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Abstract. Structure-preserving cryptography is a world where mes-
sages, signatures, ciphertexts and public keys are entirely made of el-
ements of a group over which a bilinear map is efficiently computable.
While structure-preserving signatures have received much attention the
last 6 years, structure-preserving encryption schemes have undergone
slower development. In particular, the best known structure-preserving
cryptosystems with chosen-ciphertext (IND-CCA2) security either rely
on symmetric pairings or require long ciphertexts comprised of hundreds
of group elements or do not provide publicly verifiable ciphertexts. We
provide a publicly verifiable construction based on the SXDH assumption
in asymmetric bilinear groups e : G× Ĝ→ GT , which features relatively
short ciphertexts. For typical parameters, our ciphertext size amounts
to less than 40 elements of G. As a second contribution, we provide
a structure-preserving encryption scheme with perfectly randomizable
ciphertexts and replayable chosen-ciphertext security. Our new RCCA-
secure system significantly improves upon the best known system featur-
ing similar properties in terms of ciphertext size.

Keywords. Structure-preserving encryption, chosen-ciphertext security,
RCCA security, public ciphertext verifiability.

1 Introduction

Structure-preserving cryptography is a paradigm where handled objects all live
in discrete-log-hard abelian groups over which a bilinear map is efficiently com-
putable. The structure-preserving property allows for a smooth interaction of the
considered primitives with Groth-Sahai (GS) proof systems [36], making them
very powerful tools for the modular design of privacy-preserving cryptographic
protocols [3, 8, 16,17,19,27,32,37,44,51].

In structure-preserving signatures (SPS) [6, 8], messages, signatures, public
keys all live in the source groups (G, Ĝ) of a bilinear map e : G× Ĝ→ GT . The
roots of SPS schemes can be traced back to the work of Groth [34], which initi-
ated a line of work seeking to obtain short signatures [4–6,23,40,45], security un-
der standard assumptions [4,18,24,37,40,45], tight security proofs [5,37] or lower



bounds [1,7]. Beyond signatures, structure-preserving cryptography was also de-
veloped in the context of commitment schemes [6,9,10,35,42], public-key [5,16]
and identity-based encryption [41,52] as well as in deterministic primitives [2].

Structure-preserving encryption. Camenisch et al. [16] came up with the
first chosen-ciphertext-secure (IND-CCA2) structure-preserving public-key en-
cryption scheme. Structure-preserving CCA2 security is motivated by appli-
cations in the realization of oblivious third parties protocols [20] or proofs of
knowledge of leakage-resilient signatures [28]. Among the use cases of structure-
preserving CCA-secure encryption, [16] mentions various settings where a user,
who has a ciphertext and a Groth-Sahai proof of its well-formedness, wants to
convince a third party that it is in possession of such a ciphertext without reveal-
ing it. Structure-preserving encryption also allows two users to jointly compute
an encryption (of a function) of two plaintexts such that neither player learns
the plaintext of the other player and only one of them obtains the ciphertext.

As pointed out in [16], structure-preserving encryption should make it pos-
sible to efficiently and non-interactively prove possession of a valid ciphertext,
which rules out the use of standard techniques – like hash functions [26] or or-
dinary (i.e., non-structure-preserving) one-time signatures [21,29,50] – that are
typically used to achieve chosen-ciphertext security [49] in the standard model.
In particular, the original Cramer-Shoup cryptosystem [26] does not provide the
sought-after structure-preserving property and neither do direct applications of
the Canetti-Halevi-Katz paradigm [21]: for example, merely combining Kiltz’s
tag-based encryption [39] with a one-time SPS does not work as the security
proof of [39] requires (hashed) verification keys to be encoded as exponents.
Nevertheless, Camenisch et al. [16] managed to twist the design principle of
Cramer-Shoup [26] so as to obtain a variant of the scheme that only resorts
to algebraic operations when it comes to tying all ciphertexts components alto-
gether in a non-malleable manner.

While efficient and based on the standard Decision Linear assumption [14],
the initial construction of [16] still suffers from certain disadvantages. In the first
variant of their scheme, for example, one of the ciphertext components lives in
the target group GT of a bilinear map e : G× Ĝ→ GT which complicates its use
in applications requiring to prove knowledge of a ciphertext: recall that Groth-
Sahai proofs require witnesses to live in the source group of a bilinear (i.e., they
need strictly structure-preserving components in the sense of [9]). While Ca-
menisch et al. [16] suggested a technique of moving all ciphertext components
to the source groups in their scheme, this is only known to be possible using
symmetric bilinear groups (where G = Ĝ) as it relies on the one-sided pairing
randomization technique of [8]. Another limitation of [16] is that, analogously to
the original Cramer-Shoup system [26], valid ciphertexts (i.e., which lie in the
range of the legitimate encryption algorithm) are not publicly recognizable. As a
result, only the sender of a ciphertext (who knows the random encryption coins)
can generate a proof that this particular ciphertext is indeed a valid ciphertext
without revealing it. Ideally, any ciphertext observer should be able to commit
to that ciphertext and prove statements about it without any interaction with
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the sender, which would be possible with publicly verifiable ciphertexts.
Abe et al. [5] provided several constructions of structure-preserving CCA2-

secure encryption with publicly verifiable ciphertexts. On the downside, their
solutions incur substantially longer ciphertexts than [16]: under the Decision
Linear assumption, the most efficient solution of [5] entails 321 group elements
per ciphertext. Moreover, it was only described in terms of symmetric pairings.

In addition, symmetric pairings have become significantly less efficient (see,
e.g., [31]) as the use of small-characteristic fields is now considered insecure [11].
This motivates the search for efficient structure-preserving CCA2-secure systems
which provide shorter ciphertexts and can operate in asymmetric pairings.

Our Contributions. We provide a new CCA2-secure structure-preserving en-
cryption scheme wherein the validity of ciphertexts is publicly verifiable and
ciphertexts only consist of 16 elements of G and 11 elements of Ĝ. By “public
verifiability”, we mean that ciphertexts which are rejected by the decryption al-
gorithm should be recognizable given the public key. While stronger definitions
of verifiability could be used4, this notions suffices to ensure confidentiality in
settings – like threshold decryption [13, 46, 54] – where potentially harmful de-
cryption queries should be publicly detectable. In particular, our first scheme
readily implies a CCA2-secure structure-preserving cryptosystem that enables
threshold decryption in the adaptive corruption setting.

In our first scheme, the ciphertext size amounts to 38 elements of G assuming
that each element of Ĝ has a representation which is twice as large as the rep-
resentation of G elements. The security is proved under the standard symmetric
eXternal Diffie-Hellman (SXDH) assumption [53] in asymmetric bilinear maps.

As a second contribution, we provide a different structure-preserving cryp-
tosystem which features perfectly re-randomizable ciphertexts and replayable
chosen-ciphertext (RCCA) security. As defined by Canetti, Krawczyk and Nielsen
[22], RCCA security is a meaningful relaxation of CCA2 security that tolerates
a “benign” form of malleability: namely, anyone should be able to randomize
a given ciphertext into another encryption of the same plaintext. Under the
SXDH assumption, our construction features statistically randomizable cipher-
texts which only consist of 34 elements of G and 18 elements of Ĝ. Under the
same5 assumption, the best known RCCA-secure realization thus far was the
scheme of Chase et al. [25] which costs 49 elements of G and 20 elements of Ĝ.

Our techniques. Our structure-preserving CCA2 secure cryptosystem builds
on a public-key encryption scheme suggested by Libert and Yung [46], which is
not structure-preserving in its original form. Our starting observation is that,
unlike Kiltz’s tag-based encryption scheme [39], the security proof of [46] does
not require to interpret one-time signature verification keys as exponents. The

4 For example, we could additionally require that all ciphertexts outside the range of
the decryption algorithm are rejected by the decryption procedure.

5 The authors of [25] only described a construction from the DLIN assumption with
93 elements per ciphertext. Their approach extends to the SXDH assumption and
happens to provide structure-preserving schemes.
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construction of [46] is obtained by tweaking the Cramer-Shoup paradigm [26]
and replacing the designated verifier NIZK proofs of ciphertext validity by a
universally verifiable Groth-Sahai proof. In order to obtain publicly verifiable
proofs with the desired security property called simulation-soundness [50], the
authors of [46] used Groth-Sahai common reference strings (CRSes) which de-
pend on the verification key of a one-time signature. In the security proof, the
key idea was to enable the simulation of fake NIZK proofs of ciphertext validity
while making it impossible for the adversary to create such a fake proof himself.
In Groth-Sahai proofs, this can be achieved by programming the Groth-Sahai
CRSes in such a way that they form a linear subspace of dimension 1 in the
challenge ciphertext whereas adversarially-generated ciphertexts involve CRSes
of dimension 2 (which are perfectly sound CRSes).

We build on the observation that the approach of [46] still works if one-time
verification keys consist of group elements instead of exponents. One difficulty
is that we need one-time signature verification keys comprised of a single group
element while the best known one-time SPS [6] have longer verification keys. Our
solution is to “hash” the one-time verification keys of [6] in a structure-preserving
manner. For this purpose, we apply a strictly structure-preserving commitment
scheme proposed by Abe et al. [10] as if it was a chameleon hash function: namely,
we replace the hash value by a commitment to the one-time verification key while
the corresponding de-commitment information is included in the ciphertext. One
caveat is that [10] considers a relaxed security notion for strictly structure-
preserving commitments, called chosen-message target collision-resistance, which
appears insufficient for our purposes. We actually need a stronger notion, called
enhanced chosen-message target collision-resistance (ECM-TCR), where the ad-
versary should also be able to come up with a different opening to the same
message for a given commitment. Fortunately, we can prove that the strictly
structure-preserving commitment of [10] does provide ECM-TCR security under
the SXDH assumption.

The security proof of our construction addresses another technical hurdle
which arises from the fact that ciphertexts contain elements from both sources
groups G and Ĝ. Directly adapting the security proof of [46] would require to
sign all elements of G and Ĝ that are contained in the ciphertext, which would
require a one-time SPS where messages contain elements of both groups (G, Ĝ).
While such schemes exist [4], they are less efficient than one-time SPS schemes
for unilateral messages. Our solution to this problem is to modify the security
proof of Libert and Yung [46] in such a way that not all ciphertexts components
have to be signed using the one-time signature. In short, we leverage the fact
that only Groth-Sahai commitments have to live in the group Ĝ: proof elements
and other components of the ciphertext can indeed dwell in G. In GS com-
mitments for linear multi-exponentiation equations, we notice that Groth-Sahai
commitments are uniquely determined by the proof elements and the statement.
For this reason, even if the adversary tampers with the GS commitments of the
challenge ciphertext, it will be unable to create another ciphertext that will be
accepted by the decryption oracle. This saves us from having to one-time-sign
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the Groth-Sahai commitments in the encryption algorithm, which is the reason
why we only need such a system for unilateral messages.

Our construction of RCCA-secure encryption extends the ideas of Chase et
al. [25]. In a nutshell, the RCCA-secure scheme of [25] combines a semantically
secure encryption scheme and a randomizable witness indistinguishable proof of
a statement of the form “Either I know the plaintext OR a signature of a ci-
phertext that this ciphertext is a randomization of”. Our construction proceeds
in an analogous way by demonstrating a statement of the form “Either I know
the plaintext OR this ciphertext is a randomization of the challenge ciphertext”.

In a high level, for the two branches of the statement we rely on proofs which
nicely share a common structure to optimize our OR-proof. On the one hand,
for the knowledge of the plaintext we use a quasi-adaptive NIZK (QA-NIZK)
proof, which are NIZK proofs introduced by [38] where the CRS may depend
on the specific language for which proofs have to be generated. Our QA-NIZK
is built from the one-time structure-preserving linearly homomorphic signature
(LHSPS) of Libert, Peters, Joye and Yung [42]. On the other hand, for the one-
time signature we use the strongly unforgeable one-time SPS of Abe et al. [5]
that we make re-randomizable thanks to LHSPS. These tools allows to combine
some of the verification equations for which Groth-Sahai proofs of satisfiability
are included in ciphertexts.
Related Work. Several different approaches [15, 30, 47, 48] were taken to rec-
oncile chosen-ciphertext-security and homomorphism. Relaxed flavors of chosen-
ciphertext security [22] opened the way to perfectly randomizable encryption
schemes offering stronger guarantees than just semantic security. Groth de-
scribed [33] a weakly RCCA secure variant of Cramer-Shoup which only encrypts
messages in a bit-by-bit manner. Prabhakaran and Rosulek [47] showed how to
more efficiently encrypt many bits at once in a RCCA-secure realization from
the DDH assumption. While their solution features shorter ciphertexts than our
RCCA-secure scheme, it is not structure-preserving as it cannot be readily in-
stantiated in groups with a bilinear maps. On the other hand, unlike our scheme
and the one of [25], it allows re-randomizing ciphertexts without knowing under
which public key they were encrypted.

Prabhakaran and Rosulek subsequently generalized the RCCA security no-
tion [22] into a model [48] of homomorphic encryption that only supports a
limited form of malleability. Boneh, Segev and Waters [15] took a different ap-
proach aiming for restricted malleability properties. Chase et al. [25] considered
a modular design of HCCA-secure encryption [48] based on malleable proof
systems. Their proposals turn out to be the only known HCCA/RCCA-secure
structure-preserving candidates thus far.

2 Background and Definitions

2.1 Hardness Assumptions
We consider groups (G, Ĝ,GT ) of prime-order p endowed with a bilinear map
e : G× Ĝ→ GT .
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Definition 1. The Diffie-Hellman problem (DDH) in G, is to distinguish
the distributions (g, ga, gb, gab) and (g, ga, gb, gc) with a, b, c

R← Zp. The Diffie-
Hellman assumption asserts the intractability of DDH for any PPT distinguisher.

In the asymmetric setting (G, Ĝ,GT ), we consider the SXDH assumption, which
posits that the DDH assumption holds in both G and Ĝ.

Definition 2. The Double Pairing problem (DP) in (G, Ĝ,GT ) is, given
a pair of group elements (ĝz, ĝr) ∈ Ĝ2, to find a non-trivial triple (z, r) ∈
G2\{(1G, 1G)} such that e(z, ĝz) · e(r, ĝr) = 1GT

.

It is known [8] that the DP assumption is implied by the DDH assumption
in G. By exchanging the roles of G and Ĝ in the definition of DP, we obtain a
variant of the assumption which implies the hardness of DDH in Ĝ.

2.2 One-Time Structure-Preserving Signatures

Structure-preserving signatures (SPS) [6, 8] are signature schemes where mes-
sages and public keys all consist of elements of a group over which a bilinear
map e : G × Ĝ → GT is efficiently computable. Constructions based on simple
assumptions were put forth in [4, 5].

In the forthcoming sections, we will rely on one-time SPS schemes.

Definition 3. A one-time signature scheme is a tuple of efficient algorithms
OT S = (Setup,KeyGen,Sign,Verify) where:

Setup(λ) : This algorithm takes as input a security parameter λ and generates
the public parameters PP for the scheme.

KeyGen (PP) : This algorithm takes as input PP and generates a one-time secret
key osk and a one-time verification key ovk.

Sign(PP, osk,M) : Given as input (PP, osk) and a message M , this algorithm
produces a signature σ for M .

Verify(PP, ovk,M , σ) : The verification algorithm takes (PP, ovk,M , σ) and re-
turns 1 or 0.

Correctness mandates that, for any λ ∈ N, any PP ← Setup(λ), any pair
(osk, ovk)← KeyGen(PP), we have Verify(PP, ovk,M ,Sign(PP, osk,M)) = 1 for
any message M .

In addition, a one-time signature is said structure-preserving if the compo-
nents of ovk, M and σ all live in the source groups (G, Ĝ) of a configuration
(G, Ĝ,GT ) of bilinear groups.

Definition 4. A one-time signature scheme OT S = (Setup,KeyGen,Sign,Verify)
is strongly unforgeable against chosen message attack (SUF -CMA) if

AdvSUF -CMA
OTS,A = Pr

 (m?, σ?) 6∈ QSignOT∧
Verify(ovk,m?, σ?) = 1

∣∣∣∣∣∣
PP← Setup(1λ)
(ovk, osk)← KeyGen(PP)
(m?, σ?)← ASignOT

osk (·)(ovk)
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is negligible against any PPT adversary A. Here, SignOTosk (·) is a signing oracle
which allows the adversary to obtain a signature σm of only one message m for
which (m,σm) is stored in QSignOT .

We recall a construction of the one-time Structure-Preserving Signature scheme
which was proposed in [5].

Setup(λ) : Choose asymmetric bilinear groups (G, Ĝ,GT ) of prime order p > 2λ
and output PP = (G, Ĝ,GT ).

KeyGen(PP) : Generates the signing key osk and the verification key ovk using
the security parameter λ and the number n of messages to be signed.
1. Choose ĝz, ĝr, g

R← Ĝ.
2. For i = 1 to n, pick (χi, γi)

R← Z2
p and compute ĝi = ĝχi

z ĝ
γi
r .

3. Pick (ζ, ρ) R← Z2
p and compute Â = gζz · gρr .

4. Set osk = ({(χi, γi)}ni=1, ζ, ρ) ∈ G2n+2 and

ovk = (ĝz, ĝr, {ĝi}ni=1, Â) ∈ Ĝn+3.

Sign(osk,M = (M1, . . . ,Mn)) : In order to signM = (M1, . . . ,Mn) ∈ Gn, com-
pute z = gζ

∏n
i=1M

χi

i and r = gρ
∏n
i=1M

γi

i . Output σ = (z, r).
Verify(ovk,M = (M1, . . . ,Mn), σ = (z, r)) : Return 1 if and only if the following

equations are satisfied: e(z, ĝz) · e(r, ĝr) = e(g, Â) ·
∏n
i=1 e(Mi, ĝi).

2.3 Partial One-time Signature

A special case of the one-time signature presented in Section 2.2 is called Partial
One-Time Signature (POTS) [12]. In a such scheme, part of the verification key
can be re-used in multiple signatures and the remaining part must be refreshed
at every signature generation.

Definition 5. A partial one-time signature (POTS) scheme is a tuple of algo-
rithms POTS = (Setup,KeyGen,OKeyGen,Sign,Verify).

Setup(λ) : The setup algorithm takes as input a security parameter λ and gen-
erates the public parameters PP for the scheme.

KeyGen(PP) : The key generation algorithm takes as input the public parame-
ters PP and generates the long-term signing key sk and long-term verification
key vk.

OKeyGen(PP) : The key generation algorithm takes PP and generates the one-
time signing key osk and the one-time verification key ovk.

Sign(PP, sk, osk,M) : The signature algorithm uses the (PP, osk) to produce a
valid signature σ for the message vector M .

Verify(PP, vk, ovk,M, σ) : The verification algorithm takes (PP, vk, ovk,M , σ)
and returns 1 or 0.
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Correctness requires that, for any PP ← Setup(λ), (sk, vk) ← KeyGen(PP)
and (osk, ovk)← OKeyGen(PP), the partial one-time signature scheme is correct
if and only if Verify(PP, vk, ovk,M ,Sign(PP, sk, osk,M)) = 1.

We focus on the strong unforgeability against one-time chosen-message attack
of our POTS.
Definition 6. A POTS scheme POTS = (Setup,KeyGen,OKeyGen,Sign,Verify)
is strongly unforgeable against one-time chosen-message attack (or OT-CMA se-
cure) if:

AdvOT -SU-CMA
POTS,A (λ)

= Pr

∃ (m′, σ′) s.t. (ovk?, σ′,m′) ∈ Q
∧ (ovk?, σ?,m?) 6∈ Q
∧ Verify(vk, ovk?,m?, σ?) = 1

∣∣∣∣∣∣
PP← Setup(1λ)
(vk, sk)← KeyGen(PP)
(ovk?, σ?,m?)← AOsk(PP, vk)


is negligible for any PPT adversary A. Here, the signing oracle takes as input a
message m, generates (ovk, osk) ← OKeyGen(PP), σ ← Sign(sk, osk,m). Then,
it records (ovk,m) to Q and returns (σ, ovk).

Here, we recall an instantiation of the POTS scheme [4], which is strongly
unforgeable against the one-time chosen-message attack (SU-OTCMA) under
the DP assumption.
Setup(λ, `) : On input of a security parameter λ and an integer ` ∈ poly(λ), the

setup algorithm chooses a large prime p > 2λ, asymmetric groups (G, Ĝ,GT )
of prime order p, with a bilinear map e : G× Ĝ→ GT and the corresponding
generators (g, ĝ) ∈ G× Ĝ. The algorithm outputs

PP = (p,G, Ĝ,GT , e, g, ĝ, `).

KeyGen(PP) : Parse PP as (p,G, Ĝ,GT , e, g, ĝ, `). Choose wz
R← Z∗p and com-

pute gz ← gwz . For i ∈ {1, . . . , `}, choose χi
R← Zp and compute gi ← gχi .

Return

vk = (gz, g1, . . . , g`) ∈ G`+1 sk = (wz, χ1, . . . , χ`) ∈ Z`+1
p

OKeyGen(PP) : Parse PP, choose a← Zp, compute A← ga and output

ovk = A osk = a

Sign(sk, osk, M̂) : Parse M̂ as (M̂1, . . . , M̂`) ∈ Ĝ`. Parse sk and osk, choose
ζ

R← Z∗p,then compute and output

Ẑ = ĝζ R̂ = ĝa−ζwz
∏`
i=1M̂i

−χi
.

Verify(vk, ovk, M̂, σ) : Parse σ as (Ẑ, R̂) ∈ Ĝ2, M̂ as (M̂1, . . . , M̂`) ∈ Ĝ` and
ovk as A ∈ G. The algorithm returns 1 if the following equation holds:

e(A, ĝ) = e(gz, Ẑ) · e(g, R̂) ·
∏̀
i=1

e(gi, M̂i)

otherwise the algorithm returns 0.

8



2.4 One-Time Linearly Homomorphic Structure-Preserving
Signatures

Libert el. al. [42] considered structure-preserving with linear homomorphic prop-
erties (see Appendix B.1 for formal definitions). This section recalls the one-time
linearly homomorphic structure-preserving signature (LHSPS) of [42].

Keygen(λ, n): Given a security parameter λ and the dimension n ∈ N of the
subspace to be signed, choose bilinear group (G, Ĝ,GT ) of prime order p.
Then, choose ĝz, ĝr

R← Ĝ. For i = 1 to n, pick χi, γi
R← Zp and compute

ĝi = ĝz
χi ĝr

γi . The private key is defined to be sk = {(χi, γi)}ni=1 while the
public key is pk =

(
ĝz, ĝr, {ĝi}ni=1

)
∈ Ĝn+2.

Sign(sk, (M1, . . . ,Mn)): To sign a (M1, . . . ,Mn) ∈ Gn using sk = {(χi, γi)}ni=1,
output σ = (z, r) ∈ G2, where z =

∏n
i=1M

χi

i , r =
∏n
i=1,M

γi

i .
SignDerive(pk, {(ωi, σ

(i))}`
i=1): given pk as well as ` tuples (ωi, σ(i)), parse

σ(i) as σ(i) =
(
zi, ri

)
for i = 1 to `. Compute and return σ = (z, r), where

z =
∏`
i=1 z

ωi
i , r =

∏`
i=1 r

ωi
i .

Verify(pk, σ, (M1, . . . ,Mn)): Given a signature σ = (z, r) ∈ G2 and a vector
(M1, . . . ,Mn), return 1 iff (M1, . . . ,Mn) 6= (1G, . . . , 1G) and (z, r) satisfy

e(z, ĝz) · e(r, ĝr) =
n∏
i=1

e(Mi, ĝi).

The one-time security of the scheme (in the sense of Definition 9 in Appendix
B.1) was proved [42] under the DP assumption. In short, the security notion
implies the infeasibility of deriving a signature on a vector outside the subspace
spanned by the vectors authenticated by the signer. Here, “one-time” security
means that a given public key allows signing only one subspace.

We remark that the one-time structure-preserving signature of Section 2.2
can be seen as a special case of the above LHSPS scheme, in which we fix the
first element of the vector to be signed. The one-time security of this signature
scheme can be directly deduced from the security of the LHSPS scheme.

2.5 Strictly Structure-Preserving (Trapdoor) Commitments

In this section, we recall the notion of Chosen-Message Target Collision Trapdoor
Commitment as it was defined by Abe el. al. [10].

Definition 7. A non-interactive commitment scheme is a tuple of polynomial-
time algorithms {Setup,KeyGen,Commit,Verify} that:

Setup(λ): The parameter generation algorithm takes the security parameter λ
and outputs a public parameter PP.

KeyGen(PP): The key generation algorithm takes PP and outputs the commit-
ment key ck.

Com(PP, ck,m): The commitment algorithm takes (PP, ck) and a message m,
then it outputs a commitment com and an opening information open.
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Verify(PP, com,m, open) : The verification algorithm takes (PP, com,m, open)
and outputs 1 or 0.

In trapdoor commitment schemes, the Setup algorithm additionally outputs a
trapdoor tk which, on input of a message m and random coins r such that
c = Com(PP, ck,m; r), allows opening the commitment c to any message m′. In
our construction, we need a length-reducing commitment scheme which satisfies
a stronger notion of Chosen-Message Target Collision Resistance (CM-TCR)
than the one considered in [10, Definition 10].

Definition 8. A Commitment Scheme provides enhanced chosen-message
target collision-resistance (ECM-TCR) if the advantage

AdvECM-TCR
A (λ)

= Pr

∃(m†, open†) s.t. (com?,m†, open†) ∈ Q
∧ (com?,m?, open?) 6∈ Q
∧ Verify(ck, com?,m?, open?) = 1

∣∣∣∣∣∣
PP← Setup(1λ)
ck← KeyGen(PP)
(com?,m?, open?)← AOck(ck)


is negligible for any PPT adversary A. Here, Ock is an oracle that, given a
message m, executes (com, open) ← Com(PP, ck,m), records (com,m, open) in
Q and returns (com, open).

We note that Definition 8 captures a stronger requirement than the original
definition [10, Definition 10] in that the latter only requires that the adversary
be unable to open a target commitment com? to a different message than the
one queried to the oracle Ock. Here, the adversary is also considered successful
if it provides a different opening open? 6= open′ of com? to the same message
m? = m† as the one queried to Ock.

We now recall the Strictly Structure-Preserving Trapdoor Commitment of
Abe el. al. [10] and show that it actually satisfies our stronger notion of ECM-
TCR security.

TC.Setup(λ, `) : On input of a security parameter λ and an integer ` ∈ poly(λ),
the public parameters are generated by choosing a large prime p > 2λ,
asymmetric groups (G, Ĝ,GT ) of prime order p, with a bilinear map e :
G× Ĝ→ GT and group generators (g, ĝ) ∈ G× Ĝ. The algorithm outputs

PP = (p,G, Ĝ,GT , e, g, ĝ, `).

TC.KeyGen(PP) : For i = 1, . . . , `+ 2, choose ρi
R← Z∗p and compute

X̂i ← ĝρi ∀i ∈ {1, . . . , `+ 2}.

Output the commitment key ck := {X̂i}`+2
i=1 . Optionally, the algorithm may

output the trapdoor tk := {ρi}`+2
i .

TC.Commit(PP, ck,M) : To commit to M̂ = (M̂1, . . . , M̂`) ∈ Ĝ`, conduct the
following step.
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1. Generate a key pair (vkpots, skpots) for the partial one-time signature of
Section 2.3 . Namely, choose skpots

R← (wz, χ1, . . . , χ`) ∈ Z`+1
p and set

vkpots = (gz, g1, . . . , g`) = (gwz , gχ1 , . . . , gχ`) ∈ G`+1.

2. Choose a R← Zp and compute ovkpots = A = ga and oskpots = a.
3. Using skpots, generate a partial one-time signature on the message M̂

w.r.t. to the one-time secret key oskpots. To this end,
a. Pick ζ1 ∈ Zp.
b. Compute (Ẑ, R̂) ∈ Ĝ2 as a partial one-time signature of M̂ as

Ẑ = ĝζ1 R̂ = ĝa−ζ1wz

∏̀
i=1

M̂χi

i

4. Generate a commitment to the message.
a. Set (m1, . . . ,m`+2)← (χ1, . . . , χ`, wz, a)
b. Parse ck as (X̂1, . . . , X̂`+2).
c. Choose a random value ζ2 ← Z∗p and compute:

Ĉ = ĝζ2 ·
`+2∏
i=1

X̂mi
i D = gζ2

5. Output the commitment ˆcom = Ĉ as well as the opening information

open =
(
D, gz, g1, . . . , g`, A = ga, Ẑ, R̂

)
∈ G`+3 × Ĝ2. (1)

TC.Verify(ck, ˆcom, M̂, open): Given ˆcom = Ĉ ∈ Ĝ, parse M̂ as (M̂1, . . . , M̂`)
and open as in (1).

1. Set N = (N1, . . . , N`+2) = (g1, . . . , g`, gz, A)
2. Using ovkpots = A ∈ G, return 1 if the following equalities hold:

e(g, Ĉ) = e(D, ĝ) ·
`+2∏
i=1

e(Ni, X̂i) (2)

e(A, ĝ) = e(gz, Ẑ) · e(g, R̂) ·
∏̀
i=1

e(gi, M̂i).

Otherwise, return 0.

Using tk := {ρi}`+2
i , it is possible to trapdoor-open a commitment ˆcom = Ĉ

in the same way as a Pedersen commitment since Ĉ is nothing but a Pedersen
commitment to (skpots, oskpots).

We now prove that the above commitment does not only provide CM-TCR
security as defined in [10], but also ECM-TCR security. The proof builds on the
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same ideas as that of [10] but also takes advantage of the strong unforgeability6

of the underlying partial one-time signature.

Theorem 1. The scheme provides ECM-CTR security under the SXDH as-
sumption.

Proof. For the sake of contradiction, let us assume that a PPT adversary A can
win the game of Definition 8 with noticeable probability. We observe that the
adversary can only win in two mutually exclusive cases.

I. A outputs a commitment Ĉ? ∈ Ĝ for which it provides an opening

M? = (M?
1 , . . . ,M

?
n)

open? =
(
D?, g?z , g

?
1 , . . . , g

?
` , A

?, Ẑ?, R̂?
)
,

where (D?, g?z , g
?
1 , . . . , g

?
` , A

?) differs from the tuple (D†, g†z, g
†
1, . . . , g

†
` , A

†)
returned by Ock as part of the opening

open† =
(
D†, g†z, g

†
1, . . . , g

†
` , A

†, Ẑ†, R̂†
)
,

of Ĉ? when A queried Ock to obtain a commitment to M̂
†

= (M̂†1 , . . . , M̂
†
` ).

II. A outputs a commitment Ĉ? ∈ Ĝ which it opens by revealing a pair

M? = (M?
1 , . . . ,M

?
n)

open? =
(
D?, g?z , g

?
1 , . . . , g

?
` , A

?, Ẑ?, R̂?
)
,

such that (D†, g†z, g
†
1, . . . , g

†
` , A

†) = (D?, g?z , g
?
1 , . . . , g

?
` , A

?). In this case, we
must have either M? 6= M † or (Ẑ?, R̂?) 6= (Ẑ†, R̂†).

Let us first assume that situation I occurs with noticeable probability. We
show thatA can be turned into an algorithm BI that breaks the DDH assumption
in Ĝ by finding a pair (Z,R) such that e(Z, ĝ) · e(R, ĥ) = 1GT

for a given pair
(ĝ, ĥ) ∈ Ĝ2. This algorithm BI proceeds in the same way as in [10]. Namely,
it creates the commitment key ck by choosing ρi, θi

R← Zp and setting X̂i =
ĝρi · ĥθi for each i ∈ {1, . . . , ` + 2}. It faithfully answers all queries made by A
to Ock. By hypothesis, A outputs a commitment Ĉ? ∈ Ĝ as well as an opening
(M?, open?) which satisfy the conditions of situation I. In particular, open? =(
D?, g?z , g

?
1 , . . . , g

?
` , A

?, Ẑ?, R̂?
)

satisfies

e(g, Ĉ?) = e(D?, ĝ) ·
∏̀
i=1

e(g?i , X̂i) · e(g?z , X̂`+1) · e(A?, X̂`+2) (3)

6 Note that, while [4] only considered the standard notion of unforgeability, it is
straightforward that their scheme also provides strong unforgeability.
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and the set Q must contain open† =
(
D†, g†z, g

†
1, . . . , g

†
` , A

†, Ẑ†, R̂†
)

such that

e(g, Ĉ?) = e(D†, ĝ) ·
∏̀
i=1

e(g†i , X̂i) · e(g†z, X̂`+1) · e(A†, X̂`+2). (4)

Dividing (4) out of (3), we find that the pair

Z =
(D?

D†

)
·
(g?z
g†z

)ρ`+1
·
(A?
A†

)ρ`+2
·
∏̀
i=1

(g?i
g†i

)ρi

R =
(D?

D†

)
·
(g?z
g†z

)θ`+1
·
(A?
A†

)θ`+2
·
∏̀
i=1

(g?i
g†i

)θi

satisfies e(Z, ĝ) ·e(R, ĥ) = 1GT
. Moreover, we have Z 6= 1G with all but negligible

probability since {ρi}`i=1 are completely independent of A’s view.

We now turn to situation II and show that it implies an algorithm BII that
defeats the strong unforgeability of the partial one-time signature scheme. Algo-
rithm BII takes as input a POTS verification key vkpots = (g†z, g

†
1, . . . , g

†
` ) sup-

plied by its own challenger in the POTS security game. It generates ck = {X̂i}`+2
i=1

by picking ρi
R← Zp and defining X̂i = ĝρi for each i ∈ {1, . . . , ` + 2}. Letting

Qc ∈ poly(λ) denote the number of queries made by A to Ock, BII draws a
random index k? R← {1, . . . , Qc} as a guess that A will choose to equivocate the
commitment Ĉ† returned as the output of the k?-th query. It answers all queries
to Ock as follows. For each k ∈ {1, . . . , Qc}\{k?}, the k-th query is answered
by faithfully running the commitment algorithm. When the k?-th query occurs,
BII embeds vkpots = (g†z, g

†
1, . . . , g

†
` ) into the opening of the k?-th commitment.

To this end, it chooses ζ R← Z∗p and computes Ĉ† = ĝζ .
Next, BII queries its own POTS challenger to obtain a signature (A†, (Ẑ, R̂))

on the message M̂ = (M̂1, . . . , M̂`) ∈ Ĝ` queried by A at this k?-th query. Upon
receiving a partial one-time signature (A†, (Ẑ†, R̂†)) from its POTS challenger,
BII defines (N1, . . . , N`, N`+1, N`+2) = (g†1, . . . , g

†
` , g
†
z, A

†) and computes

D† = gζ ·
`+2∏
i=1

N−ρi

i ∈ G,

which satisfies e(g, Ĉ†) = e(D†, ĝ) ·
∏`+2
i=1 e(Ni, X̂i). Given that (A†, (Ẑ†, R̂†))

satisfies the second verification equation of (2) by construction, we observe that

open† =
(
D†, g†z, g

†
1, . . . , g

†
` , A

†, Ẑ†, R̂†
)

forms a valid opening of Ĉ†. When A halts, we know that, with probability
1/Qc, it chooses to output a pair (M?, open?) which opens Ĉ? = Ĉ†. Given
that (D?, g?z , g

?
1 , . . . , g

?
` , A

?) = (D†, g†z, g
†
1, . . . , g

†
` , A

†) and since we must have
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(M?, open?) 6= (M †, open†) by the definition of ECM-TCR security, we know
that (M?, (Ẑ?, R̂?)) 6= (M †, (Ẑ†, R̂†)). This means that BII can win the game
against its POTS challenger by outputting (M?, (A?, Ẑ?, R̂?)). In turn, the result
of [4] implies that BII would contradict the DDH assumption in G. ut

3 A Structure-Preserving CCA2-Secure Public-Key
Cryptosystem With Shorter Publicly Verifiable
Ciphertexts

In this section, we use the all-but-one hash proof systems of [46] and combine
them with the structure-preserving commitment scheme of Section 2.5 and a
strongly unforgeable signature scheme. We show that the ECMTCR property
of the commitment scheme suffices to construct the sought-after CCA2-secure
structure preserving encryption scheme with publicly verifiable ciphertexts.

In the notations hereafter, for any vector ĥ = (ĥ1, ĥ2) ∈ Ĝ2 and any g ∈ G,
we denote by E(g, ĥ) the vector (e(g, ĥ1), e(g, ĥ2)). For any vectors û1, û2 ∈ Ĝ2,
the product û1 · û2 ∈ Ĝ2 refers to the component-wise multiplication in Ĝ.

KeyGen(λ): 1. Run the setup algorithm of the commitment scheme in Section
2.5 to obtain PP = (p,G, Ĝ,GT , e, g, ĝ, ` = 6) ← TC.Setup(λ, 6), which
will be used to commit to messages in Ĝ6.

2. Generate (ck, tk)← TC.KeyGen(PP), where ck ∈ Ĝ8 is the commitment
key and tk ∈ Z8

p is the trapdoor key which can be erased.
3. Choose also group generators g1, g2

R← G and random values x1, x2
R← Zp

and set X = gx1
1 gx2

2 .
4. Choose ρu

R← Zp and ĥ
R← Ĝ2 at random.

5. Define (û1, û2) with û1 = (ĝ, ĥ) ∈ Ĝ2 and û2 = (ĝρu , ĥρu) ∈ Ĝ2. Note
that û1 and û2 are linearly dependent.

6. Define SK = (x1, x2) and

PK = (g1, g2, û1, û2, X,PP, ck).

Encrypt(M,PK): To encrypt M ∈ G, conduct the following steps.
1. Generate a key pair (SSK,SVK)← OT1.KeyGen(PP, 5) for the one-time

SPS of Section 2.2 so as to sign messages in G5. Let the resulting key pair
consist of SSK =

(
{χi, γi}5i=1, ζ, ρ

)
∈ Z14

p and SVK =
(
{ĝi}5i=1, Â

)
∈ Ĝ6,

where ĝi = ĝχi
z · ĝδi

r and Â = ĝζz · ĝρr .
2. Choose θ R← Zp and compute

C0 = M ·Xθ, C1 = gθ1 , C2 = gθ2 .

3. Generate a commitment to SVK = ({ĝi}5i=1, Â) and let

( ˆcom, open)← TC.Commit(PP, ck, SVK) ∈ Ĝ× (G9 × Ĝ2)

be the resulting commitment/opening pair.
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4. Define vector û ˆcom = û2 · (1, ˆcom) ∈ Ĝ2 as well as the Groth-Sahai CRS
û ˆcom = (û ˆcom, û1) ∈ Ĝ2.

5. Pick r R← Zp. Compute Ĉθ = ûθˆcom · û
r
1.

6. Using the randomness of the commitment Cθ, generate proof elements
π = (π1, π2) = (gr1, gr2) ∈ G2 showing that the committed θ ∈ Zp satisfies
the multi-exponentiation equations

C1 = gθ1 C2 = gθ2

7. Output the ciphertext

C = (SVK, ˆcom, open, C0, C1, C2, Ĉθ,π,σ) ∈ G16 × Ĝ11 (5)

where σ ← OT1.Sign(SSK, (C0, C1, C2, π1, π2)) ∈ G2.

Decrypt(PK, C, SK): Parse the ciphertext C as in (5). Then, conduct the fol-
lowing steps.

1. Parse PK as (g1, g2, X,PP, ck) and SK as (x1, x2).
2. Return ⊥ if OT1.Verify(SVK, (C0, C1, C2, π1, π2), σ) = 0.
3. Return ⊥ if ˆcom = 1Ĝ or TC.Verify(ck, ˆcom,SVK, open) = 0.
4. Verify that π = (π1, π2) is a valid Groth-Sahai proof w.r.t. (C1, C2,Cθ, ˆcom).

Namely, it should satisfy

E(g1, Ĉθ) = E(C1, û ˆcom) · E(π1, û1) (6)
E(g2, Ĉθ) = E(C2, û ˆcom) · E(π2, û1)

5. If the above verifications all succeed, output M = C0/(Cx1
1 · C

x2
2 ).

Note that, in step 3 of the decryption algorithm, the condition ˆcom 6= 1Ĝ en-
sures that vectors (û ˆcom, û1) form a perfectly sound Groth-Sahai CRS, so that
ciphertexts such that logg1(C1) 6= logg2(C2) are always rejected.

The proof of the following theorem follows the strategy of [46] with additional
arguments showing that omitting to sign the Groth-Sahai commitments does not
affect the security of the scheme.

Theorem 2. The scheme provides IND-CCA2 security under the SXDH as-
sumption. More precisely, AdvCCA(λ) ≤ 5×AdvSXDH(λ) + qd × 2−λ.

Proof. The proof proceeds with a sequence of games that begins with the real
game and ends with a game where no advantage is left to the adversary what-
soever. In each game, we call Wi the event that the experiment outputs 1. The
security parameter λ is implicitly given in all the games. Let qd denote the
number of decryption queries made by the adversary.
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Game 0: This is the real game. The adversary is given the public key PK which
contains vectors (û1, û2) such that

û1 = (ĝ, ĥ) ∈ Ĝ2 û2 = (ĝρu , ĥρu) ∈ Ĝ2, (7)

where ĝ, ĥ R← Ĝ, ρu
R← Zp. In the challenge phase, it chooses two messages

M0,M1 ∈ G and obtains a challenge ciphertext

C? = (SVK?, ˆcom?, open?, C?0 , C?1 , C?2 , Ĉ
?

θ,π
?,σ?)

where, for some random bit β R← {0, 1},

C?0 = Mβ ·Xθ?

, C?1 = gθ
?

1 , C?2 = gθ
?

2 ,

as well as ( ˆcom, open)← TC.Commit(PPTC , ck, SVK), Ĉ
?

θ = ûθ
?

ˆcom? · ûr
?

1 and
π? = (π?1 , π?2) = (gr?

1 , gr
?

2 ), where û ˆcom? = û2 · (1, ˆcom?). We assume w.l.o.g.
that SVK? and ˆcom? = Ĉ? are generated at the outset of the game.
The adversary’s decryption queries are always faithfully answered by the
challenger. When the adversary halts, it outputs β′ ∈ {0, 1} and wins if
β′ = β. In this case, the experiment outputs 1. Otherwise, it outputs 0. The
adversary’s advantage is thus |Pr[W0]− 1/2|.

Game 1: This game is like Game 0 except that, if the adversary makes a pre-
challenge decryption query C = (SVK, ˆcom, open, C0, C1, C2, Ĉθ,π,σ) such
that ˆcom = ˆcom?, the experiment halts and outputs a random bit. Since
Game 1 is identical to Game 0 until this event F1 occurs, we have the in-
equality |Pr[W1]− Pr[W0]| ≤ Pr[F1]. Moreover, since ˆcom? was chosen uni-
formly in Ĝ and remains independent of A’s view until the challenge phase,
we have |Pr[W1]− Pr[W0]| ≤ Pr[F1] ≤ qd/p.

Game 2: In this game, we modify the generation of the public key and define

û1 = (ĝ, ĥ) ∈ Ĝ2 (8)
û2 = (ĝρu , ĥρu) · (1, ˆcom?)−1 ∈ Ĝ2,

for a random ρu
R← Zp, instead of computing (û1, û2) as in (7). Note that

(û1, û2) are now linearly independent and ˆcom? is no longer statistically
hidden before the challenge phase. However, a straightforward argument
based on the semantic security of ElGamal (and thus the DDH assumption
in Ĝ) shows that this modification does not affect the adversary’s view. We
have |Pr[W2]− Pr[W1]| ≤ 2×AdvDDH

Ĝ,B (λ).

Game 3: This game is like Game 2 but we modify the decryption oracle. Namely,
if the adversary makes a post-challenge decryption query for a valid cipher-
text C = (SVK, ˆcom, open, C0, C1, C2, Ĉθ,π,σ) such that ˆcom = ˆcom? but
(SVK, open) 6= (SVK?, open?), the experiment halts and outputs a random
bit. If we call F3 the latter event, we have |Pr[W3] − Pr[W2]| ≤ Pr[F3]. As
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shown by Lemma 1, event F3 implies an adversary B3 against the ECM-
TCR property (as formalized by Definition 8) of the trapdoor commit-
ment in Section 2.5, which contradicts the SXDH assumption. We thus have
|Pr[W3]− Pr[W2]| ≤ AdvECM-TCR

TC,B3
(λ) ≤ AdvSXDH

B3
(λ).

Game 4: We modify again the decryption oracle in post-challenge decryption
queries. After the challenge phase, if the adversary A queries the decryption
of a ciphertext C = (SVK, ˆcom, open, C0, C1, C2, Ĉθ,π,σ) such that we have
( ˆcom, open) = ( ˆcom?, open?) but (C0, C1, C2, π1, π2) 6= (C?0 , C?1 , C?2 , π?1 , π?2),
the experiment halts and outputs a random bit. If we call F4 this event, we
have the inequality |Pr[W4] − Pr[W3]| ≤ Pr[F4] since Game 4 is identical
to Game 3 until F4 occurs. Moreover, F4 would contradict the strong un-
forgeability of the one-time structure-preserving signature and thus the DP
assumption. This implies |Pr[W4]−Pr[W3]| ≤ AdvSUF-OTS

B (λ) ≤ AdvDP
B (λ).

Game 5: We introduce another modification in the decryption oracle. We reject
all ciphertexts C = (SVK, ˆcom, open, C0, C1, C2, Ĉθ,π,σ) such that

( ˆcom, open) = ( ˆcom?, open?) ∧

(C0, C1, C2, π1, π2) = (C?0 , C?1 , C?2 , π?1 , π?2) ∧ Ĉθ 6= Ĉ
?

θ. (9)

Let F5 be the event that the decryption oracle rejects a ciphertext that would
not have been rejected in Game 4. We argue that Pr[W5] = Pr[W4] since
Game 5 is identical to Game 4 until event F5 occurs and we have Pr[F5] = 0.
Indeed, for a given (C?1 , C?2 , π?1 , π?2) ∈ G4, there exists only one commitment
Ĉ
?

θ ∈ Ĝ2 that satisfies the equalities (6). This follows from the fact that,
since (C?1 , C?2 , π?1 , π?2) = (gθ?

1 , gθ
?

2 , gr
?

1 , gr
?

2 ), relations (6) can be written

E(g1, Ĉ
?

θ) = E(gθ
?

1 , û ˆcom) · E(gr
?

1 , û1) = E(g1, û
θ?

ˆcom) · E(g1, û
r?

1 )
E(g2, Ĉ

?

θ) = E(gθ
?

2 , û ˆcom) · E(gr
?

2 , û1) = E(g2, û
θ?

ˆcom) · E(g2, û
r?

1 )

which uniquely determines the only commitment Ĉ
?

θ = ûθ
?

ˆcom · û
r?

1 ∈ Ĝ2 that
satisfies (6). This shows that Pr[F5] = 0, as claimed.

Game 6: In this game, we modify the distribution of the public key. Namely,
instead of generating the vectors (û1, û2) as in (8), we set

û1 = (ĝ, ĥ) ∈ Ĝ2 û2 = (ĝρu , ĥρu) · (1, Ĉ?−1) ∈ Ĝ2. (10)

Said otherwise, û2 is now the product of two terms, the first one of which
lives in the one-dimensional subspace spanned by û1. Under the DDH as-
sumption in Ĝ, this modified distribution of PK should have not notice-
able impact on the adversary’s behavior. A straightforward reduction shows
that |Pr[W6] − Pr[W5]| ≤ AdvDDH

B (λ). Note that, although the vectors
(û ˆcom? , û1) ∈ Ĝ2 are no longer linearly independent, Ĉ

?

θ = ûρu·θ?+r?

1 re-
mains the only commitment that satisfies the verification equations for a
given tuple (C?1 , C?2 , π?1 , π?2).
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Game 7: In this game, we modify the challenge ciphertext and replace the NIZK
proof π? = (π?1 , π?2) ∈ G2 by a simulated proof which is produced using
ρu ∈ Zp as a simulation trapdoor. Namely, (Ĉ

?

θ,π
?) is obtained by picking

r
R← Zp and computing

Ĉ
?

θ = ur1, π?1 = gr1 · C?1
−ρu , π?2 = gr2 · C?2

−ρu

Observe that, although (Ĉ
?

θ, π
?
1 , π

?
2) are generated without using the witness

θ? = logg1(C?1 ) = logg2(C?2 ), the NIZK property of GS proofs ensures that
their distribution remains exactly as in Game 6: indeed, if we define r̃ =
r − ρu · θ?, we have

Ĉ
?

θ = ûθ
?

ˆcom? · ûr̃1, π?1 = gr̃1, π?2 = gr̃2,

which implies Pr[W7] = Pr[W6].

Game 8: We modify the generation of the challenge ciphertext, which is gener-
ated using the private key SK = (x1, x2) instead of the public key: Namely,
the challenger computes

C?1 = gθ
?

1 , C?2 = gθ
?

2 , C?0 = Mβ · C?1
x1 · C?2

x2 ,

while (Ĉ
?

θ, π
?
1 , π

?
2) are computed using the NIZK simulation trapdoor ρu ∈ Zp

as in Game 7. This change does not affect the adversary’s view since the
ciphertext retains the same distribution. We have Pr[W8] = Pr[W7].

Game 9: We modify again the distribution of the challenge ciphertext which is
obtained as

C?1 = g
θ?

1
1 , C?2 = g

θ?
2

2 , C?0 = Mβ · C?1
x1 · C?2

x2 ,

for random and independent θ?1 , θ?2
R← Zp, while the NIZK proof (Ĉ

?

θ, π
?
1 , π

?
2)

is simulated using ρu ∈ Zp as in Game 8. Since the witness θ? ∈ Zp was
not used anymore in Game 8, a straightforward reduction shows that any
noticeable change in A’s output distribution implies a DDH distinguisher in
G. We have |Pr[W9]− Pr[W8]| ≤ AdvDDH

B,G (λ).

In the final game, it is easy to see that Pr[W9] = 1/2 since the challenge
ciphertext does not carry any information about β ∈ {0, 1}. Indeed, we have

C?1 = g
θ?

1
1 , C?2 = g

θ?
1 +θ′1

2 , C?0 = Mβ ·Xθ?
1 · g2

θ′1·x2 ,

for some random θ′1 ∈R Zp, which implies that the term g2
θ′1·x2 perfectly hides

Mβ in the expression of C?0 . This follows from the fact that x2 ∈ Zp is perfectly
independent of the adversary’s view. Indeed, the public key leaves x2 ∈ Zp com-
pletely undetermined as it only reveals X = gx1

1 gx2
2 . During the game, decryption

queries are guaranteed not to reveal anything about x2 since all NIZK proofs
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(Ĉθ, π1, π2) take place on Groth-Sahai CRSes (û ˆcom, û1) which are perfectly
sound (as they span the entire vector space Ĝ2) whenever ˆcom 6= ˆcom?. This im-
plies that, although the adversary can see a simulated NIZK proof (Ĉ

?

θ, π
?
1 , π

?
2)

for a false statement in the challenge phase, it remains unable to trick the decryp-
tion oracle into accepting a ciphertextC = (SVK, ˆcom, open, C0, C1, C2, Ĉθ,π,σ)
such that logg1(C1) 6= logg2(C2). As a consequence, the adversary does not learn
anything about x2 from responses of the decryption oracle. ut

Lemma 1. In Game 3, there exists an ECM-TCR adversary with advantage
ε ≥ Pr[F3] against the trapdoor commitment scheme of Section 2.5 and which
runs in about the same time as A.

Proof. Let A be an adversary against the SP-CCA encryption scheme as in the
proof of Theorem 2 and let the event F3 be defined as in Game 3. Then, we build
an adversary B3 against the ECM-CTR security of the structure-preserving trap-
door commitment defined in Section 2.5 which efficiently runs A.

The challenger B3 is given the public parameter PPTC and a commitment
key ck generated as in the trapdoor commitment scheme as well as an access to
a commit-open oracle Ock as defined in Definition 8. Then, B3 runs step 3 to
step 6 of the key generation algorithm of the encryption scheme to get PK and
SK = (x1, x2) as specified in Game 2 and Game 3.

The adversary A is given PK and B3 is easily able to answer to A’s decryption
queries as described in Game 2 and Game 3 thanks to SK. In order to compute
the challenge ciphertext given {m0,m1}, B3 picks β R← {0, 1}, runs all the steps
of the encryption algorithm with mβ except for step 3 for which B3 queries Ock
on SVK? to get ( ˆcom?, open?). The computed ciphertext C? is then given to A.

Assuming that F3 occurs, which means that A makes a post-challenge de-
cryption query for a valid ciphertext C = (SVK, ˆcom, open, C0, C1, C2, Ĉθ,π,σ)
such that ˆcom = ˆcom? but (SVK, open) 6= (SVK?, open?), the challenger simply
outputs ( ˆcom?,SVK, open).

Obviously, we have TC.Verify(ck, ˆcom?,SVK, open) = 1 since C is valid. How-
ever, during the ECM-TR experiment B3 only chose a single message SVK? so
that there is only one target in Q = {( ˆcom?,SVK?, open?)}. Moreover, since we
also have ( ˆcom?,SVK, open) 6∈ Q, we find Pr[F3] = AdvECM-TCR

TC,B3
(λ). ut

While we do not explicit provide a threshold decryption mechanism in the
paper, this can be easily achieved in the same way as in the SXDH-based thresh-
old cryptosystem described in [46]. As a result, we readily obtain a robust and
non-interactive structure-preserving threshold cryptosystem with CCA2-security
in the adaptive corruption setting.

It would be interesting to improve the efficiency of the scheme using quasi-
adaptive NIZK arguments [38] in the same way as in [43]. Unfortunately, we did
not manage to obtain the required simulation-soundness property while keeping
the QA-NIZK arguments structure-preserving.
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4 A Randomizable RCCA-Secure Construction

Given a message M over G, the encryption algorithm computes an ElGamal-
like encryption of the form (c0, c1, c2) = (fθ, gθ,M · hθ). In order to have an
alternative decryption in the reduction as well as publicly verifiable cipher-
texts, the algorithm then derives an LHSP signature (Section 2.4) on the vector
v = (cb0, cb1, g1−b, c1−b1 , c1−b2 ), where b = 1 is a hidden bit. This is made possible
by giving an LHSP signature on v1 = (f, g, 1, 1, 1) and v2 = (1, 1, 1, g, h) in the
public key since v = vθ1. Note that, if b = 0, the encryption algorithm cannot
derive a signature on v since (1, 1, g, c1, c2) is outside the linear span of v1 and
v2. The goal of the security reduction is to compute the challenge ciphertext
with b = 0 (using the signing key) and force the adversary to keep this b = 0 in
any re-randomization of the challenge. This allows detecting when the adversary
attempts to obtain the decryption of a replayed ciphertext.

In order to make freshly generated ciphertexts indistinguishable from (re-
randomizations of) the challenge ciphertext, we use Groth-Sahai commitments
and NIWI proofs to hide b. The encryption algorithm computes a commitment
to gb and v and proves that b ∈ {0, 1} and that v is well-formed with respect to
(c0, c1, c2). Then, it proves that the LHSP signature on v is valid.

This proof can be seen as a quasi-adaptive NIZK proof [38] (defined in Ap-
pendix B.2) that either (c0, c1, c2) is well-formed or that I know a one-time
signature on (c1, c2) (of Section 2.2) which corresponds to an LHSP signature
on (g, c1, c2), where g is the fixed element of the verification-key.

In order to statistically re-randomize ciphertext, the OR-proof should be ef-
ficiently and publicly adaptable and at the same time it should not support any
other kind of malleability. Even though in the NIWI setting the Groth-Sahai
proofs are perfectly re-randomizable the constants of the proofs are modified
when we compute (c′0, c′1, c′2) = (c0, c1, c2) · (f, g, h)θ′ as well as the variables
v′ = v · (vb1 · v1−b

2 )θ′ . Since proving that v′ has the correct form requires the
same random coins as those used in the commitment of gb, the encryption al-
gorithm simply adds in the ciphertext a commitment to vb1 · v1−b

2 , a proof of
well-formedness and a Groth-Sahai NIWI proof of an LHSP signature that can
be derived from the public key.

At a first glance, ciphertexts may appear not to prevent malleability of the
encrypted message M since nothing seems to “freeze” c2 in the ciphertext when
c1−b2 = 1 in honest execution. However, the ciphertext actually binds c2 in the
proof elements which depend on the random coins of the commitments.

Keygen(λ): Choose bilinear groups (G, Ĝ,GT ) of prime order p > 2λ with gen-
erators f, g R← G, ĝ, ĥ R← Ĝ and do the following.
1. Choose a random exponent α R← Zp and set h = gα.
2. Choose random u1,u2

R← G2 and û1, û2
R← Ĝ2.

3. Define v1 = (f, g, 1, 1, 1) and v2 = (1, 1, 1, g, h), then generate a crs for a
QA-NIZK proof system for the language of vectors in span〈v1,v2〉: pick
tk = (χj , γj)5

j=1
R← Z2×5

p and compute ĝj = ĝχj ĥγj , for each 1 ≤ j ≤ 5,
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as well as the language dependent parameters (z1, r1) = (fχ1gχ2 , fγ1gγ2)
and (z2, r2) = (gχ4hχ5 , gγ4hγ5). Then, we have

e(z1, ĝ) · e(r1, ĥ) = (f, ĝ1) · (g, ĝ2),
e(z2, ĝ) · e(r2, ĥ) = (g, ĝ4) · (h, ĝ5).

4. Define the private key as SK = α ∈ Zp and erase tk. The public key
PK ∈ G11 × Ĝ16 is defined to be

PK =
(
f, g, h, u1, u2, z1, r1, r2, z2, ĝ, ĥ, û1, û2, {ĝj}5j=1

)
.

Encrypt(PK,M): To encrypt M ∈ G, conduct the following steps:

1. Pick θ R← Zp and compute (c0, c1, c2) = (fθ, gθ,M ·hθ).
2. Define the bit b = 1 and set G = gb ∈ G and ĝb ∈ Ĝ. Prove that

e( G , ĝ) = e(g, ĝb ) e( G , ĝ/ ĝb ) = 1GT
. (11)

Namely, compute commitments to G = gb (resp. ĝb), which are obtained
as CG = (1, G) · urg

1 · u
sg

2 (resp. Ĉb = (1, ĝb) · ûrb
1 · û

sb
2 ), for random

rg, sg, rb, sb
R← Zp. Let πG ∈ G2 × Ĝ2 and πbit ∈ G4 × Ĝ4 be the proof

elements for relations (11).
3. Define (Θ0, Θ1, Θ2) = (cb0, cb1, cb2) and prove that7

e( Θ1 , ĝ) = e(c1, ĝb ) e( Θ2 , ĝ) = e(c2, ĝb ). (12)

More precisely, compute commitments to Θi as Ci = (1, Θi) ·ur̄i
1 ·u

s̄i
2 , for

each i ∈ {0, 1, 2}, and for random r̄i, s̄i
R← Zp. The corresponding proof

elements π1, π2 both live in G2 × Ĝ2.
4. Derive a QA-NIZK proof (z, r) = (zθ1 , rθ1) that v := vθ1 ∈ G5 belongs to

span〈v1,v2〉. Since b = 1, we have

v = (vθ1)b · (vθ2)1−b = (cb0, cb1, 1, 1, 1) = (cb0, cb1, g1−b, c1−b1 , c1−b2 ),

which allows generating a NIWI proof πenc ∈ Ĝ2 that (z, r,Θ0, Θ1, Θ2, g
b)

satisfy

e( z , ĝ) · e( r , ĥ) = e( Θ0 , ĝ1) · e( Θ1 , ĝ2) · e(g/ gb , ĝ3)

· e(c1/ Θ1 , ĝ4) · e(c2/ Θ2 , ĝ5).
(13)

together with the Groth-Sahai commitments Cz, Cr ∈ G2 of z, r ∈ G.
7 Note that we intentionally omit to prove the validity of Θ0 as the unforgeability of

the LHSP signature is sufficient for this purpose. As a consequence, c0 does not have
to be in the ciphertext.
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5. To enable re-randomization, define H = hb and F = f b and compute
Groth-Sahai commitments to H and F as CH = (1, hb) ·u1

rh ·u2
sh ∈ G2

and CF = (1, f b) ·u1
rf ·u2

sf ∈ G2 for random rh, rf , sh, sf
R← Zp. Then,

generate a NIWI proof πH ∈ G2 × Ĝ2 that

e( H , ĝ) = e(h, ĝb ).

6. Derive a QA-NIZK argument (zrand, rrand) = (zb1 · z1−b
2 , rb1 · r1−b

2 ) that
w := vb1 · v1−b

2 belongs to span〈v1,v2〉. Since w = (f b, gb, 1, g1−b, h1−b),
generate a proof πrand ∈ Ĝ2 that

e( zrand , ĝ) · e( rrand , ĥ)

= e( F , ĝ1) · e( G , ĝ2) · e(g/ G , ĝ4) · e(h/ H , ĝ5),

together with the commitments Czrand
, Crrand

∈ G2.
Return the ciphertext c = (c1, c2, πEnc, πRand) of G34 × Ĝ18 where,

πEnc = (CG, Ĉb, πG, πbit, C0, C1, C2, π1, π2, Cz, Cr, πenc),
πRand = (CH , πH , CF , Czrand

, Crrand
, πrand).

ReRand(PK, c): Parse c = (c1, c2, πEnc, πRand) as above and do the following:

1. Pick θ′ R← Zp and compute (c′1, c′2) = (c1 ·gθ
′
, c2 ·hθ

′).
2. Update8 the commitments C0, C1, C2 and the proofs π1, π2 of relations

(12) according to the update of the constants c1, c2 into c′1, c′2. Namely,
compute (C ′0, C ′1, C ′2) = (C0 ·Cθ

′

F , C1 ·Cθ
′

G , C2 ·Cθ
′

H ) as well as π′1 = π1 ·πθ
′

G

and π′2 = π2 · πθ
′

H .
3. Update9 Cz, Cr and the NIWI proof πenc for relation (13). Namely, com-

pute C ′z = Cz ·Cθ
′

zrand
and C ′r = Cr ·Cθ

′

rrand
as well as π′enc = πenc ·πθ

′

rand.
We should have

Θ′0 = f b·(θ+θ
′), Θ′1 = gb·(θ+θ

′), Θ′2 = M b · hb·(θ+θ
′),

while C ′z and C ′r are now commitments to

z′ = z · zθ
′

rand = (zb1 · z1−b
2 )θ+θ

′

r′ = r · rθ
′

rand = (rb1 · r1−b
2 )θ+θ

′
.

4. Re-randomize CG, Ĉb, C ′0, C ′1, C ′2, C ′z, C ′r, CH , CF , Czrand
, Crrand

and the
proofs πG, πbit, π′1, π′2, π′enc, πH , πrand so as to get C ′′G, Ĉ ′′b , C ′′0 , C ′′1 , C ′′2 , C ′′z ,
C ′′r , C

′′
H , C

′′
F , C

′′
zrand

, C ′′rrand
and π′′G, π

′′
bit, π′′1 , π′′2 , π′′enc, π′′H , π′′rand.

8 This is can be done efficiently because c contains the commitments and the proofs
CG, πG ∈ πEnc and CH , πH , CF ∈ πRand for which πG, πH should not only be asso-
ciated to the bit b but should also contain the same random coins of Ĉb used in
π1, π2.

9 At this point, {C′
i}i=0,1,2 are no longer commitments to {Θi}i=0,1,2 since the vari-

ables have changed into Θ′
0 = Θ0 · F θ

′
, Θ′

1 = Θ1 ·Gθ
′

and Θ′
2 = Θ2 ·Hθ′ .
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Return the ciphertext c′ = (c′1, c′2, π′Enc, π
′
Rand) where,

π′Enc = (C ′′G, Ĉ ′′b , π′′G, π′′bit, C ′′0 , C ′′1 , C ′′2 , π′′1 , π′′2 , C ′′z , C ′′r , π′′enc),
π′Rand = (C ′′H , π′′H , C ′′F , C ′′zrand

, C ′′rrand
, π′′rand).

Decrypt(SK, c): Parse c = (c1, c2, πEnc, πRand) as above and check whether all
the proofs are valid. If not, output ⊥, and otherwise return M = c1/c

α
2 .

As far as efficiency goes, ciphertexts consist of 34 elements of G and 18
elements of Ĝ. Correctness follows from the correctness of the Groth-Sahai proofs
and the correctness of the underlying LHSP signatures.

We show that the above re-randomizable encryption scheme, denoted by E , is
statistically re-randomizable even for adversarially chosen ciphertext as defined
in Definition 14 under the name of statistical unlikability [47].

Theorem 3. The above scheme E provides statistical unlinkability.

Proof. We only consider valid adversarially-generated ciphertext c since the va-
lidity of ciphertext is efficiently recognizable. Given c ← A(PK), we define two
distributions on ciphertexts as in the definition of unlikability. The first distri-
bution generates c′ ← Encrypt(PK,Decrypt(SK, c)) while the second distribu-
tion generates c′ ← ReRand(PK, c). Clearly if we write c′ = (c′1, c′2, π′Enc, π

′
Rand),

the first distribution generates (c1, c2) as a fresh ElGamal ciphertext and the
perfectly NIWI proofs (π′Enc, π

′
Rand) are completely random subject to the ver-

ification of all the pairing product equations detailed in the encryption algo-
rithm of E . Indeed, the key generation algorithm sets the CRSes (u1,u2) and
(û1, û2) as random elements as in the perfect NIWI setting of the Groth-Sahai
proof system [36]. For the same reason, ReRand transforms c into a perfectly
re-randomized ciphertext c′. Indeed, step 1 leads to a perfectly re-randomized
ElGamal ciphertext (c′1, c′2) = (c1, c2) · (g, h)θ′ . Steps 2 and 3 adapt the Groth-
Sahai commitments and proofs with respect to the constant (c′1, c′2) to keep the
validity of the ciphertext. Finally, step 4 completely re-randomizes these commit-
ments and proofs and the NIWI setting ensures that the resulting (π′Enc, π

′
Rand)

are uniformly re-distributed among all the valid proofs satisfying the same pair-
ing product equations with the constant (c′1, c′2). Consequently, c′ is distributed
as a fresh ciphertext of Decrypt(SK, c) even if the adversary tried to put some
subliminal information in c. ut

Next, we show that E is secure against a Replayable Chosen-Ciphertext At-
tack (RCCA) in the sense of Definition 13.

Theorem 4. The above scheme E provides RCCA security under the SXDH
assumption. More precisely, we have AdvRCCA

A,E (λ) ≤ 4 ·AdvSXDH(λ) + qd · 2−λ.

Proof. The proof uses a sequence of games starting with the real game and
ending with a game where even an unbounded adversary has no advantage. For
each i, Si is the event that the challenger outputs 1 in Game i meaning that the
adversary rightly guesses which message is encrypted in the challenge ciphertext.
We assume that security parameter λ is given in each game.
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Game 1: This is the real attack game where the adversary chooses M0 and
M1 and obtains a challenge ciphertext c? as a real encryption of Mβ , for
some β R← {0, 1} chosen by the challenger, in the challenge phase. We re-
call that the adversary may query the decryption of any ciphertext. In the
post-challenge phase, when the challenger uses SK to faithfully reply to the
decryption queries it runs the decryption algorithm and returns ⊥ if the
(public) verification fails. If the decryption returns M , the challenger sends
back M except if M ∈ {M0,M1}, in which case “replay” is returned. We
denote by S1 the event that the adversary outputs β′ = β, which causes the
challenger to output 1.

Game 2: This game is like Game 1 except that, in the challenge phase, the
challenge ciphertext c? = (c?1, c?2, π?Enc, π

?
Rand), the proofs

π?Enc = (C?G, Ĉ?b , π?G, π?bit, C?0 , C?1 , C?2 , π?1 , π?2 , C?z , C?r , π?enc),
π?Rand = (C?H , π?H , C?F , C?zrand

, C?rrand
, π?rand).

are obtained by computing π?Enc, π
?
Rand as simulated proofs using the trapdoor

tk = {(χi, γi)}5i=1. This is achieved by computing (z̃, r̃) ∈ G2 as a linearly
homomoprhic signature on the vector v? = (1G, 1G, g, c?1, c?2). In step 2 of the
encryption algorithm, the challenger thus sets b = 0, and conducts the re-
maining steps of the encryption algorithm except for (z̃, r̃) at step 4. Thanks
to the perfect witness indistinguishability of Groth-Sahai proofs (recall that
(u1,u2) and (û1, û2) form CRSes for the perfect NIWI setting in the real
game), the NIWI proofs π?Enc, π

?
Rand have exactly the same distribution as in

Game 1 and A’s view remains unchanged. We have Pr[S2] = Pr[S1]. Note
that tk is also used to generate the LHSP signatures on the vectors v1,v2 of
the public key.

Game 3: In this game, we modify the distribution of the public key. In step
2 of the key generation algorithm, we choose u2 = uξ1 and û2 = ûζ1, with
ξ, ζ

R← Zp, instead of choosing u2
R← G2 and û2

R← G2 uniformly. Under the
SXDH assumption, this change should not significantly affect A’s behavior
and we have |Pr[S3] − Pr[S2]| ≤ 2 ×AdvSXDH(λ). Note that

(
u1,u2) and

(û1, û2
)

now form perfectly sound CRSes.
Game 4: We modify the decryption oracle. When the adversary A queries the

decryption of c = (c1, c2, πEnc, πRand), the challenger parses the proofs as

πEnc = (CG, Ĉb, πG, πbit, C0, C1, C2, π1, π2, Cz, Cr, πenc),
πRand = (CH , πH , CF , Czrand

, Crrand
, πrand)

and rejects c if the proofs do not properly verify. Otherwise, instead of
merely using the private key SK = α to compute M = c1/c

α
2 as in the

real decryption algorithm, the challenger B uses the extraction trapdoor
β = logu1,1(u1,2) of the Groth-Sahai CRS (u1,u2), where u1 = (u1,1, u1,2),
to extract the witnesses gb, (z, r) and v = (Θ0, Θ1, g/g

b, c1/Θ1, c2/Θ2) from
their commitments CG, Cz, Cr and {Ci}2i=0 which are contained in πEnc.
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Then, the challenger uses tk = {(χi, γi)}5i=1 to compute an LHSP signatures
on v = (v1, v2, v3, v4, v5)

z† =
∏5
i=1v

χi

i , r† =
∏5
i=1v

γi

i ,

and rejects the ciphertext in the event that z† 6= z. If c is not rejected,
B computes M = c1/c

α
2 . If M ∈ {M0,M1} in the post-challenge phase, B

returns “replay” as in the actual RCCA game. Otherwise, it returns M to
A. It is easy to see that, if B rejects a ciphertext that would not have been
rejected in Game 3, then B is able to solve the DP problem. This is because
(u1,u2) and (û1, û2) are perfectly sound Groth-Sahai CRSes and the validity
of the proof πenc implies that (z, r) would be another valid homomorphic
signature on v ∈ G5 than the one that B can compute. Therefore, this
would provide B with two distinct linearly homomorphic signatures on the
same vector and allow B to solve an instance of the DP problem as done in
the proof of [42, Theorem 1]. We thus have |Pr[S4]− Pr[S3]| ≤ AdvDP

B (λ).
Game 5: We modify the decryption oracle in all pre-challenge and post-challenge

decryption queries c = (c1, c2, πEnc, πRand) to avoid the use of the secret key
SK = α = logg h. This change allows modifying the generation of the public
element h = gxfy with uniformly sampled x, y

R← Zp.
In the case of pre-challenge queries, if the commitment CG contained in πEnc
opens to gb = 1 (meaning that b = 0), B rejects the ciphertext. In the case
of post-challenge queries c, if gb = 1 (i.e., b = 0) and the ciphertext is not
rejected by the rules of Game 4, the challenger B returns “replay” without
extracting the encrypted message. Additionally, in all decryption queries, if
gb = g (namely, b = 1), B computes M := c2 ·c−x1 ·Θ

−y
0 . Before the challenge

phase, it always outputs M . In the case of post-challenge queries, B returns
“replay” if M ∈ {M0,M1} and M otherwise. We now analyze the adversary’s
view in this game under the light of the unforgeability of LHSP signatures:
Before the challenge: It is easy to see that the probability to reject a cipher-
text that would not have been rejected in Game 4 is statistically negligible.
This follows from the fact that, from the public key, A has only obtained
linearly homomorphic signatures on (v1,v2), the span of which clearly does
not contain v = (Θ0, Θ1, g/g

b, C1/Θ1, C2/Θ2) when g/gb 6= 1G. Therefore,
pre-challenge decryption queries for which gb = 1 are rejected in Game 4
except in the event that z† = z. This event only occurs with probability at
most 1/p at each such query since z† (as computed from v using tk) is com-
pletely unpredictable from the public key. This follows from the fact that
honestly-generated LHSP signatures are deterministic functions of tk while
there exist exponentially many valid signatures on each vector of messages.
The signing key tk retains sufficient entropy to make it statistically impossi-
ble to predict the honestly-generated signature on a vector outside the span
of (v1,v2), which are given in PK.
After the challenge: First, the perfect soundness of the Groth-Sahai proofs
{πi}2i=1 for relation (12) allows extracting witnesses that satisfy Θi = cbi , for
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each i ∈ {1, 2}, and then v = (Θ0, c
b
1, g

1−b, c1−b1 , c1−b2 ). The difference with
pre-challenge queries is that the adversary is also given information on the
signature on v? from the challenge ciphertext c?. Hence, in post-challenge
queries, LHSP signatures must be in span〈v1,v2,v

?〉. Secondly, we consider
the two cases b ∈ {0, 1}:

– If gb = 1G (i.e., b = 0), we have v = (Θ0, 1G, g, c1, c2). Since c was not
rejected, the vector v must be in span〈v2, (1G, 1G, g, c?1, c?2)〉 (i.e. without
v1 because the second component of v is 1G) except with probability
1/p. Indeed, otherwise, the same argument as in Game 4 shows that c
can only avoid rejection if it contains a commitment Cz to z† = z and we
argued that it is statistically independent of A’s view for vectors outside
span〈v1,v2, (1G, 1G, g, c?1, c?2)〉. This means that v = v0 · vθ2, for some θ,
where v0 := (1G, 1G, g, 1G,Mβ). Said otherwise, the queried ciphertext
is a randomization of the challenge ciphertext, so that B can rightfully
return “replay” without changing the view of A.

– If gb = g (i.e., b = 1), we have v = (Θ0, c1, 1G, 1G, 1G). Since c was not
rejected, v must be in the span of v1 except with probability 1/p (via
the same argument on the event z† = z as above). With overwhelming
probability (p− 1)/p, we thus have Θ0 = f logg c1 , which implies that

cx1 ·Θ
y
0 = hlogg c1 = cα1

if SK := α = x+ logg(f) · y is the secret key that underlies h = gxfy. It
follows that A obtains the same response as in Game 4.

At each decryption query, B’s response deviates from its response in Game
4 with probability at most 1/p. A union bound over all decryption queries
leads to |Pr[S5]− Pr[S4]| ≤ qd/p if qd is the number of decryption queries.

Game 6: We modify the distribution of the challenge ciphertext. Namely, we
choose (c?0, c?1, c?2) as a completely random triple (c?0, c?1, c?2) R← G3 instead of a
well-formed tuple (1G, 1G,Mβ) · (f, g, h)θ? , for a random θ?

R← Zp. Under the
SXDH assumption, this modification has no noticeable impact on A’s output
distribution since, given a DDH1 instance (g, f, ga, fa+c) (where either c = 0
or c ∈R Zp), it is sufficient to define h = gx · fy, as previously, and set
c?0 = fa+c, c?1 = ga and c?2 = Mβ · (ga)x · (fa+c)y during the challenge
phase. At this point, (ga)x · (fa+c)y = ha · f cy and we obtain the inequality
|Pr[S6]− Pr[S5]| ≤ AdvSXDH(λ).

In Game 6, no information about β ∈ {0, 1} is leaked anywhere, so that we
get Pr[S6] = 1/2. Since the SXDH assumption implies the DP assumption, we
thus find the following advantage

|Pr[S1]− 1/2| ≤ 4×AdvSXDH(λ) + qd × 2−λ,

which concludes the proof. ut
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A Groth-Sahai Proofs

Our constructions use Groth-Sahai proofs for pairing product equations (PPE)
of the form:

n∏
j=1

e(Aj ,Yj) ·
n∏
j=1

e(Xi,Bi) ·
m∏
i=1

n∏
j=1

e(Xi,Yj)γi,j = tT ,

where Xi,Yj are variables in G1 and G2, respectively, and Aj ∈ G,Bi ∈ Ĝ and
tT ∈ GT are constants for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}.

A non-interactive witness indistinguishable (NIWI) proof system is a tuple
of four algorithms (Setup,Prove,VerifyProof). Setup outputs a common reference
string (CRS) crs, Prove first generates commitments of variables and constructs
proofs that these variables satisfy the statement, and VerifyProof verifies the
proof. Such a proof system should satisfy correctness, soundness and witness-
indistinguishability. Correctness requires that honestly generated proofs for true
statements be always accepted by the verifier. Soundness guarantees that cheat-
ing provers can only prove true statements with all but negligible probabil-
ity. Witness-indistinguishability requires the existence of an efficient simulator
GSSimSetup that produces a common reference string (CRS) crs′ which is com-
putationally indistinguishable from a normal crs. When commitments are com-
puted using crs′, they are perfectly hiding and the corresponding proofs are
witness indistinguishable: i.e., so long as a statement as several witnesses, the
proof leaks no information on which specific witness is used to generate it. Zero-
knowledge additionally requires the existence of an algorithm GSSimProve that,
given a simulated CRS crs′ and some trapdoor information τ , generates a simu-
lated proof of the statement without using the witnesses and in such a way that
the proof is indistinguishable from a real proof.

In the perfect soundness setting, a CRS (u1,u2, û1, û2) consists of vectors
u1 = (u11, u12), u2 = (u21, u22) ∈ G2 and û1 = (û11, û12), û2 = (û21, û22) ∈ Ĝ2

that are linearly dependent. Namely, there exist ζ, ζ̂ ∈ Zp for which u2 = u1
ζ

and û2 = û1
ζ̂ . Moreover, NIWI proofs for pairing product equations are per-

fectly sound (meaning that proofs for false statements do not exist) and the pair
(x, y) = (logu11(u12), logû11(û12)) ∈ Z2

p can serve as an extraction trapdoor to
extract committed group elements X ∈ G and X̂ ∈ Ĝ from their commitments
CX = (1, X) · u1

θ1 · u2
θ2 , ĈX = (1, X̂) · û1

θ3 · û2
θ4 . In the perfect witness

indistinguishability setting, (u1,u2) are linearly independent vectors, just like
(û1, û2). In this case, CX = (1, X) · u1

θ1 · u2
θ2 and ĈX = (1, X̂) · û1

θ3 · û2
θ4

are perfectly hiding commitments to X and X̂, respectively, and non-interactive
proofs for pairing product equations are perfectly witness indistinguishable. Un-
der the SXDH assumption, no PPT adversary can distinguish a perfectly sound
CRS from a perfectly hiding CRS.

Regardless of which kind of CRS is used, linear pairing product equations
(i.e., where γij = 0 for all i, j) have proofs in G2×Ĝ2 when they involve witnesses
in both G and Ĝ. When all witnesses are in G, proofs live in Ĝ2. For quadratic
statement (i.e., where γij 6= 0 for some i, j) the proof are in G4 × Ĝ4.
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B Definitions for Involved Primitives

B.1 Definitions for Linearly Homomorphic Structure-Preserving
Signatures

Let (G,GT ) be groups of prime order p such that a bilinear map e : G×G→ GT
can be efficiently computed.

A signature scheme is structure-preserving [6, 8] if messages, signatures and
public keys all live in the group G. In linearly homomorphic structure-preserving
signatures, the message spaceM consists of pairsM := T ×Gn, for some n ∈ N,
where T is a tag space. Depending on the application, one may want the tags
to be group elements or not. In this paper, they can be arbitrary strings.

Definition 9. A linearly homomorphic structure-preserving signature scheme
over (G,GT ) is a tuple of efficient algorithms Σ = (Keygen,Sign,SignDerive,Verify)
for which the message space consists of M := T × Gn, for some integer n ∈
poly(λ) and some set T , and with the following specifications.

Keygen(λ, n) is a randomized algorithm that takes in a security parameter λ ∈
N and an integer n ∈ poly(λ) denoting the dimension of vectors to be signed.
It outputs a key pair (pk, sk), where pk includes the description of a tag space
T , where each tag serves as a file identifier.

Sign(sk, τ,M) takes as input a private key sk, a file identifier τ ∈ T and a
vector of group elements M = (M1, . . . ,Mn) ∈ Gn. It outputs a signature
σ ∈ Gns , for some ns ∈ poly(λ).

SignDerive(pk, τ, {(ωi, σ
(i))}`

i=1) is a homomorphic signature derivation al-
gorithm. It inputs a public key pk, a file identifier τ as well as ` pairs
(ωi, σ(i)), each of which consists of a coefficient ωi ∈ Zp and a signature
σ(i) ∈ Gns . It outputs a signature σ ∈ Gns on the vector M =

∏`
i=1M

ωi
i ,

where σ(i) is a signature on M i.
Verify(pk, τ, σ,M) is a verification algorithm that takes as input a public key

pk, a file identifier τ ∈ T , a signature σ and a vector M = (M1, . . . ,Mn).
It outputs 0 or 1.

In a one-time linearly homomorphic SPS, the tag τ can be omitted in the
specification as a given key pair (pk, sk) only allows signing one linear subspace.

As in all linearly homomorphic signatures, the desired security notion man-
dates the adversary’s inability to come up with a valid triple (τ?,M?, σ?) for a
new file identifier τ? or, if τ? appeared in signatures generated by the signing
oracle, for a vector M? outside the linear span of the vectors that have been
legitimately signed for the tag τ?.

B.2 Quasi-Adaptive NIZK Arguments

Quasi-Adaptive NIZK (QA-NIZK) proofs [38] are NIZK proofs where the CRS is
allowed to depend on the specific language for which proofs have to be generated.
The CRS is divided into a fixed part Γ , produced by an algorithm K0, and a
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language-dependent part ψ. However, there should be a single simulator for the
entire class of languages.

Let λ be a security parameter. For public parameters Γ produced by K0,
let DΓ be a probability distribution over a collection of relations R = {Rρ}
parametrized by a string ρ with an associated language

Lρ = {x | ∃w : Rρ(x,w) = 1}.

A tuple of algorithms (K0,K1,P,V) is a QA-NIZK proof system for R if there
exists a PPT simulator (S1,S2) such that, for any PPT adversaries A1,A2 and
A3, we have the properties hereunder.

We assume that the CRS ψ contains an encoding of ρ, which is thus avail-
able to V. The definition of Quasi-Adaptive Zero-Knowledge requires a single
simulator for the entire family of relations R.

Quasi-Adaptive Completeness:

Pr[Γ ← K0(λ); ρ← DΓ ; ψ ← K1(Γ, ρ);
(x,w)← A1(Γ, ψ); π ← P(ψ, x,w) : V(ψ, x, π) = 1 if Rρ(x,w) = 1] = 1 .

Quasi-Adaptive Soundness:

Pr[Γ ← K0(λ); ρ← DΓ ; ψ ← K1(Γ, ρ); (x, π)← A2(Γ, ψ) :
V(ψ, x, π) = 1 ∧ ¬(∃w : Rρ(x,w) = 1)] ∈ negl(λ) .

Quasi-Adaptive Zero-Knowledge:

Pr[Γ ← K0(λ); ρ← DΓ ; ψ ← K1(Γ, ρ) : AP(ψ,.,.)
3 (Γ, ψ) = 1]

≈ Pr[Γ ← K0(λ); ρ← DΓ ; (ψ, τsim)← S1(Γ, ρ) : AS(ψ,τsim,.,.)
3 (Γ, ψ) = 1] ,

where
– P(ψ, ., .) emulates the actual prover. It takes as input a pair (x,w) and

outputs a proof π if (x,w) ∈ Rρ. Otherwise, it outputs ⊥.
– S(ψ, τsim, ., .) is an oracle that takes as input (x,w). It outputs a simu-

lated proof S2(ψ, τsim, x) if (x,w) ∈ Rρ and ⊥ if (x,w) 6∈ Rρ.

B.3 Definitions of Re-Randomizable Encryption and RCCA
Security

A public-key encryption (PKE) scheme is defined as follows.

Definition 10. (PKE) A public-key encryption (PKE) scheme is tuple of algo-
rithms E = (Setup,KeyGen,Encrypt,Decrypt) that:

Setup(λ) : This is a setup algorithm that takes the security parameter λ and
generates the public parameter PP.
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KeyGen(PP) : is key generation algorithm which takes in PP and outputs the
public key PK as well as a secret key SK.

Encrypt(PP,PK,m) : is a randomized algorithm that takes as input a pair (PK,m)
made of a public key and a plaintext. It outputs a ciphertext c.

Decrypt(PP,SK, c) : takes in a secret key SK and a ciphertext C. It outputs either
a plaintext m ∈M or ⊥.

We assume that valid ciphertexts (i.e., which are in the range of the encryp-
tion algorithm) are publicly recognizable.

The correctness and public verifiability are defined as follows:

1. (Correctness) For any ciphertext c computed by c← Encrypt(SK,m), we have
always m = Decrypt(PK, c).

2. (Public Verifiability) There exists a PPT algorithm Verify(PP,PK, c)→ {0, 1}
which returns false if and only if Decrypt(PK, c) outputs ⊥.

Definition 11. A PKE scheme E = (Setup,KeyGen,Encrypt,Decrypt) is secure
against adaptive chosen-ciphertext attacks (IND-CCA2) if no PPT adversary A
has non-negligible advantage in the experiment below:

AdvIND-CCA2
A,E (λ) := Pr


β = β′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

PP← Setup(λ)
(PK,SK)← KeyGen(PP)
(m0,m1)← ADecrypt1(SK,·)(PP,PK)
β

R← {0, 1}
if |m0| 6= |m1|

then output (β, β′) with β′ R← {0, 1}
c? ← Encrypt(PK,mβ)
β′ ← ADecrypt2

c? (SK,·)(PP,PK, c?)


− 1

2

In the above experiment, Decrypt1(SK, ·) is an oracle which decrypts any arbitrary
ciphertext and Decrypt2

c?(SK, ·) is a restricted oracle which allows the adversary
to decrypt any ciphertext except c?.

We also recall the notion of Replayable Chosen-Ciphertext Security (RCCA)
[22], which is defined via a similar security game except that, at each decryption
query occurring after the challenge phase, if the ciphertext decrypts to one the
messages {m0,m1}, the oracle returns Replay.

Definition 12. A re-randomizable encryption scheme is tuple of efficient algo-
rithms E = (Setup,KeyGen,Encrypt,Decrypt,ReRand) that:

Setup(λ) : The setup algorithm takes the security parameter λ and generates the
public parameter PP.

KeyGen(PP) : The key generation algorithm takes PP, outputs the public key PK
and the secret key SK.

Encrypt(PP,PK,m) : is a randomized encryption algorithm that inputs (PP,PK,m).
It generates a ciphertext c.
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Decrypt(PP,SK, c) : The decryption algorithm takes (PK, C), it tries to decrypt
the ciphertext if it can not then outputs ⊥, otherwise it outputs the decryption
result m which is in the message space M.

ReRand(PP,PK, c) : is a probabilistic re-randomization algorithm. It takes as in-
put (PK, c) and outputs a new ciphertext c′.

Correctness is generalized as follows. For all PP ← Setup(λ), (PK,SK) ←
KeyGen(PP), the following two conditions must hold:

(a) For any message m, m = Decrypt(PP,SK,Encrypt(PP,PK,m)).
(b) For any m, Decrypt(PP,SK,ReRand(PP,PK, c)) = Decrypt(PP,SK, c).

Definition 13. We say that a re-randomizable encryption PKE scheme E =
(Setup,KeyGen,Encrypt,Decrypt,ReRand) is secure against replayable chosen-
ciphertext attacks (RCCA) if no PPT adversary has noticeable advantage in
the experiment below:

AdvRCCAA,E (λ) := Pr


β = β′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

PP← Setup(λ)
(PK,SK)← KeyGen(PP)
(m0,m1)← ADecrypt1(SK,·)(PP,PK)
β

R← {0, 1}
if |m0| 6= |m1|

then output (β, β′) with β′ R← {0, 1}
c? ← Encrypt(PK,mb)
β′ ← ADecrypt2

m0,m1 (SK,·)(PP,PK, c?)


− 1

2

In the experiment, Decrypt1(SK, ·) is an oracle which can decrypt any ciphertext
and Decrypt2

m0,m1
(SK, ·) is a restricted oracle which allows the adversary to de-

crypt any ciphertext c, except when Decrypt(SK, c) = m0 or Decrypt(SK, c) = m1.
In these two cases, the oracle returns “replay”.

We also define the unlinkability of the re-randomizable encryption scheme
which was first proposed by Prabhakaran and Rosulek [47] and re-used by Chase
et al. [25]. It intuitively captures that, for any ciphertext c in the support of the
encryption algorithm, a re-randomization of c is identically distributed to a fresh
encryption of Decrypt(PP,SK, c).

Definition 14. We say that a re-randomizable encryption PKE scheme E =
(Setup,KeyGen,Encrypt,Decrypt,ReRand) is unlinkable if no PPT adversary A
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has noticeable advantage in the experiment below.

Advunlink
A,E (λ)

:= Pr


β = β′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

PP← Setup(λ)
(PK,SK)← KeyGen(PP)
c← A(PP,PK)
β

R← {0, 1}
if Decrypt(PP,SK, c) =⊥

then output (β, β′) with β′ R← {0, 1}
if β = 1

then c? ← Encrypt(PP,PK,Decrypt(PP,SK, c))
else c? ← ReRand(PP,PK, c)
β′ ← A(PP,PK, c?)
output (β, β′)


− 1

2

In the above definition, if the adversary chooses an invalid ciphertext c, we
replace its output β′ by a random bit so as to annihilate its advantage: namely,
re-randomized ciphertexts are only required to be satistically indistinguishable
from fresh ciphertexts when the re-randomization is applied to valid ciphertexts.

Like Prabhakaran and Rosulek [47] and Chase et al. [25], we will consider
statistical unlinkability for valid original ciphertexts.
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