Commitment Schemes and Zero-knowledge proofs

Benoît Libert
benoit.libert@ens-lyon.fr
Commitment schemes

The coin flipping problem:

- Two distrustful parties want to play a coin flipping game over the Internet or by phone
- ...or even jointly generate a sequence of random bits
- How can they make sure the other party is not cheating?

Solution: Use a cryptographic commitment scheme
Commitments

Digital equivalent of a sealed box

What does it provide?

- **Binding** property: once I have sent a value in a locked box, I cannot change it anymore
- **Hiding** property: nobody can tell what is inside the box without the key
Commitments

- In commitments schemes (Setup, Com, Open),
 - Setup(\(\lambda\)) given a security parameter \(\lambda \in \mathbb{N}\), outputs a public key \(pk\)
 - \(\text{Com}_{pk}(m)\) outputs a commitment \(com\) and a decommitment \(dec\)
 - \(\text{Open}_{pk}(com, dec)\) outputs evidence \(dec\) that the committed message was \(m\)

- Requirements:
 - **Hiding**: for any \(m_0, m_1 \in \mathcal{M}\), we have \(\{\text{Com}_{pk}(m_0)\} \approx \{\text{Com}_{pk}(m_1)\}\)
 - **Binding**: given \(pk\), it must be infeasible to output \(com\) and two correct openings \((m, dec), (m', dec')\) with \(m \neq m'\)
Commitments

Pedersen’s commitment:

- Setup(\(\lambda\)) chooses a group \(G\) of prime order \(q > 2^\lambda\) and \(g, h \leftarrow G\). It defines \(pk = (g, h)\)
- \(\text{Com}_{pk}(m)\) outputs \(com = g^m \cdot h^r\), with \(r \leftarrow \mathbb{Z}_q\), and sets \(dec = (m, r)\)
- \(\text{Open}_{pk}(com, dec)\) returns \(dec = (m, r)\); verifier accepts if \(com = g^m \cdot h^r\)
- **Hiding** property is unconditional
- **Binding** property relies on the discrete logarithm problem:

 Distinct openings \((m, r), (m', r')\) of a given commitment \(com = g^m h^r = g^{m'} h^{r'}\) reveal

 \[\log_g(h) = (r' - r)/(m - m') \mod q\]
Commitments

Pedersen’s commitment:

- **Setup(λ)** chooses a group G of prime order $q > 2^λ$ and $g, h \leftarrow G$. It defines $pk = (g, h)$

- **Com$_{pk}(m)$** outputs $com = g^m \cdot h^r$, with $r \leftarrow \mathbb{Z}_q$, and sets $dec = (m, r)$

- **Open$_{pk}(com, dec)$** returns $dec = (m, r)$; verifier accepts if $com = g^m \cdot h^r$

- **Hiding** property is unconditional

- **Binding** property relies on the *discrete logarithm* problem:

 Distinct openings $(m, r), (m', r')$ of a given commitment $com = g^m h^r = g^{m'} h^{r'}$ reveal

 \[
 \log_g(h) = (r' - r)/(m - m') \mod q
 \]
Commitments

Pedersen’s commitment:

- Setup(\lambda) chooses a group \mathbb{G} of prime order q > 2^\lambda and g, h \overset{R}{\leftarrow} \mathbb{G}.
 It defines pk = (g, h)

- Com^pk(m) outputs com = g^m \cdot h^r, with r \overset{R}{\leftarrow} \mathbb{Z}_q, and sets dec = (m, r)

- Open^pk(com, dec) returns dec = (m, r); verifier accepts if com = g^m \cdot h^r

- **Hiding** property is unconditional

- **Binding** property relies on the *discrete logarithm* problem:

 Distinct openings (m, r), (m', r') of a given commitment com = g^m h^r = g^{m'} h^{r'} reveal

 \[\log_g(h) = (r' - r)/(m - m') \mod q \]
Commitments

Pedersen’s commitment:

- **Setup(\(\lambda\))** chooses a group \(G\) of prime order \(q > 2^\lambda\) and \(g, h \leftarrow G\). It defines \(pk = (g, h)\)

- \(\text{Com}_{pk}(m)\) outputs \(com = g^m \cdot h^r\), with \(r \leftarrow \mathbb{Z}_q\), and sets \(dec = (m, r)\)

- \(\text{Open}_{pk}(com, dec)\) returns \(dec = (m, r)\); verifier accepts if \(com = g^m \cdot h^r\)

- **Hiding** property is unconditional

- **Binding** property relies on the *discrete logarithm* problem:

 Distinct openings \((m, r), (m', r')\) of a given commitment \(com = g^m h^r = g^{m'} h^{r'}\) reveal

 \[
 \log_g(h) = (r' - r)/(m - m') \mod q
 \]
Commitments

RSA-based commitment:

• Setup(λ) chooses an RSA modulus \(N = pq \), with a prime \(e \) s.t. \(\gcd(e, \varphi(N)) = 1 \) and \(g \overset{R}{\leftarrow} \mathbb{Z}_N^* \). It defines \(pk = (g, e, N) \)

• \(\text{Com}_{pk}(m) \) given \(m \in \{0, \ldots, e - 1\} \), outputs \(\text{com} = g^m \cdot r^e \mod N \), with \(r \overset{R}{\leftarrow} \mathbb{Z}_N^* \), and sets \(\text{dec} = (m, r) \)

• \(\text{Open}_{pk}(m, d) \) returns \(\text{dec} = (m, r) \); verifier accepts if \(\text{com} = g^m \cdot r^e \mod N \)

• Unconditionally hiding

• Binding under the RSA assumption: two distinct openings \((m, r) \), \((m', r') \) such that

\[
g^{mr^e} \equiv g^{m'r'^e} \pmod{N}
\]

reveal \(g^{1/e} \mod N \)
Commitments

RSA-based commitment:

- **Setup(λ)** chooses an RSA modulus \(N = pq \), with a prime \(e \) s.t. \(\gcd(e, \varphi(N)) = 1 \) and \(g \overset{R}{\leftarrow} \mathbb{Z}_N^* \). It defines \(pk = (g, e, N) \)

- **Com_{pk}(m)** given \(m \in \{0, \ldots, e - 1\} \), outputs \(com = g^m \cdot r^e \mod N \), with \(r \overset{R}{\leftarrow} \mathbb{Z}_N^* \), and sets \(dec = (m, r) \)

- **Open_{pk}(m, d)** returns \(dec = (m, r) \); verifier accepts if \(com = g^m \cdot r^e \mod N \)

- **Unconditionally hiding**

- **Binding** under the **RSA assumption**: two distinct openings \((m, r), (m', r') \) such that

\[
g^m r^e \equiv g^{m'} r'^e \pmod{N}
\]

reveal \(g^{1/e} \mod N \)
Commitments

RSA-based commitment:

- Setup(\(\lambda\)) chooses an RSA modulus \(N = pq\), with a prime \(e\) s.t. \(\gcd(e, \varphi(N)) = 1\) and \(g \leftarrow \mathbb{Z}_N^*\). It defines \(pk = (g, e, N)\)
- \(\text{Com}_{pk}(m)\) given \(m \in \{0, \ldots, e - 1\}\), outputs \(com = g^m \cdot r^e \mod N\), with \(r \leftarrow \mathbb{Z}_N^*\), and sets \(dec = (m, r)\)
- \(\text{Open}_{pk}(m, d)\) returns \(dec = (m, r)\); verifier accepts if \(com = g^m \cdot r^e \mod N\)
- Unconditionally hiding
- **Binding** under the RSA assumption: two distinct openings \((m, r), (m', r')\) such that
 \[
g^m r^e \equiv g^{m'} r'^e \pmod{N}
\]
 reveal \(g^{1/e} \mod N\)
Application: Coin-flipping over the Internet

Distrustful parties A and B want to jointly generate a random $b \in \{0, 1\}$:

- B picks a random $b_B \in \{0, 1\}$ which is kept secret
- A chooses $b_A \in \{0, 1\}$, computes a commitment-decommitment pair $(com, dec) = \text{Com}(b_A)$ and sends com to B
- B reveals b_B
- A and B output $b = b_A \oplus b_B$.

Output b is guaranteed to be uniform in $\{0, 1\}$ as long as A or B is honest.
Application: Coin-flipping over the Internet

Distrustful parties A and B want to jointly generate a random $b \in_R \{0, 1\}$:

- B picks a random $b_B \in_R \{0, 1\}$ which is kept secret
- A chooses $b_A \in_R \{0, 1\}$, computes a commitment-decommitment pair $(\text{com}, \text{dec}) = \text{Com}(b_A)$ and sends com to B
- B reveals b_B
- A and B output $b = b_A \oplus b_B$.

Output b is guaranteed to be uniform in $\{0, 1\}$ as long as A or B is honest.
Application: Coin-flipping over the Internet

Distrustful parties A and B want to jointly generate a random \(b \in_R \{0, 1\} \):

- B picks a random \(b_B \in_R \{0, 1\} \) which is kept secret
- A chooses \(b_A \in_R \{0, 1\} \), computes a commitment-decommitment pair \((\text{com}, \text{dec}) = \text{Com}(b_A)\) and sends \(\text{com}\) to B
- B reveals \(b_B \)
- A and B output \(b = b_A \oplus b_B \).

Output \(b \) is guaranteed to be uniform in \(\{0, 1\} \) as long as A or B is honest.
Distrustful parties A and B want to jointly generate a random $b \in \mathbb{R} \{0, 1\}$:

- B picks a random $b_B \in \mathbb{R} \{0, 1\}$ which is kept secret
- A chooses $b_A \in \mathbb{R} \{0, 1\}$, computes a commitment-decommitment pair $(\text{com}, \text{dec}) = \text{Com}(b_A)$ and sends com to B
- B reveals b_B
- A and B output $b = b_A \oplus b_B$.

Output b is guaranteed to be uniform in $\{0, 1\}$ as long as A or B is honest.
Application: Coin-flipping over the Internet

Distrustful parties A and B want to jointly generate a random $b \in_R \{0, 1\}$:

- B picks a random $b_B \in_R \{0, 1\}$ which is kept secret
- A chooses $b_A \in_R \{0, 1\}$, computes a commitment-decommitment pair $(\text{com}, \text{dec}) = \text{Com}(b_A)$ and sends com to B
- B reveals b_B
- A and B output $b = b_A \oplus b_B$.

Output b is guaranteed to be uniform in $\{0, 1\}$ as long as A or B is honest.
Zero-knowledge proofs

The identification problem: How to safely prove oneself
The identification problem

Statement: “I am the only one who knows this secret”

How can I prove that?

1. Send the secret?
 No: then the verifier also know my secret.

2. Take a signing key as secret, and show that I can sign a message?
 Still too much: the verifier learns a signature, can prove I was there, ...

3. Take a private key as secret, and show that I can decrypt a message?
 Still too much: the verifier might learn the decryption of something...
The identification problem

Statement: “I am the only one who knows this secret”

How can I prove that?

1. Send the secret?
 No: then the verifier also know my secret...

2. Take a signing key as secret, and show that I can sign a message?
 Still too much: the verifier learns a signature, can prove I was there, ...

3. Take a private key as secret, and show that I can decrypt a message?
 Still too much: the verifier might learn the decryption of something...
The identification problem

Statement: “I am the only one who knows this secret”

How can I prove that?

1. Send the secret?
 No: then the verifier also know my secret...

2. Take a signing key as secret, and show that I can sign a message?
 Still too much: the verifier learns a signature, can prove I was there, ...

3. Take a private key as secret, and show that I can decrypt a message?
 Still too much: the verifier might learn the decryption of something...
The identification problem

Statement: “I am the only one who knows this secret”

How can I prove that?

1. Send the secret?
 No: then the verifier also know my secret...

2. Take a signing key as secret, and show that I can sign a message?
 Still too much: the verifier learns a signature, can prove I was there, ...

3. Take a private key as secret, and show that I can decrypt a message?
 Still too much: the verifier might learn the decryption of something...
The identification problem

I want to prove that I am the one who knows this secret, but not to provide any other knowledge . . .

Idea: Make sure that the verifier already knows my answer!

\[P \leftarrow c = \text{Enc}_{pk}(m) \rightarrow V \]
\[\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \]
\[\circ \quad \quad \quad \text{com} \quad \quad \quad \circ \]
\[\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \]
\[\circ \quad \quad \quad m' \quad \quad \quad \circ \]
\[\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \]
\[\circ \quad \quad \quad \text{dec} \quad \quad \quad \circ \]

- \(pk \) is \(P \)’s public encryption key
- \((\text{com}, \text{dec}) \leftarrow \text{Com}(m)\)
- \(\text{dec} \) is sent only if \(m = m' \)
The identification problem

I want to prove that I am the one who knows this secret, but not to provide any other knowledge . . .

Idea: Make sure that the verifier already knows my answer!

\[
P \rightarrow c = \text{Enc}_{pk}(m) \rightarrow V
\]

\[
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow
\]

\[
\bullet \rightarrow \text{com} \rightarrow \bullet
\]

\[
\downarrow \quad \downarrow
\]

\[
\bullet \leftarrow m' \leftarrow \bullet
\]

\[
\downarrow \quad \downarrow
\]

\[
\bullet \rightarrow \text{dec} \rightarrow \bullet
\]

- \(pk \) is \(P \)'s public encryption key
- \((\text{com}, \text{dec}) \leftarrow \text{Com}(m)\)
- \(\text{dec} \) is sent only if \(m = m' \)
Proofs

• “Traditional” mathematical proofs:

 “A list of reasons that shows a statement to be true”

 • Non-interactive

 • No unique verifier in mind

 • It can also be an interactive conversation

 • Many applications require designated verifier proofs
Proofs

- “Traditional” mathematical proofs:
 - “A list of reasons that shows a statement to be true”
 - Non-interactive
 - No unique verifier in mind

- It can also be an interactive conversation

- Many applications require designated verifier proofs
Proofs

- “Traditional” mathematical proofs:
 - “A list of reasons that shows a statement to be true”
 - Non-interactive
 - No unique verifier in mind

- It can also be an interactive conversation

- Many applications require designated verifier proofs
Proofs

- "Traditional" mathematical proofs:

 "A list of reasons that shows a statement to be true"

 - Non-interactive

 - No unique verifier in mind

- It can also be an interactive conversation

- Many applications require designated verifier proofs
Interactive proofs

Three ingredients:

1. A prover P, possibly unbounded
2. A verifier V, PPT bounded
3. A language $L \subseteq \{0, 1\}^*$ defining a set of true statements

Properties:

- Even if P is unbounded, he should not be able to prove wrong things
- V must be able to perform his task efficiently
- L can be a lot of things:
 - set of Diffie-Hellman tuples $(g, g^a, g^b, g^{ab}) \in \mathbb{G}^4$ in a cyclic group \mathbb{G}
 - set of pairs of isomorphic graphs
Interactive proofs

Three ingredients:

1. A prover P, possibly unbounded
2. A verifier V, PPT bounded
3. A language $L \subseteq \{0, 1\}^*$ defining a set of true statements

Properties:

- Even if P is unbounded, he should not be able to prove wrong things
- V must be able to perform his task efficiently
- L can be a lot of things:
 - set of Diffie-Hellman tuples $(g, g^a, g^b, g^{ab}) \in \mathbb{G}^4$ in a cyclic group \mathbb{G}
 - set of pairs of isomorphic graphs
Interactive proofs

The pair \((P, V)\) is an *interactive proof system* for \(L\) if:

1. **Completeness**: If \(x \in L\) then the probability that \(P\) does not convince \(V\) is negligible in \(|x|\)

2. **Soundness**: If \(x \notin L\) then the probability that any \(P^*\) convinces \(V\) is negligible in \(|x|\)

Observations:

- \(V\) can be convinced even if \(P^*\) is unbounded
- Proofs are probabilistic
- \(P\) may generate a proof using a *witness* \(w\) of the membership of \(x \in L\) (if one exists):
 - For the set of Diffie-Hellman tuples: send a
 - For the set of isomorphic graphs: send an isomorphism
Interactive proofs

The pair \((P, V)\) is an interactive proof system for \(L\) if:

1. **Completeness**: If \(x \in L\) then the probability that \(P\) does not convince \(V\) is negligible in \(|x|\)
2. **Soundness**: If \(x \not\in L\) then the probability that any \(P^*\) convinces \(V\) is negligible in \(|x|\)

Observations:

- \(V\) can be convinced even if \(P^*\) is unbounded
- Proofs are probabilistic
- \(P\) may generate a proof using a witness \(w\) of the membership of \(x \in L\) (if one exists):
 - For the set of Diffie-Hellman tuples: send a
 - For the set of isomorphic graphs: send an isomorphism
Interactive proofs

The pair \((P, V)\) is an interactive proof system for \(L\) if:

1. **Completeness**: If \(x \in L\) then the probability that \(P\) does not convince \(V\) is negligible in \(|x|\)
2. **Soundness**: If \(x \not\in L\) then the probability that any \(P^*\) convinces \(V\) is negligible in \(|x|\)

Observations:

- \(V\) can be convinced even if \(P^*\) is unbounded
- Proofs are probabilistic
- \(P\) may generate a proof using a *witness* \(w\) of the membership of \(x \in L\) (if one exists):
 - For the set of Diffie-Hellman tuples: send a
 - For the set of isomorphic graphs: send an isomorphism
Interactive proofs

The pair \((P, V)\) is an *interactive proof system* for \(L\) if:

1. **Completeness**: If \(x \in L\) then the probability that \(P\) does not convince \(V\) is negligible in \(|x|\)

2. **Soundness**: If \(x \notin L\) then the probability that any \(P^*\) convinces \(V\) is negligible in \(|x|\)

Observations:

- \(V\) can be convinced even if \(P^*\) is unbounded

- Proofs are probabilistic

- \(P\) may generate a proof using a *witness* \(w\) of the membership of \(x \in L\) (if one exists):
 - For the set of Diffie-Hellman tuples: send a
 - For the set of isomorphic graphs: send an isomorphism
Interactive proofs

The pair \((P, V)\) is an *interactive proof system* for \(L\) if:

1. **Completeness**: If \(x \in L\) then the probability that \(P\) does not convince \(V\) is negligible in \(|x|\)

2. **Soundness**: If \(x \notin L\) then the probability that any \(P^*\) convinces \(V\) is negligible in \(|x|\)

Observations:

- \(V\) can be convinced even if \(P^*\) is unbounded
- Proofs are probabilistic
- \(P\) may generate a proof using a *witness* \(w\) of the membership of \(x \in L\) (if one exists):
 - For the set of Diffie-Hellman tuples: send \(a\)
 - For the set of isomorphic graphs: send an isomorphism
Zero-knowledge proofs

Motivation:

- Protect the prover: the verifier should not learn anything but the fact that $x \in L$; no information about w should leak.

Idea:

- Let $trans$ be the discussion between P and any PPT V^* on input x.
- A simulator should be able to produce something indistinguishable from $trans$ just from x.

Observations:

- No verifier can convince that a transcript is “real”: he could have produced it himself.
- This “simulator” can build $trans$ in any order and even rewind the verifier!
Zero-knowledge proofs

Motivation:

- Protect the prover: the verifier should not learn anything but the fact that $x \in L$; no information about w should leak

Idea:

- Let $trans$ be the discussion between P and any PPT V^* on input x
- A simulator should be able to produce something indistinguishable from $trans$ just from x

Observations:

- No verifier can convince that a transcript is “real”: he could have produced it himself
- This “simulator” can build $trans$ in any order and even rewind the verifier!
Zero-knowledge proofs

Motivation:

- Protect the prover: the verifier should not learn anything but the fact that $x \in L$; no information about w should leak

Idea:

- Let $trans$ be the discussion between P and any PPT V^* on input x
- A simulator should be able to produce something indistinguishable from $trans$ just from x

Observations:

- No verifier can convince that a transcript is “real”: he could have produced it himself
- This “simulator” can build $trans$ in any order and even rewind the verifier!
Zero-knowledge proofs

\((P, V)\) is a perfect zero-knowledge interactive proof system for \(L\) if \(\forall\) PPT \(V^*\), \(\exists\) a PPT simulator \(S_{V^*}\) s.t. \(\forall D:\)

\[
\Pr[D(\text{trans}_{P,V^*}(x)) = 1] = \Pr[D(\text{trans}_{S_{V^*}}(x)) = 1]
\]

where:

- \(\text{trans}_{(P,V^*)}(x)\) is the transcript of the interaction of \(P\) and \(V^*\) on input \(x\)
- \(\text{trans}_{S_{V^*}}(x)\) is the output of \(S_{V^*}\) on input \(x\)
- \(D\) is anyone who tries to distinguish the two transcripts

Remark:

- One could define computational zero-knowledge:
 - \(D\) must be PPT
 - the probabilities can have a negligible difference
Zero-knowledge proofs

\((P, V)\) is a *perfect zero-knowledge* interactive proof system for \(L\) if \(\forall\) PPT \(V^*\), \(\exists\) a PPT simulator \(S_{V^*}\) s.t. \(\forall \mathcal{D}\):

\[
\Pr[\mathcal{D}(trans_{(P,V^*)}(x)) = 1] = \Pr[\mathcal{D}(trans_{S_{V^*}}(x)) = 1]
\]

where:

- \(trans_{(P,V^*)}(x)\) is the transcript of the interaction of \(P\) and \(V^*\) on input \(x\)
- \(trans_{S_{V^*}}(x)\) is the output of \(S_{V^*}\) on input \(x\)
- \(\mathcal{D}\) is anyone who tries to distinguish the two transcripts

Remark:

- One could define *computational zero-knowledge*:
 - \(\mathcal{D}\) must be PPT
 - the probabilities can have a negligible difference
Graph isomorphism

Two graphs $G := (G_V, G_E)$ and $H := (H_V, H_E)$ are isomorphic if

- \exists a bijection $f : G_V \rightarrow H_V$ and
- $(g_1, g_2) \in G_E \iff (f(g_1), f(g_2)) \in H_E$

Are these two graphs isomorphic?

No known algorithm allows deciding in PPT whether two graphs are isomorphic
Graph isomorphism

Two graphs $G := (G_V, G_E)$ and $H := (H_V, H_E)$ are isomorphic if:

- There exists a bijection $f : G_V \rightarrow H_V$ and
- $(g_1, g_2) \in G_E \iff (f(g_1), f(g_2)) \in H_E$

Are these two graphs isomorphic?

No known algorithm allows deciding in PPT whether two graphs are isomorphic.
Proof of Graph isomorphism

On input $G := (G_V, G_E)$ and $H := (H_V, H_E)$ (isomorphic):

1. P computes (or knows) a bijection $f : G_V \to H_V$

2. P repeats n times:
 a. P publishes a graph $I := (I_V, I_E)$ built as follows:
 i. select a random bijection $g : G_V \to I_V$
 ii. build I_E s.t. (G_V, G_E) and (I_V, I_E) are isomorphic
 b. V sends a random bit $c \in \{0, 1\}$ to P
 c. P answers with h where:
 i. $h := g^{-1}$ if $c = 0$
 ii. $h := fg^{-1}$ if $c = 1$

3. V accepts the proof if, every time, h witnesses that:
 a. (I_V, I_E) is isomorphic to (G_V, G_E) when $c = 0$
 b. (I_V, I_E) is isomorphic to (H_V, H_E) when $c = 1$
Proof of Graph isomorphism

On input $G := (G_V, G_E)$ and $H := (H_V, H_E)$ (isomorphic):

1. P computes (or knows) a bijection $f : G_V \rightarrow H_V$

2. P repeats n times:

 a. P publishes a graph $I := (I_V, I_E)$ built as follows:

 1. select a random bijection $g : G_V \rightarrow I_V$,
 2. build I_E s.t. (G_V, G_E) and (I_V, I_E) are isomorphic

 b. V sends a random bit $c \in \{0, 1\}$ to P

 c. P answers with h where:

 - $h := g^{-1}$ if $c = 0$
 - $h := fg^{-1}$ if $c = 1$

3. V accepts the proof if, every time, h witnesses that:

 1. (I_V, I_E) is isomorphic to (G_V, G_E) when $c = 0$
 2. (I_V, I_E) is isomorphic to (H_V, H_E) when $c = 1$
Proof of Graph isomorphism

On input $G := (G_V, G_E)$ and $H := (H_V, H_E)$ (isomorphic):

1. P computes (or knows) a bijection $f : G_V \to H_V$

2. P repeats n times:
 a. P publishes a graph $I := (I_V, I_E)$ built as follows:
 1. select a random bijection $g : G_V \to I_V$,
 2. build I_E s.t. (G_V, G_E) and (I_V, I_E) are isomorphic
 b. V sends a random bit $c \in \{0, 1\}$ to P
 c. P answers with h where:
 - $h := g^{-1}$ if $c = 0$
 - $h := fg^{-1}$ if $c = 1$

3. V accepts the proof if, every time, h witnesses that:
 1. (I_V, I_E) is isomorphic to (G_V, G_E) when $c = 0$
 2. (I_V, I_E) is isomorphic to (H_V, H_E) when $c = 1$
Proof of Graph isomorphism

Completeness:

- P can answer all challenges

Soundness:

- If $G = (G_V, G_E)$ and $H = (H_V, H_E)$ are not isomorphic, then $I = (I_V, I_E)$ can only be isomorphic to one of them

 $\Rightarrow P^*$ has a probability $\frac{1}{2}$ of not being able to answer the challenge

- That makes a probability $\frac{1}{2^n}$ of P^* being able to convince V
Proof of Graph isomorphism

Completeness:

- P can answer all challenges

Soundness:

- If $G = (G_V, G_E)$ and $H = (H_V, H_E)$ are not isomorphic, then $I = (I_V, I_E)$ can only be isomorphic to one of them
 \[\implies P^* \text{ has a probability } \frac{1}{2} \text{ of not being able to answer the challenge} \]
- That makes a probability $\frac{1}{2^n}$ of P^* being able to convince V
Proof of Graph isomorphism

Perfect zero-knowledge: Build the simulator S_{V^*} as follows:

1. Start V^* and feed it with G and H
2. Repeat until $trans_{S_{V^*}}$ contains n transcripts:
 a. Flip a coin $b \in_R \{0, 1\}$
 b. Build a graph I, as in the normal proof, but
 - isomorphic to G if $b = 0$
 - isomorphic to H if $b = 1$
 c. Send I to V^* and wait for $c \in \{0, 1\}$
 d. If $c = b$ then compute the permutation h that would be provided
 in the protocol, and append $\langle I, c, h \rangle$ to $trans_{S_{V^*}}$
 e. If $c \neq b$ then rewind V^* where it was when entering this iteration
 and retry
3. Output $trans_{S_{V^*}}$
Proof of Graph isomorphism

Perfect zero-knowledge: Build the simulator S_{V^*} as follows:

1. Start V^* and feed it with G and H
2. Repeat until $trans_{S_{V^*}}$ contains n transcripts:
 a. Flip a coin $b \in R \{0, 1\}$
 b. Build a graph I, as in the normal proof, but
 - isomorphic to G if $b = 0$
 - isomorphic to H if $b = 1$
 c. Send I to V^* and wait for $c \in \{0, 1\}$
 d. If $c = b$ then compute the permutation h that would be provided in the protocol, and append $\langle I, c, h \rangle$ to $trans_{S_{V^*}}$
 e. If $c \neq b$ then rewind V^* where it was when entering this iteration and retry
3. Output $trans_{S_{V^*}}$
Proof of Graph isomorphism

Observations:

- S_{V^*} tries to guess $c \in \{0, 1\}$, and restart/reboot V^* when it fails
- Failure probability is $\frac{1}{2}$ each time
- At each iteration, a valid transcript is obtained after n attempts, except with probability $\frac{1}{2^n}$
- If S_{V^*} makes n attempts at each iteration, it wins except with negligible probability $1 - n/2^n$
- If G and H are isomorphic, the simulated transcript is distributed as the real one
Σ-protocols

A family of:

- efficient,
- 3-move,
- honest-verifier zero-knowledge protocols of the following form

Common input: P and V both have a statement x

Private input: P has a witness w showing that $x \in L$

1. P sends a commitment a to V
2. V sends a random challenge $c \in_R \{0, 1\}^n$
3. P sends a response f

Given (a, c, f), V outputs 0 or 1
Π is a Σ-protocol for relation R if:

- It is a 3-move protocol with **completeness**, made of a *commitment* a, followed by a random *challenge* c, and ending with a *response* f.

- **Special soundness:** For any pair (a, c, f) and (a, c', f') of accepting conversations on input x where $c \neq c'$, one can efficiently compute $w : (x, w) \in R$.

- **Honest-verifier zero-knowledge:** There is an efficient simulator that, on input x and a challenge $c \in \{0, 1\}^n$, produces (a, f) such that (a, c, f) is distributed as in a normal proof.
Schnorr’s protocol

Let G be a group of prime order q with generator g

\[P \xrightarrow{g^r} V \]
\[c \leftarrow \]
\[r + c \cdot u \pmod{q} \]

P proves knowledge of $u \in \mathbb{Z}_q$ to V who has $h = g^u \in G$

1. P chooses $r \leftarrow \mathbb{Z}_q$ and commits through $a := g^r$
2. V challenges with a random $c \leftarrow \mathbb{Z}_{2^n}$
3. P responds with $f := r + c \cdot u \pmod{q}$
4. V accepts if $g^f = a \cdot (g^u)^c$
Schnorr’s protocol

Let G be a group of prime order q with generator g

\[
P \xrightarrow{g^r} V
\]
\[
P \xleftarrow{c} V
\]
\[
P \xrightarrow{r + c \cdot u \mod q} V
\]

P proves knowledge of $u \in \mathbb{Z}_q$ to V who has $h = g^u \in G$

1. P chooses $r \leftarrow \mathbb{Z}_q$ and commits through $a := g^r$
2. V challenges with a random $c \leftarrow \mathbb{Z}_{2^n}$
3. P responds with $f := r + c \cdot u \mod q$
4. V accepts if $g^f = a \cdot (g^u)^c$
Schnorr’s protocol

\[P \xrightarrow{a := g^r} V \]
\[\leftarrow c \rightarrow \]
\[\leftarrow f := r + c \cdot u \mod q \rightarrow \]

Completeness: obvious

Soundness:
- In order to reply with non-negligible probability, \(P \) must be able to respond to more than 2 challenges, say \(c \) and \(c' \)
- Then \(g^f / (g^u)^c = g^{f'} / (g^u)^{c'} \) and \(u = \frac{f-f'}{c-c'} \)

Honest verifier zero-knowledge:
- Given \(h = g^u \) and \(c \), choose \(f \in_R \mathbb{Z}_q \) and compute \(a := g^f / (g^u)^c \)
 (This does not work if, say, \(V \) computes \(c := H(g^r) \))
Schnorr’s protocol

Completeness: obvious

Soundness:

- In order to reply with non-negligible probability, \(P \) must be able to respond to more than 2 challenges, say \(c \) and \(c' \)
- Then \(g^f / (g^u)^c = g^{f'} / (g^u)^{c'} \) and \(u = \frac{f - f'}{c - c'} \)

Honest verifier zero-knowledge:

- Given \(h = g^u \) and \(c \), choose \(f \in \mathbb{Z}_q \) and compute \(a := g^f / (g^u)^c \)
 (This does not work if, say, \(V \) computes \(c := \mathcal{H}(g^r) \))
The Guillou-Quisquater protocol

Let \(N = pq \) be an RSA modulus and a prime \(e \) such that \(\gcd(e, \varphi(N)) = 1 \)

\[
P \xrightarrow{a := r^e \mod N} V
\]

\[
\bullet \leftarrow c \rightarrow \bullet
\]

\[
f := r \cdot u^c \mod N
\]

\(P \) proves knowledge of \(u \in \mathbb{Z}_N^* \), where \(I = u^e \mod N \) is public

1. \(P \) chooses \(r \leftarrow \mathbb{Z}_N^* \) and commits through \(a := r^e \mod N \)
2. \(V \) challenges with a random \(c \leftarrow \{0, \ldots, e - 1\} \)
3. \(P \) responds with \(f := r \cdot u^c \mod N \)
4. \(V \) accepts if \(f^e \equiv a \cdot I^c \pmod{N} \)
The Guillou-Quisquater protocol

Let \(N = pq \) be an RSA modulus and a prime \(e \) such that \(\gcd(e, \varphi(N)) = 1 \)

\[
\begin{align*}
P & \xrightarrow{a := r^e \mod N} V \\
\downarrow & \\
\bullet & \leftarrow c \\
\downarrow & \\
f & := r \cdot u^c \mod N \\
\downarrow & \\
\bullet &
\end{align*}
\]

\(P \) proves knowledge of \(u \in \mathbb{Z}_N^* \), where \(l = u^e \mod N \) is public

1. \(P \) chooses \(r \leftarrow \mathbb{Z}_N^* \) and commits through \(a := r^e \mod N \)
2. \(V \) challenges with a random \(c \leftarrow \{0, \ldots, e - 1\} \)
3. \(P \) responds with \(f := r \cdot u^c \mod N \)
4. \(V \) accepts if \(f^e \equiv a \cdot l^c \pmod{N} \)
The Guillou-Quisquater protocol

Exercises:

- Show the soundness property of GQ
 (hint: use the binding property of the RSA-based commitment)

- Show that Schnorr and GQ with binary challenges $c \in \{0, 1\}$ are perfectly ZK

- Show that any Σ protocol implies a commitment
Non-interactive ZK

Honest verifier ZK gives non-interactive proofs

Let \mathcal{H} be a random oracle:

- Compute $c := \mathcal{H}(a, x)$ and send non-interactive proof (a, c, f)!
- Implies a signature scheme via the Fiat-Shamir heuristic

By including the message m in the statement $c := \mathcal{H}(a, (x, m))$

The resulting protocol is sound in the ROM. Sketch:

- S starts P^*, answers $\mathcal{H}(a, x)$ requests with random c until it gets a valid (a, c, f) from P^*.
- Then S restarts P^* and answers $\mathcal{H}(a, x)$ requests with random c' until it gets a different proof for the same (a, x).

B. Libert
Commitments and ZK proofs
April 25, 2014 27 / 34
Non-interactive ZK

Honest verifier ZK gives non-interactive proofs

Let \mathcal{H} be a random oracle:

- Compute $c := \mathcal{H}(a, x)$ and send non-interactive proof (a, c, f)!
- Implies a signature scheme via the Fiat-Shamir heuristic
 By including the message m in the statement $c := \mathcal{H}(a, (x, m))$

The resulting protocol is sound in the ROM. Sketch:

- S starts P^*, answers $\mathcal{H}(a, x)$ requests with random c until it gets a valid (a, c, f) from P^*.
- Then S restarts P^* and answers $\mathcal{H}(a, x)$ requests with random c' until it gets a different proof for the same (a, x).
Non-interactive ZK

Honest verifier ZK gives non-interactive proofs

Let \mathcal{H} be a random oracle:

- Compute $c := \mathcal{H}(a, x)$ and send non-interactive proof (a, c, f)!
- Implies a signature scheme via the Fiat-Shamir heuristic
 By including the message m in the statement $c := \mathcal{H}(a, (x, m))$

The resulting protocol is sound in the ROM. Sketch:

- S starts P^*, answers $\mathcal{H}(a, x)$ requests with random c until it gets a valid (a, c, f) from P^*.
- Then S restarts P^* and answers $\mathcal{H}(a, x)$ requests with random c' until it gets a different proof for the same (a, x).
Proving statements about ElGamal ciphertexts

ElGamal encryption in prime-order group:

- Public key: \((g, h) := (g, g^v)\)
- Ciphertext: \((c_1, c_2) := (g^u, m \cdot g^{uv})\)

Statement:

- \((c_1, c_2)\) is an encryption of \(m\) under \((g, h)\)
- \((g, h, c_1, c_2/m) = (g, g^u, g^v, g^{uv})\) is a Diffie-Hellman tuple
- Witness: either \(x\) or \(y\)

Reformulation: \(L\) contains all \((g_1, g_2, g_3, g_4)\) s.t. \(\log_{g_1}(g_2) = \log_{g_3}(g_4)\)

- Either \((g_1, g_2, g_3, g_4) := (g, g^u, g^v, g^{uv})\) (witness is \(u\))
- Or \((g_1, g_2, g_3, g_4) := (g, g^u, g^v, g^{uv})\) (witness is \(v\))
Proving statements about ElGamal ciphertexts

ElGamal encryption in prime-order group:

- Public key: \((g, h) := (g, g^v) \)
- Ciphertext: \((c_1, c_2) := (g^u, m \cdot g^{uv}) \)

Statement:

- \((c_1, c_2) \) is an encryption of \(m \) under \((g, h) \)
- \((g, h, c_1, c_2/m) = (g, g^u, g^v, g^{uv}) \) is a Diffie-Hellman tuple
- witness: either \(x \) or \(y \)

Reformulation: \(L \) contains all \((g_1, g_2, g_3, g_4) \) s.t. \(\log_{g_1}(g_2) = \log_{g_3}(g_4) \)

- Either \((g_1, g_2, g_3, g_4) := (g, g^u, g^v, g^{uv}) \) (witness is \(u \))
- Or \((g_1, g_2, g_3, g_4) := (g, g^u, g^v, g^{uv}) \) (witness is \(v \))
Proving statements about ElGamal ciphertexts

ElGamal encryption in prime-order group:

- Public key: \((g, h) := (g, g^v)\)
- Ciphertext: \((c_1, c_2) := (g^u, m \cdot g^{uv})\)

Statement:

- \((c_1, c_2)\) is an encryption of \(m\) under \((g, h)\)
- \((g, h, c_1, c_2/m) = (g, g^u, g^v, g^{uv})\) is a Diffie-Hellman tuple
- witness: either \(x\) or \(y\)

Reformulation: \(L\) contains all \((g_1, g_2, g_3, g_4)\) s.t. \(\log_{g_1}(g_2) = \log_{g_3}(g_4)\)

- Either \((g_1, g_2, g_3, g_4) := (g, g^u, g^v, g^{uv})\) (witness is \(u\))
- Or \((g_1, g_2, g_3, g_4) := (g, g^u, g^v, g^{uv})\) (witness is \(v\))
Chaum-Pedersen protocol

Let \mathbb{G} be a group of prime order q with generator g

\[
\begin{align*}
P &\quad g_1^r, g_3^r \\
\downarrow &\quad c \\
\bullet &\quad r + c \cdot u \mod q \\
\downarrow &\quad \\
V &\quad \\
\end{align*}
\]

P proves that $\log_{g_1}(g_2) = \log_{g_3}(g_4)(= u)$

1. P chooses $r \leftarrow \mathbb{Z}_q$ and commits through $a := (a_1, a_3) = (g_1^r, g_3^r)$
2. V challenges with a random $c \leftarrow \mathbb{Z}_{2^n}$
3. P responds with $f := r + c \cdot u \mod q$
4. V accepts if $g_1^f = a_1 \cdot (g_2)^c$ and $g_3^f = a_3 \cdot (g_4)^c$
Chaum-Pedersen protocol

Let \mathbb{G} be a group of prime order q with generator g

$$
P \quad \overset{g_1^r, g_3^r}{\rightarrow} \quad V
$$

$$
\downarrow \quad \quad c \quad \downarrow
$$

$$
\bullet \quad \overset{r + c \cdot u \mod q}{\rightarrow} \quad \bullet
$$

P proves that $\log_{g_1}(g_2) = \log_{g_3}(g_4)(= u)$

1. P chooses $r \leftarrow \mathbb{Z}_q$ and commits through $a := (a_1, a_3) = (g_1^r, g_3^r)$
2. V challenges with a random $c \leftarrow \mathbb{Z}_{2^n}$
3. P responds with $f := r + c \cdot u \mod q$
4. V accepts if $g_1^f = a_1 \cdot (g_2)^c$ and $g_3^f = a_3 \cdot (g_4)^c$
Chaum-Pedersen protocol

Let G be a group of prime order q with generator g

\[P \xrightarrow{a := (g_1^r, g_3^r)} V \]
\[\bullet \xleftarrow{c} \bullet \]
\[P \xrightarrow{\bullet := r + c \cdot u \mod q} \]

Completeness: obvious

Soundness:
- If P can prove with $((a_1, a_3), c, f)$ and $((a_1, a_3), c', f')$ then
 \[u = \log_{g_1}(g_2) = \log_{g_3}(g_4) = \frac{f-f'}{c-c'} \]

Honest verifier zero-knowledge:
- Given c, choose $f \in_R \mathbb{Z}_q$ and compute $a_1 := g_1^f/(g_2)^c$ and $a_3 := g_3^f/(g_4)^c$
Proving OR statements

Suppose we have:

- a Σ-protocol Π_0 for proving that $x_0 \in L_0$
- a Σ-protocol Π_1 for proving that $x_1 \in L_1$

Combining proofs:

- Proving that $x_0 \in L_0 \land x_1 \in L_1$ is trivial
- Can we prove that $x_0 \in L_0 \lor x_1 \in L_1$?

Applications:

- I know one of the DL of (h_1, \ldots, h_n) in base g (anonymous authentication)
- This is an encryption of 0 or 1 (election)
Proving OR statements

Suppose we have:

- a Σ-protocol Π_0 for proving that $x_0 \in L_0$
- a Σ-protocol Π_1 for proving that $x_1 \in L_1$

Combining proofs:

- Proving that $x_0 \in L_0 \land x_1 \in L_1$ is trivial
- Can we prove that $x_0 \in L_0 \lor x_1 \in L_1$?

Applications:

- I know one of the DL of (h_1, \ldots, h_n) in base g (anonymous authentication)
- This is an encryption of 0 or 1 (election)
Suppose prover has $w_i : (x_i, w_i) \in R_i$ (but not w_{1-i})

1. P selects random c_{1-i} and runs S_{1-i} to get a proof $(a_{1-i}, c_{1-i}, f_{1-i})$
2. P selects a_i as Π_i’s definition
3. P commits on (a_0, a_1) to V
4. V challenges with c
5. P computes $c_i = c \oplus c_{1-i}$ and f_i from (w_i, a_i, c_i)
6. V accepts if (a_0, c_0, f_0) and (a_1, c_1, f_1) check for Π_0 and Π_1 and $c_0 \oplus c_1 = c$
Disjunctive proofs

Let G be a group of prime order q with generator g.

\[
P \xrightarrow{a_0, a_1} V
\]

\[
\downarrow \quad \downarrow
\]

\[
\bullet \xleftarrow{c} \bullet
\]

\[
\downarrow \quad \downarrow
\]

\[
\bullet \xrightarrow{f_0, f_1} \bullet
\]

Completeness: obvious

Soundness:
- P^* has to follow either Π_0 or Π_1

Honest verifier zero-knowledge:
- Choose (c_0, c_1) at random, run S_0, S_1 to get (a_0, c_0, f_0) and (a_1, c_1, f_1)
- Simulated transcript is $(a_0, a_1, c_0 \oplus c_1, f_0, f_1)$
Conclusions

Zero-knowledge proof systems

- I convince you that this statement is true
- This is the only thing you learn
- You cannot use my proof to convince anyone else (interactive case)

References (available online):

- Ivan Damgård and Jesper Buus Nielsen: Commitment Schemes and Zero-Knowledge Protocols
- Ivan Damgård: On Σ-protocols

Slides are available online:
http://perso.ens-lyon.fr/benoit.libert/cours-ZK.pdf