perfectly
simulate the verification oracle is to correctly guess the index j⋆ of the first
special verification request. This obviously happens with probability 1/(qv + 1).

We now explain how B solves a BDH instance (aP, bP, cP ) using F . It first
chooses cmode ∈ {1, 2, 3} in an attempt to foresee which kind of forger F will be.

- If cmode = 1, B bets on a Type I forgery which is easily seen to break
the collision-resistance of [H]κ. A random key k ∈ K is chosen by B that
generates the remaining public key components following the specification



of the protocol. All queries are dealt with using the relevant private ele-
ments. When F outputs a forgery 〈M⋆, σ̃⋆ = (σ̃⋆

1 , σ⋆
2 , s⋆)〉, we have t⋆ =

Hκ(M⋆||σ⋆
2) = Hκ(Mi||σi,2) = ti and w⋆ = t⋆P + s⋆Q = tiP + siQ = wi

for some i ∈ {1, . . . , qs}. Hence, we must also have s⋆ = si. Assuming that
M⋆||σ⋆

2 = Mi||σi,2, we should have σ̃⋆
1 6= σ⋆

i,1 (as σ̃⋆ would not be a forgery
otherwise) which is impossible as σ̃1

⋆ is uniquely determined by t⋆, σ⋆
2 and

s⋆ if σ̃⋆ is valid. Therefore, we have a collision Hκ(M⋆||σ⋆
2) = Hκ(Mi||σi,2)

with M⋆||σ⋆
2 6= Mi||σi,2.

- If cmode = 2, B expects a Type II forgery and prepares public parameters
with Q = aP being part of the input of its BDH instance. The other public
parameters and public key components are generated following the protocol.
All adversarial queries are answered using the relevant private keys. As F
comes with her forgery 〈M⋆, σ̃⋆ = (σ̃⋆

1 , σ⋆
2 , s⋆)〉, we have w⋆ = t⋆P + s⋆Q =

tiP + siQ = wi with t⋆ = Hκ(M⋆||σ⋆
2) 6= Hκ(Mi||σi,2) = ti. This allows B

to extract a = (ti − t⋆)/(s⋆ − si) and thereby solve the BDH problem by
computing e(bP, cP )a.

- If cmode = 3, B expects a forgery on a new “message” w⋆ and proceeds in
the same way as the simulator of theorem 1.

When assessing B’s advantage, we already observed that it correctly guesses
the index of the first special verification query with probability 1/(qv + 1). As
it succeeds in foresee the right kind of forgery with probability 1/3, the lower
bound on its advantage easily follows from theorem 1. ⊓⊔

Strong unforgeability also implies a provable anonymity in the strict sense of
definition 3. The proof of the following theorem is very similar to the one of
theorem 2. By virtue of strong unforgeability, all verification queries pertain
to designated signatures that are either invalid or that result from a signing
query. Hence, for each verification query, the simulator just has to compare the
candidate signature to those it returned when dealing with signing queries.

Theorem 4. If an attacker D can (t, qs, qv, ε)-break the anonymity, there is an
algorithm B that (t′, ε′)-breaks the DBDH assumption where

ε′ ≥
ε

32qs(n + 1)
t′ ≤ t + O(qsτm + qvτp + ε−2 ln(ε−1)µ−1 ln(µ−1))

where τm, τp denotes the same quantity as in theorem 1.

6 Conclusion

We proposed the first UDVS schemes which are secure under reasonable com-
plexity assumptions in the standard model where our constructions are also the
only ones to achieve anonymity in the sense of [23].

The next table compares our two schemes with other secure systems in the
standard model. Our constructions appear to be competitive with [33,35]. Their
main drawback remains the size of public parameters. We leave open the prob-
lem of finding UDVS schemes that are secure under mild assumptions in the
standard model without using large public parameters. A trick independently
suggested in [11,26] allows for a step towards this purpose.



Schemes [ZFI05] [Ver06] Scheme 1 Scheme 2

Assumptions p-SDH + KEA p-SDH + KEA wGBDH BDH

Sign 1 expG1
1 expG1

2 expG1
4 expG1

Verify 1 P + 1 m-expG2
1 P + m-expG2

1 PP† + 1 expG2
1 PP† + 1 expG2

Designate 1 P + 2 expG2
3 expG1

1 P 1 P
DVerify 2 P + 2 expG2

2 PP + 1 m-expG2
1 P + 1 expG2

1 P + 1 expG2

Size 320 320 320 480
DSize 2400⋆ 640 480⋆ 640⋆

P: pairing operation, PP: product of 2 pairings, m-exp: multi-exponentiation with 2 exponents

(†) In both of our schemes, we assume that e(PS , P ′) is stored as part of the signer’s public key.

(⋆) These sizes can be obtained using asymmetric pairings and curves of embedding degree 12 [3]

with compression [2].
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A Waters’s Signature Scheme

This section recalls the description of Waters’s signature [34] which is exis-
tentially unforgeable under the Diffie-Hellman assumption in pairing-friendly
groups.

– KeyGen: this algorithm chooses groups (G, H) equipped with a bilinear map
e : G×G→ H, and a collision-resistant hash function h : {0, 1}∗ → {0, 1}n. A
secret integer α R← Z

∗
q is picked at random, as well as three random elements

P , P ′ and U of G and a random n-tuple U = (U1, . . . , Un) ∈ G
n. The public

key is then (P, P ′, PS , U ′, U) with PS = αP . The secret key is α.

– Sign: let m = h(M), for a message M ∈ {0, 1}∗, m = m1 . . . mn, with
mi ∈ {0, 1} for all i ∈ {1, . . . , n}, andM be the set of indexes i ∈ {1, . . . , n}
s.t. mi = 1. A signature of M is produced by choosing r R← Z

∗
q and setting

σ = (σ1, σ2) with σ1 = αP ′ + r(U ′ +
∑

i∈M Ui) and σ2 = rP .

– Verify: a purported signature σ on M is accepted if on only if e(σ1, P ) =
e(PS , P ′)e(σ2, U

′ +
∑

i∈M Ui).

The disadvantage of the scheme is the length of the public key which con-
tains more than 160 group elements for typical parameters. However, the vector
(U ′, U1, . . . , Un) can come from a common reference string and be shared by
several signers in a system.

B Proof of Theorem 2

Algorithm B is fed with the description of a group G together with a generator
P and a tuple (aP, bP, cP, h) ∈ G

3 × H. It has to decide if h = e(P, P )abc. To
do so, it performs a simulation which is quite similar to the one in the security
proof of Waters’s scheme [34].

Setup: The preparation phase is proceeds almost exactly as in theorem 1. More
precisely, B sets P ′ = cP but it defines verifier and signers’ public keys as
PV = bP , PS,0 = (aP )+ρ0P and PS,1 = (aP )+ρ1P respectively for random

values ρ0, ρ1
R← Z

∗
q . Another difference lies in the optimal value of ℓ which is

set to ℓ = 4qs. All group elements U ′, U1, . . . , Un are chosen as in the proof
of theorem 1.

Signing queries: as in the proof of theorem 1, the simulator aborts if a sign-
ing query is made on a message m = h(M) for which J(m) = 0 mod q.
Otherwise, a valid signature can be computed on all messages m for which
J(m) 6= 0 mod q. If the signature is requested for signer PS,b, with b ∈ {0, 1},

B picks r R← Zq and computes

σ = (σ1, σ2) =

(

−
K(m)

J(m)
(aP ) + rF (m) + ρbP

′,−
1

J(m)
(aP ) + rP

)

.



If we define r̃ = r − a/J(m), σ is a correct as

σ1 = −
K(m)

J(m)
(aP ) + rF (m) + ρbP

′

= −
K(m)

J(m)
(aP ) + r̃F (m) +

a

J(m)
(J(m)P ′ + K(m)P ) + ρbP

′

= (a + ρb)P
′ + r̃F (m)

and σ2 = (r − a/J(m))P = r̃P . The resulting signature is then passed to
the public designation procedure.

Challenge: after a number of queries, F enters the challenge phase and outputs
a message m⋆ = h(M⋆) on which he wants to be challenged. At that point,
B halts and reports “failure” if J(m⋆) 6= 0 mod q. Otherwise, F (m⋆) =
K(m⋆)P and B flips a fair coin b⋆ ∈ {0, 1}. It returns the challenge σ̃⋆ =
(σ̃⋆

1 , rP ) where

σ̃1
⋆ = h · e(cP, bP )ρb⋆ · e(K(m⋆)rP, bP )

and σ⋆
2 = rP for a randomly chosen r R← Z

∗
q . Observe that, if h = e(P, P )abc,

we have

σ̃1
⋆ = e(acP, bP ) · e(ρb⋆P ′, bP ) · e (K(m⋆)rP, bP )

= e ((a + ρb⋆)P ′ + rK(m⋆)P, bP )

= e ((a + ρb⋆)P ′ + rF (m⋆), bP )

and σ̃⋆ appears as a valid designated signature bearing the name of signer
PS,b⋆ . In contrast, if h is random in H, σ̃⋆ is independent of the bit b⋆.

Guess: after another series of queries, D outputs a bit b ∈ {0, 1}.

Artifical abort: at this point, the simulator cannot directly use the adver-
sary’s output as the latter’s probability of success could be correlated with
the probability that the simulator needs to abort. This is due to the fact
that two distinct sets of qs signing queries may cause an abort with differ-
ent probabilities. The simulator corrects this by imposing all possible sets of
queries to cause an abort of the simulation with (almost) the same proba-
bility 1− µ which is a lower bound on any set of signing queries causing an
abort before the guess stage.

Let
−→
M = m1, . . . ,mqs

denote messages that are input of signing queries in
phases 1 and 2. Let m⋆ = h(M⋆) be the challenge message (all these values
are defined at this step of the simulation). If X ′ is a set of simulation values

x′, x1, . . . , xn ∈ Zℓ, we define the function ϕ(X ′,
−→
M,m⋆) as

ϕ(X ′,
−→
M,m⋆) = 0 if (

qs
∧

i=1

J(mi) 6= 0 mod ℓ) ∧ J(m⋆) = 0 mod q

1 otherwise



which evaluates to 0 if signing and challenge queries do not cause the simu-
lation to abort for a given choice X ′ of simulation values. For a given set of

queries (
−→
M,m⋆), we consider the following probability over the simulation

values η = Pr[ϕ(X ′,
−→
M,m⋆) = 0].

In order to compute an estimation η′ of η, the simulator has to sample
O(ε−2 ln(ε−1)µ−1 ln(µ−1)) times the probability η by choosing a random X ′

and evaluating ϕ(X ′,
−→
M,m⋆) (the sampling does not require to run the ad-

versary again). Let µ = 1
8nqS

denote a lower bound on the probability of not

aborting for any set of queries (we refer to Waters’s proof [34] for details on
how to calculate µ). If η′ ≥ µ, the simulator artificially aborts with probabil-

ity η′−µ
η′

(and not abort with probability λ
η′

) and produces a random guess

β′ R← {0, 1}.

Output: If B did not abort, it returns β′ = 1 (meaning that its input is a valid
BDH tuple) if b = b⋆. Otherwise, it bets being in front of a random tuple
and returns β′ = 0.

This completes the description of the simulation. We refer to [34] for a complete
analysis of the bounds of the reduction. ⊓⊔


