
Pratial Time Capsule Signatures in theStandard Model from Bilinear MapsBenoît Libert⋆ and Jean-Jaques QuisquaterUCL, Miroeletronis Laboratory, Crypto GroupPlae du Levant, 3, B-1348, Louvain-La-Neuve, Belgium.{benoit.libert,jean-jaques.quisquater}�ulouvain.beAbstrat. At FC'05, Dodis and Yum introdued a new ryptographitool alled time apsule signature (TCS) whih allows signers to gen-erate �future signatures� that only beome valid from a spei� futuretime t (hosen at signature generation) when a trusted entity (alledTime Server) disloses some trapdoor information for period t. In ad-dition, time apsule signatures endow signers with the ability to maketheir signatures valid before the pre-determined time t. Full signaturesthat were ompleted by their original issuer should be indistinguishablefrom those that automatially beame valid after the release of the time-spei� trapdoor. Time apsule signatures were showed to be generiallyonstrutible from another primitive alled identity-based trapdoor hard-to-invert relation (ID-THIR). The only known instantiations of the lattereither rely on the idealized random orale model or are too ine�ientfor real-world appliations. In this paper, we devise the �rst e�ient ID-THIR (and thus TCS) onstrution whih is seure in the standard model(i.e. without the random orale heuristi).Keywords. time apsule signatures, standard model, bilinear maps.1 IntrodutionIn 2005, Dodis and Yum introdued the onept of time apsule signatures [17℄.Suh a primitive allows signers to generate signatures that only beome validfrom a future moment t when a trusted party (alled Time Server) disloses atrapdoor information assoiated with period t. This is aomplished in suh away that:� Anyone an diretly asertain that a �future signature� will indeed beomee�etive at time t.� In a �pre-hathing operation�, the legal signer an deide to make her futuresignature valid at any time before the pre-determined moment t.� A signature that was not opened by the signer automatially beomes valid(whih is alled �hathing� as opposed to �pre-hathing�) at time t whenthe Time Server publishes the relevant trapdoor information Zt allowingsignature holders to omplete future signatures generated for that period.
⋆ This author aknowledges the DGTRE's First Europe Program of the WalloonRegion in Belgium for his �nanial support.



� The Time Server does not have to interat with any user at any time orknow anything about the PKI employed by signers.Regardless of whether a signature was previously opened by the signer or if itwas automatially ompleted after the release of the trapdoor Zt at time t, noone an tell how it beame valid: �pre-hathed� signatures should be indistin-guishable from �hathed� signatures.Similarly to time release primitives desribed in [5, 15, 31℄, time apsule sig-natures (TCS) follow the server-based approah whih allows preparing messagesfor a de�nite future and departs from �time-lok puzzle� methods addressing re-lated problems [33, 2, 10, 30, 20, 21℄. They imply a minimal assumption on theTime Server that only has to publish some piee of information at the beginningof eah time period and never has to ontat users.In [17℄, Dodis and Yum gave proper seurity de�nitions for TCS shemes andshowed how to generially onstrut them using newly de�ned primitives alledidentity-based trapdoor hard-to-invert relations (ID-THIRs). They also desribeda generi onstrution of ID-THIR whih yields very e�ient implementations inthe random orale model [4℄ but is muh less e�ient in the standard model.These results proved the existene of time apsule signatures in the random or-ale model assuming the availability of one-way funtions and their existene inthe standard model if trapdoor one-way permutations exist.Our ontribution. The generi onstrution of ID-THIR given in [17℄ relies onnon-interative witness-indistinguishable [18℄ proofs of knowledge. Before thereent advanes of Groth, Ostrovsky and Sahai [26, 27℄ in NIZK and witness in-distinguishable proofs, the best known methods [34℄ for onstruting suh proofsin the standard model were very ine�ient. Those dramati improvements wereadapted [28℄ so as to provide onstant-size - though impratial - group signa-tures in the standard model. They ould be applied to the present ontext aswell, but resulting implementations would remain too ine�ient for pratialuse. To date, the only pratial examples of TCS shemes resort to the randomorale methodology [4℄ whih is known [13℄ to only provide heuristi arguments.The ahievement of this paper is to desribe a very simple and e�ientidentity-based trapdoor hard-to-invert relation whih is not generi but is se-ure in the standard model. It utilizes the Waters signature [36℄ whih is knownto be seure in the standard model assuming the hardness of the Di�e-Hellmanproblem in groups equipped with bilinear maps. More preisely, our ID-THIRturns out to be somehow related to identity-based [35℄ extensions [12, 32℄ ofWaters signatures. This is not very surprising sine the generi ID-THIR of [17℄was already making use of proofs of knowledge of signatures (whih are nothingbut identity-based signatures). The tehnial di�ulty was here to avoid witnessindistinguishable proofs. To do so, our implementation takes advantage of trikswhih date bak to [7℄ and that were used to prove the seurity of the signaturein [36℄. Thanks to the generi transformation of [17℄, our ID-THIR gives rise tothe �rst pratial time apsule signature sheme whih is seure in the standard



model (under a well-studied omputational assumption).Organization. In the forthoming setions, we �rst reall funtional de�nitionsand seurity models for identity-based trapdoor hard-to-invert relations and timeapsule signatures. Setion 3 then desribes our pratial onstrution of ID-THIR. Its possible optimizations are disussed in setion 4 and the resultingonrete TCS sheme is analyzed in setion 5.2 Preliminaries2.1 Identity-Based Trapdoor Hard-to-Invert RelationsA binary relation R is a subset of {0, 1}∗ × {0, 1}∗ and the language LR is theset of elements α for whih there exist β suh that (α, β) ∈ R. The relation Rmust be ompletely spei�ed by a short desription DR. Besides, for all pairs
(α, β) ∈ R, the length |β| of β has to be bounded by a polynomial in |α|. Lastly,it should be easy to deide whether a given α lies in LR.De�nition 1. An identity-based trapdoor hard-to-invert relation (ID-THIR) isa family of binary relations R = {Rid|id ∈ IR}, where IR is a �nite set ofindies, that are all trapdoor hard-to-invert relations. Namely, for eah id ∈ IR,sampling a lok/proof pair (c, d) ∈ Rid is easy but �nding a proof for a givenlok is hard without knowing the spei� trapdoor tdid. A master trapdoor mtdRallows extrating a trapdoor tdid for eah relation Rid ∈ R. An ID-THIR isentirely spei�ed by a 5-uple of algorithms (Gen, Sample, Check, Extract, Invert)suh that:
Gen: given a seurity parameter k, this algorithm generates R = {Rid|id ∈ IR}and returns its desription DR and its master trapdoor mtdR.
Sample: takes as input (DR, id) and returns a randomly sampled lok/proof pair

(c, d) ∈ Rid.
Check: veri�es the validity of a lok/proof pair (c, d). It returns 1 (aept) if

(c, d) ∈ Rid and 0 (rejet) otherwise.
Extract: is used to extrat the trapdoor of eah relation. Given id ∈ IR and themaster trapdoor mtdR, it returns the trapdoor tdid for the relation Rid.
Invert: allows �nding a proof d for a given lok c ∈ LRid

using the trapdoor tdid.If c ∈ LRid
, Inverttdid

(c) outputs a proof d suh that (c, d) ∈ Rid.Let (c, d) ← SampleDR
(id) and d̃ ← Inverttdid

(c). The orretness property im-poses that CheckDR,id(c, d) = CheckDR,id(c, d̃) = 1. The ambiguity is the om-putational indistinguishability of (c, d) and (c, d̃) even knowing mtdR. Besides,an ID-THIR is said one-way if the following probability is negligible for any PPTalgorithm A = (A1,A2):
Pr[CheckDR,id⋆ (c, d̂) = 1 ∧ id⋆ 6∈ Query(A, OExtract) | (DR, mtdR)← Gen(k);

(id⋆, st)← AOExtract

1 (DR); (c, d)← SampleDR
(id⋆); d̂← AOExtract

2 (DR, c, st)]



where OExtract is an orale simulating the trapdoor extration algorithm Extract,
Query(A, OExtract) is the set of queries made by A to the latter orale and ststands for the state information passed by A1 to A2. The soundness propertystates that the following property is negligible for any algorithm B:

Pr[CheckDR,id⋆ (c, d̃) = 0 ∧ Rid⋆ ∈ R ∧ c ∈ LRid⋆ | (DR, mtdR)← Gen(k);

(c, id⋆)← B(DR); tdid⋆ ← ExtractmtdR
(id⋆); d̃← Inverttdid⋆ (c)]An ID-THIR is said seure if it meets the above four requirements.Intuitively, the one-wayness property aptures that it should be omputation-ally infeasible to open a given lok without the trapdoor of the orrespondingrelation even after having seen trapdoors for polynomially-many other relations.The soundness is the impossibility of oming up with a lok (for some relation)that annot be opened into a valid lok/proof pair using the relevant trapdoor.Dodis and Yum showed in [17℄ that an ID-THIR exists in the random oralemodel if a one-way funtion exists. Their onstrution relies on the Fiat-Shamirheuristi [19℄ and non-interative witness indistinguishable [18℄ proofs of knowl-edge. Instead of a Fiat-Shamir like proof, their method an be implemented withnon-interative witness indistinguishable proofs of knowledge (with a ommonreferene string) that do not involve random orales. However, the best knowntehnique [34℄ for onstruting suh proofs uses trapdoor one-way permutationsand is very ine�ient. Therefore the existene of identity-based trapdoor hard-to-invert relations in the standard model, whih requires the existene of trapdoorone-way permutations [17℄, is urrently mainly of theoretial interest.2.2 Time Capsule SignaturesDe�nition 2. A time apsule signature (TCS) onsists of a 8-uple of PPT al-gorithms (SetupTS, SetupUser, TSig, TVer, TRelease, Hatch, PreHatch, Ver).

SetupTS: is an algorithm run by the Time Server. Given a seurity parameter
k, it returns a publi/private key pair (TPK, TSK).

SetupUser: is run by eah signer. Given a seurity parameter k, it returns apubli/private key pair for the signer (PK, SK).
TSig: is the time apsule signature generation algorithm. It takes as input

(m, SK, TPK, t), where t is the time from whih the signature beomes valid.It produes a future signature σ′
t.

TVer: is the time apsule signature veri�ation algorithm. It takes as input a
5-uple (m, σ′

t, PK, TPK, t) and returns either 1 (aept) or 0 (rejet).
TRelease: is the time release algorithm run by the Time Server. At the beginningof period t, it uses TSK to ompute and publish Zt = TRelease(t, TSK). Notethat the Time Server never interats with any user at any time.
Hatch: is run by any party to open a valid time apsule signature that beamemature. Given (m, σ′

t, PK, TPK, t) and the time-spei� trapdoor Zt as inputs,it returns a hathed signature σt.



PreHatch: is run by the signer to open a valid time apsule signature whih isnot mature yet. It takes as input (m, σ′
t, PK, TPK, t) and the signer's privatekey SK as inputs and outputs a pre-hathed signature σt.

Ver: is used to verify hathed or pre-hathed signatures. Given (m, σt, PK, TPK, t),it returns 1 (aept) or 0 (rejet).The orretness imposes that TVer(m, TSig(m, SK, TPK, t), PK, TPK, t) = 1 and
Ver(m, σt, PK, TPK, t) = 1 if σt = Hatch(m, TSig(m, SK, TPK, t), PK, TPK, Zt)or σt = PreHatch(m, TSig(m, SK, TPK, t), SK, TPK). Ambiguity requires the dis-tribution of �hathed signatures� σt = Hatch(m, TSig(m, SK, TPK, t), PK, TPK, Zt)to be omputationally indistinguishable from that of �pre-hathed signatures�
σt = PreHatch(m, TSig(m, SK, TPK, t), SK, TPK) even knowing TSK.As explained in [17℄, the seurity of time apsule signatures is de�ned in threeaspets: seurity against the signer, the veri�er and the Time Server. In the fol-lowing notation OTSig is an orale simulating the time apsule signature genera-tion algorithm TSig, OTR denotes an orale simulating the time release algorithm
TRelease and OPreH stands for the pre-hathing orale emulating PreHatch. Given
(m, t) as input, OTSig returns a time apsule signature σ′

t generated on behalfof the signer. Orale OPreH takes (m, t, σ′
t) as input and outputs the signer'spre-hathed signature σt.Seurity against the signer. This de�nition means that the signer should beunable to produe a time apsule signature whih looks good to the veri�er butannot be hathed into a full signature by the Time Server. More formally, anyPPT adversary A should have negligible advantage in this experiment.

SetupTS(k)→ (TPK, TSK)

(m, t, σ′
t, PK)← AOTR(TPK)

Zt ← TRelease(t, TSK)

σt ← Hatch(m, σ′
t, PK, TPK, Zt)

Adv(A) = Pr[TVer(m, σ′
t, PK, TPK, t) = 1 ∧ Ver(m, σt, PK, TPK, t) = 0]Seurity against the veri�er. Informally, the veri�er must be unable to open afuture signature without the help of the signer or the Time Server. We requireany PPT adversary B to have negligible advantage in the next experiment.

SetupTS(k)→ (TPK, TSK)

SetupUser(k)→ (PK, SK)

(m, t, σt)← B
OTR,OTSig,OPreH(TPK, PK)

Adv(A) = Pr[Ver(m, σt, PK, TPK, t) = 1 ∧ t 6∈ Query(B, OTR)

∧ (m, t, .) 6∈ Query(B, OPreH)]where Query(B, OTR) is the set of queries made to the time release orale
OTR and Query(B, OPreH) denotes the set of valid queries to OPreH (i.e. queries
(m, t, σ′

t) for whih TVer(m, σ′
t, PK, TPK, t) = 1).



Seurity against the Time Server. Obviously, the Time Server should not be ableto produe a valid hathed or pre-hathed signature full signature on a message
m without obtaining a time apsule signature on m from the signer. Any PPTadversary C must have negligible advantage in the following experiment.

SetupTS∗

(k)→ (TPK, TSK∗)

SetupUser(k)→ (PK, SK)

(m, t, σt)← C
OTSig,OPreH(PK, TPK, TPK∗)

Adv(C) = Pr[Ver(m, σt, PK, TPK, t) = 1 ∧ (m, .) 6∈ Query(C, OTSig)]where SetupTS∗ denotes a run of SetupTS by a dishonest Time Server, TSK∗ is
C's state after this maliious key generation and Query(C, OTSig) stands for theset of queries to the time apsule signature orale OTSig.2.3 Bilinear MapsGroups (G, GT ) of prime order p are alled bilinear map groups if there is amapping e : G×G→ GT with the following properties:1. bilinearity: e(ga, hb) = e(g, h)ab for any (g, h) ∈ G×G and a, b ∈ Z;2. e�ient omputability for any input pair;3. non-degeneray: e(g, h) 6= 1GT

whenever g, h 6= 1G.The protool that we have in mind relies on the intratability of the followingwell-studied problem in bilinear map groups.De�nition 3. The Computational Di�e-Hellman Problem (CDH) in agroup G = 〈g〉 is to ompute gab given (ga, gb). An algorithm (τ, ε)-breaks theCDH assumption if it solves a CDH instane with probability ε in time τ .2.4 The Waters SignatureWe reall the desription of the signature sheme of [36℄ whih is existentiallyunforgeable in the standard model under the CDH assumption in bilinear mapgroups. In the desription hereafter, messages are assumed to be enoded asbitstrings of length n. In pratie however, a ollision-resistant hash funtion
H : {0, 1}∗ → {0, 1}n an be applied to sign longer messages.
Keygen(k, n): hoose bilinear map groups (G, GT ) of order p > 2k. Randomlypik α R← Z∗

p, as well as g, g2
R← G and a vetor u = (u′, u1, . . . , un) ∈ Gn+1of random group elements. The publi key is PK = (n, G, GT , g, g1, g2, u, W )with g1 = gα and W = e(g1, g2). The private key is SK = α.

Sign(m, α): parse m as m1 . . .mn with mi ∈ {0, 1} for all i ∈ {1, . . . , n}. Asignature of m is produed by piking r R← Z∗
p and setting σ = (σ1, σ2) with

σ1 = gα
2 · (u

′ ·
∏n

i=1 umi

i )r and σ2 = gr.
Verify(m, σ, PK): a purported signature σ = (σ1, σ2) on m = m1 . . . mn is a-epted if

e(σ1, g) = W · e
(

u′ ·

n
∏

i=1

umi

i , σ2

)

.



3 An E�ient ID-THIR in the Standard ModelIn this setion, we present an identity-based trapdoor hard-to-invert relationbased on the Waters signature. More preisely, it uses a 2-level hierarhialextension [22, 29℄ of the latter independently desribed in [12, 32℄ and whihis intentionally made existentially (but not universally) forgeable here.In a nutshell, sampling a random lok/proof pair for some relation Rid isdone by generating a signature (d1, d2, d3) on some arti�ial random �message� cin the name of the identity id. The sampling algorithm uses the tehnique of thesimulator in the seurity proof of [36℄ to handle signing queries without knowingthe private key. Generating a proof for any given lok c is easily ahieved usingthe private key for the identity id.
Gen(k, n): this algorithm hooses bilinear map groups (G, GT ) of order p > 2kand a generator g ∈ G. It omputes g1 = gα for a random α R← Z∗

p. Next,it hooses g2
R← G, omputes W = e(g1, g2) and piks a random vetor u =

(u′, u1, . . . , un) R← Gn+1 whih allows de�ning a funtion F : {0, 1}n → G as
F (id) = u′ ·

n
∏

j=1

u
ij

jwhere id = i1 . . . in and ij ∈ {0, 1} for all j. For an identity id ∈ IR = {0, 1}n,the relation Rid is de�ned as the set of pairs (

c, (d1, d2, d3)
)

∈ G× G3 suhthat
e(d1, g) = W · e(F (id), d2) · e(c, d3) (1)The master trapdoor is mtdR = gα

2 and the family of relations R is entirelydesribed by
DR = {n, G, GT , g, g1, g2, u, W,Rid, IR}.

Sample(DR, id): to generate a random lok/proof pair (

c, (d1, d2, d3)
)

∈ G×G3,this algorithm onduts the following steps.1. Choose j1, j2
R← Z∗

p and ompute c = gj1
2 gj2 .2. Pik r, s R← Z∗

p and ompute d1 = cs · g
−j2/j1
1 · F (id)r.3. Set d2 = gr and d3 = gs · g

−1/j1
1 .If we de�ne s̃ = s− α

j1
, we observe that

d1 = gα
2 · F (id)r · cs̃, d2 = gr, d3 = gs̃. (2)

CheckDR,id(c, d): parse d as (d1, d2, d3). Return 1 if
e(d1, g) = W · e(F (id), d2) · e(c, d3)and 0 otherwise.

ExtractmtdR
(id): given mdtR = gα

2 , a trapdoor for id ∈ {0, 1}n is extrated byrandomly hoosing r R← Z
∗
p and returning tdid = (t1, t2) = (gα

2 · F (id)r, gr).



Inverttdid
(c): parse tdid as (t1, t2). Choose random r′, s R← Z∗

p and return
(d1, d2, d3) = (t1 · F (id)r′

· cs, t2 · g
r′

, gs) = (gα
2 · F (id)r′′

· cs, gr′′

, gs).with r′′ = r + r′.We now analyze the four seurity properties of the above sheme.Corretness. It is lear that lok/proof pairs (c, d̃) where d̃ = Inverttdid
(c) satisfyequation (1) sine e(t1, g) = W · e(F (id), t2) for all trapdoors tdid = (t1, t2) pro-dued by Extract. From (2), it follows that equation (1) is also satis�ed by all pairs

(c, d) produed by Sample(DR, id). Now, we hek that elements (

c, (d1, d2, d3)
)generated by Sample are atually distributed aording to (2). Indeed, sine

c = gj1
2 gj2 , we have

d1 = cs · g
−j2/j1
1 · F (id)r = cs̃ ·

(

gj1
2 gj2

)α/j1
· g

−j2/j1
1 · F (id)r = gα

2 · c
s̃ · F (id)r

d3 = gs · g
−1/j1
1 = gs̃.The sampling algorithm uses the strategy (borrowed from the Boneh-Boyenframework [7℄) of the simulator answering signing queries in the proof of theWaters sheme [36℄.Ambiguity. Sampled pairs (

c, (d1, d2, d3)
) learly have exatly the same distri-bution as pairs (

c, (d̃1, d̃2, d̃3)
) when (d̃1, d̃2, d̃3) = Inverttdid

(c).Soundness. It diretly derives from the fat that any given c ∈ G an be �signed�using the trapdoor for the relation Rid (whih is a private key for the identity
id in [12, 32℄).One-wayness. The next theorem shows that our ID-THIR is one-way if Waterssignatures are existentially unforgeable under hosen-message attaks [24℄.Theorem 1. An attaker breaking the one-wayness property of our ID-THIRin the sense of de�nition 1 implies a hosen-message attaker with the sameadvantage and running in omparable time for Waters signatures.Proof. Let A = (A1,A2) be an adversary with advantage ε against the one-wayness property. We onstrut a forger F using A to forge a signature using ahallenger CH answering signing queries.Algorithm F �rst obtains a publi key PK = (n, G, GT , g, g1, g2, u, W ) fromits hallenger CH and sends A an input DR onsisting of PK, IR = {0, 1}n anda desription of Rid for id ∈ IR.Whenever A1 asks OExtract for the trapdoor of a relation Rid for some identity
id ∈ IR, F asks its hallenger CH for a signature of the message id and relays theanswer to A1. After polynomially-many queries to OExtract, A1 omes up withan identity id⋆ that was never queried to OExtract. At this stage, F generatesa uniformly distributed lok c = gω for a random ω R← Z∗

p. In partiular c



has the same distribution as loks generated by Sample. On input of c and thestate information transmitted by A1, A2 issues new queries to OExtract whih alltrigger a signing query from F to CH. Eventually, A2 is expeted to output aproof (d1, d2, d3) suh that
e(d1, g) = W · e(F (id⋆), d2) · e(g

ω, d3)whih an be re-written as
e(d1 · d

−ω
3 , g) = W · e(F (id⋆), d2).Hene, the pair (σ1 = d1 · d

−ω
3 , σ2 = d2) passes the veri�ation test of Waterssignatures. It is thus a valid forgery sine id⋆ was not queried for signature by

F as it may not have been queried to OExtract by A1 or A2 at any time. ⊓⊔Together with seurity results of [36℄, theorem 1 implies the following orollary.Corollary 1. Assuming that an adversary A breaks the one-wayness of our
ID-THIR with advantage ε when running in time τ and making qtd trapdoorqueries, there is an algorithm B that (τ ′, ε′)-breaks the CDH assumption where

ε′ ≥
ε

4qtd(n + 1)
τ ′ ≤ t + O(qtdτexp),

τexp denoting the time omplexity of an exponentiation in G.4 Shorter Publi Keys for Small Identity SpaesThe ID-THIR onstrution of setion 3 assumes a spae of identities IR = {0, 1}nwhere n an be as large as 160. In some appliations, this spae is quite likelyto be muh smaller. With time apsule signatures for instane, it is reasonableto settle for initializing the sheme in expetation of 230 time periods.In this ase, the funtion F : {0, 1}n → G an be replaed with Bonehand Boyen's seletive-ID seure �hash� F (id) = g
H(id)
2 h [7℄ where h ∈R G and

H : {0, 1} → Z∗
p is a ollision-resistant hash funtion. This modi�ation resultsin muh shorter publi parameters as a single group element h ∈ G supersedesthe vetor u. The resulting ID-THIR remains one-way under the Di�e-Hellmanassumption but the proof of one-wayness requires the Di�e-Hellman solver toguess whih identity id⋆ will be attaked by A beforehand.Theorem 2. If an adversary A breaks the one-wayness of the modi�ed ID-THIRwith probability ǫ in time τ , the CDH problem an be (τ ′, ǫ′)-solved where τ ′ ≈ τand ǫ′ = ǫ/|IR|.Proof. We outline an algorithm B solving a CDH instane (ga, gb) using A asa subroutine. To do so, B �rst piks ρ R← Z∗

p and hooses id⋆ R← IR as a guessfor the identity to be attaked by A. Publi parameters are de�ned as g1 = ga,
g2 = gb and h = g−I⋆

2 gρ, where I⋆ = H(id⋆) ∈ Z∗
p, so that F (id) = g

H(id)−I⋆

2 gρ.



Trapdoor queries for identities id 6= id⋆ ∈ IR an be answered by hoosing
s R← Z∗

p and returning
(t1, t2) = (F (id)s · g

−ρ/(I−I⋆)
1 , gs · g

−1/(I−I⋆)
1 )with I = H(id) ∈ Z∗

p. The pair (t1, t2) has the orret distribution sine
(t1, t2) = (ga

2 · F (id)s̃, gs̃)with s̃ = s− a/(I − I⋆).When A issues her hallenge query, B fails if the target identity is not id⋆.Otherwise, it piks a random ω R← Z
∗
p and responds with the hallenge c = gω.A suessful attaker A is then expeted to output a triple (d1, d2, d3) satisfying

e(d1, g) = W · e(gρ, d2) · e(g
ω, d3)whih implies e(d1 ·d

−ρ
2 ·d

−ω
3 , g) = e(g1, g2) and yields the solution d1 ·d

−ρ
2 ·d

−ω
3that B was after. ⊓⊔Sine qtd < 230 is a reasonable upper bound frequently enountered in theliterature, the modi�ed sheme should be preferred whenever |IR| < 230.5 E�ient TCS shemes in the Standard ModelThe generi onstrution [17℄ of seure TCS from any ID-THIR is very simple anddoes not involve random orales. It requires an ordinary digital signature sheme

Σ = (Keygen, Sign, Verify) and an ID-THIR (Gen, Sample, Check, Extract, Invert).The signer generates a key pair (PK, SK)← Σ.Keygen(k) while the Time Serverruns Gen(k) to produe (DR, mtdR) and sets (TPK, TSK) = (DR, mtdR).To produe a time apsule signature on a message m for time t, the signersamples a random lok/proof pair (c, d) for the relation Rt orresponding tothe �identity� t ∈ IR. The future signature onsists of c and the output σ of
Σ.SignSK(m||c||t) whih an be veri�ed by running Σ.VerifyPK(m||c||t, σ). Thesigner also remembers d whih is used for pre-hathing. The time release algo-rithm simply uses the master trapdoor TSK = mtdR to generate a trapdoor
Zt = tdRt

= ExtractmtdR
(t) for the �identity� t. Given a future signature 〈c, σ〉,the hathing algorithm uses Zt = tdRt

to ompute a proof d̃ for the lok c. Uponveri�ation of a hathed or pre-hathed signature 〈(c, d), σ〉, the veri�er aeptsif Σ.VerifyPK(m||c||t, σ) and CheckDR,t(c, d) both return 1 and rejets otherwise.5.1 A Conrete ShemeThe sheme desribed below is an example of onrete TCS in the standardmodel. It ombines our ID-THIR sheme with Waters signatures. That is why allparties use ommon publi parameters inluding the desription of bilinear mapgroups (G, GT ) of order p > 2k. In pratie however, signers are free to hoosetheir own parameters independently of the Time Server: they an use any seuredigital signature in the standard model suh as Cramer-Shoup [16℄.



SetupTS(k, n): the Time Server hooses a generator g ∈ G. It omputes gv = gαvfor a random αv
R← Z∗

p. Next, it hooses g′v
R← G, omputes Wv = e(gv, g

′
v)and selets a random vetor v = (v′, v1, . . . , vn) R← Gn+1 de�ning a funtion

Fv : {0, 1}n → G : t→ Fv(t) = v′·
∏n

j=1 v
tj

j where t = t1 . . . tn and tj ∈ {0, 1}for all j. The Time Server's private key is TSK = g′v
αv and the publi key is

TPK = {n, G, GT , g, gv, g
′
v, v, Wv}.

SetupUser(k, n): the user piks αu
R← Z∗

p, g′u
R← G and a random (n + 1)-vetor

u = (u′, u1, . . . , un) ∈ Gn+1 whih de�nes the funtion Fu : {0, 1}n → G as
Fu(m) = u′ ·

∏n
j=1 u

mj

j where m = m1 . . . mn and mj ∈ {0, 1} for all j. Aollision-resistant hash funtion H : {0, 1}∗ → {0, 1}n is also hosen. Theprivate key is SK = g′u
αu . The publi key is PK = (n, g, gu, g′u, u, Wu, H)with gu = gαu and Wu = e(gu, g′u).

TSig(m, t): the signer �rst generates a pair (

c, (d1, d2, d3)
)

∈ G × G3 followingthese steps.1. Choose j1, j2
R← Z∗

p and ompute c = g′j1v gj2 .2. Pik r, s R← Z∗
p and ompute d1 = cs · g

−j2/j1
v · Fv(t)r.3. Set d2 = gr and d3 = gs · g

−1/j1
v .Then, he omputes m = H(m||c||t) ∈ {0, 1}n and

σ = (σ1, σ2) =
(

g′αu
u · Fu(m)ru , gru

)for a randomly hosen ru
R← Z∗

p. He outputs σ′
t = 〈(σ1, σ2), c〉 and stores thetriple (d1, d2, d3) for later use.

TVer(m, σ′
t, PK, TPK, t): parse σ′

t as 〈(σ1, σ2), c〉 and PK as (n, g, gu, g′u, u, Wu, H).Chek that c ∈ G and return 0 otherwise. Return 1 if
e(σ1, g) = Wu · e(Fu(m), σ2)with m = H(m||c||t) ∈ {0, 1}n.

TRelease(t, TSK): given TSK = g′v
αv , the Time Server piks rv

R← Z∗
p andreturns Zt = (g′v

αv · Fv(t)rv , grv).
Hatch(σ′

t, Zt): parse σ′
t as 〈(σ1, σ2), c〉 and Zt as (z1, z2) = (g′v

αv · Fv(t)
rv , grv).Pik r′v, s and ompute

(d̃1, d̃2, d̃3) = (z1 · Fv(t)r′

v · cs, z2 · g
r′

v , gs) = (g′v
αv · Fv(t)r′′

v · cs, gr′′

v , gs)where r′′v = rv + r′v. The hathed signature is
σt = 〈(σ1, σ2), c, (d̃1, d̃2, d̃3)〉

PreHatch(σ′
t, d): parse σ′

t as 〈(σ1, σ2), c〉 and d as (d1, d2, d3), return the openedsignature σt = 〈(σ1, σ2), c, (d1, d2, d3)〉.



Ver(m, σt, PK, TPK, t): parse σt as 〈(σ1, σ2), c, (d1, d2, d3)〉, the signer's publikey PK as (n, g, gu, g′u, u, Wu, H) and TPK as (n, g, gv, g
′
v, v, Wv). Return 1 if

e(d1, g) = Wv · e(Fv(t), d2) · e(c, d3) (3)
e(σ1, g) = Wu · e(Fu(m), σ2) (4)where m = H(m||c||t) ∈ {0, 1}n.We note that the latter veri�ation algorithm an be optimized as follows. In-stead of sequentially verifying relations (3) and (4), the veri�er an randomlyhoose β1, β2

R← Z∗
p and aept the signature if

1

W β1
v ·W

β2
u

·
e(g, dβ1

1 · σ
β2

1 )

e(Fv(t), d
β1

2 ) · e(c, dβ1

3 ) · e(Fu(m), σβ2

2 )
= 1GT

.Indeed, if we raise both members of (3) and (4) to the powers β1 and β2 re-spetively, we observe that the above veri�ation test fails with overwhelmingprobability if either (3) or (4) does not hold. A produt of four pairings (whih ismuh faster to ompute than a sequene of 4 independent pairings as disussedin [25℄) su�es to hek both onditions.As explained in [17℄, the unonditional seurity against the signer followsfrom the orretness and soundness properties of the ID-THIR sheme. Theorem
2 in [17℄ shows that a suessful heating veri�er obtaining a full signature with-out the help of the Time Server or the signer implies a suessful inverter for theunderlying ID-THIR sheme. The proof of this fat entails a degradation fatorof qTSig whih is the number of queries to OTSig.Corollary 2. If a heating veri�er B has advantage ε within running time τwhen making qTR queries to OTR and qTSig queries to OTSig, there is an algorithmthat (τ ′, ε′)-breaks the CDH assumption where

ε′ ≥
ε

4qTRqTSig(n + 1)
τ ′ ≤ t + O

(

(qTR + qTSig

)

τexp),where τexp is the time omplexity of an exponentiation in G.It was also proved in [17℄ that a suessful dishonest Time Server implies ahosen-message attaker breaking the underlying signature sheme with the sameadvantage. Together with results from [36℄, this yields the following orollarywhih ompletes the proof that a seure and e�ient time apsule signatureexists in the standard model under the Di�e-Hellman assumption.Corollary 3. If a heating Time Server C has advantage ε within running time
τ when making qTSig queries to OTSig, there is an algorithm that (τ ′, ε′)-breaksthe CDH assumption where

ε′ ≥
ε

4qTSig(n + 1)
τ ′ ≤ t + O(qTSigτexp),where τexp is the same quantity as in orollary 2.



5.2 E�ieny Improvements for Smaller Number of PeriodsIn setion 5.1, the Time Server performs the setup for a large number of time pe-riods. As disussed in setion 4, N < 230 is a smaller but quite realisti1 numberof time periods. In this ase, the Server's publi key an be shortened by replaingthe Waters �hash� Fv(t) = v′
∏n

j=1 v
tj

j with Fv(t) = g
H(t)
2 h, for a random ele-ment h ∈R G and a ollision-resistant hash funtion H : {0, 1}⌈log2 N⌉ → Z∗

p. Thedegradation fator of orollary 2 beomes O(N · qTSig) instead of O(qTR · qTSig).We note that signers are free to implement the sheme with their favouritesigning algorithm and they may prefer using short publi keys. In this ase,they an use the same ommon publi parameters (G, GT ) with other pairing-based signatures in the standard model. For instane, ombining the seletive-message seure signature of [7℄ at the Time Server with Strong Di�e-Hellman-based signatures [6, 23℄ at the signer provides an e�ient TCS sheme under theStrong Di�e-Hellman assumption. In this ase, we have a tight redution undera stronger assumption in orollary 3.5.3 Reduing the Publi Storage for the Time ServerA shortoming of time apsule signatures onsidered in setions 5.1 and 5.2 isthat Time Servers have to publish and store a number of group elements whihis linear in the number of past time periods at any time. After n periods havepassed, the server has to publish a bulletin board with O(n) trapdoors.To overome this limitation also present in some time release primitives [31,5, 15℄, Boneh et al. [8℄ proposed to use forward-seure primitives [1, 3, 14℄ bak-wards. Roughly said, forward-seure shemes protet the on�dentiality or theauthentiity of past ommuniations by preventing past (but obviously not fu-ture) private keys to be omputable from urrent ones. Hene, to enrypt amessage for period t in the future, one an simply enipher it for period N − tusing a forward-seure publi key enryption sheme [14, 8℄ prepared for N stagesusing the tree-like struture of [14℄. Thanks to the latter, a private key for period
N − t allows anyone to derive keys for stages N − t + 1, . . . , N . In terms of timerelease primitives, the urrent private key allows reovering keys for past periodsso that the publi storage of the server never exeeds O(log2 N) group elements.It is not hard to see that aforementioned triks apply to our ontext fora reasonably small number of time periods. At the server, we simply have toreplae the seletive-message seure signature of Boneh-Boyen [7℄ by the hier-arhial seletive-message seure signature suggested by the hierarhial IBE of[8℄. It amounts to use the keying tehnique of a reently proposed forward-seuresignature [11℄ in reverse. To generate a future signature for period t, the signeratually prepares it for period N − t. At period t, the Time Server only storesthe trapdoor for period t (whih is the �forward-seure private key� of period
N − t) that allows deriving trapdoors for stages 1, . . . , t− 1.1 For instane, a sheme ould be used over more than 2000 years with 2

30 periods ofone minute.



In this ase, the seurity against heating veri�ers relies on a variant of theDi�e-Hellman problem whih is to ompute gaℓ+1 given (g, ga, . . . , gaℓ

) where
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