Commitment Schemes and Zero-knowledge proofs

Benoit Libert
benoit.libert@ens-lyon.fr

o = £ DA
B. Libert Commitments and ZK proofs

Commitment schemes

The coin flipping problem:

Two distrustful parties want to play a coin flipping game over the
Internet or by phone

@ ...or even jointly generate a sequence of random bits

How can they make sure the other party is not cheating?

Solution: Use a cryptographic commitment scheme

B. Libert Commitments and ZK proofs April 25, 2014 2 /34

Commitments

Digital equivalent of a sealed box

What does it provide?

o Binding property: once | have sent a value in a locked box, | cannot
change it anymore

o Hiding property: nobody can tell what is inside the box without the
key

B. Libert Commitments and ZK proofs April 25, 2014 3/34

Commitments

@ In commitments schemes (Setup, Com, Open),

o Setup(\) given a security parameter A € N, outputs a public key pk
o Compy(m) outputs a commitment com and a decommitment dec
o Open,,(com, dec) outputs evidence dec that the committed message

was m

@ Requirements:

e Hiding: for any mg, m;y € M, we have {Compi(mg)} ~ {Compi(m1)}

e Binding: given pk, it must be infeasible to output com and two
correct openings (m, dec), (m’, dec’) with m # m’

B. Libert Commitments and ZK proofs April 25, 2014 4 /34

Commitments
Pedersen’s commitment:

@ Setup(\) chooses a group G of prime order ¢ > 2* and g, h & G.
It defines pk = (g, h)

B. Libert Commitments and ZK proofs April 25, 2014 5/ 34

Commitments
Pedersen’s commitment:

@ Setup(\) chooses a group G of prime order ¢ > 2* and g, h & G.
It defines pk = (g, h)

o Comp(m) outputs com = g™ - h", with r & Zg, and sets
dec = (m,r)

B. Libert Commitments and ZK proofs April 25, 2014 5/ 34

Commitments
Pedersen’s commitment:

@ Setup(\) chooses a group G of prime order ¢ > 2* and g, h & G.
It defines pk = (g, h)

o Comp(m) outputs com = g™ - h", with r & Zg, and sets
dec = (m,r)
o Open(com, dec) returns dec = (m, r); verifier accepts if

com=g"m-h"

Hiding property is unconditional

Binding property relies on the discrete logarithm problem:

B. Libert Commitments and ZK proofs April 25, 2014 5/ 34

Commitments
Pedersen’s commitment:

@ Setup(\) chooses a group G of prime order ¢ > 2* and g, h & G.
It defines pk = (g, h)

o Comp(m) outputs com = g™ - h", with r & Zg, and sets
dec = (m,r)

o Open(com, dec) returns dec = (m, r); verifier accepts if
com=g"m-h"

o Hiding property is unconditional

o Binding property relies on the discrete logarithm problem:

Distinct openings (m, r), (m’,r’) of a given commitment
com=gm"h" = g’"/h’/ reveal

logg(h) = (r' = r)/(m—m') mod q

B. Libert Commitments and ZK proofs April 25, 2014 5/ 34

Commitments

RSA-based commitment:

@ Setup(A) chooses an RSA modulus N = pq, with a prime e s.t.
ged(e, o(N)) =1 and g & Zj,. It defines pk = (g, e, N)

B. Libert Commitments and ZK proofs April 25, 2014 6 /34

Commitments

RSA-based commitment:

@ Setup(A) chooses an RSA modulus N = pq, with a prime e s.t.
ged(e, o(N)) =1 and g & Zj,. It defines pk = (g, e, N)

e Compy(m) given m € {0,...,e — 1}, outputs com = g™ - r® mod N,
with r & 7%, and sets dec = (m, r)

B. Libert Commitments and ZK proofs April 25, 2014 6 /34

Commitments

RSA-based commitment:

@ Setup(\) chooses an RSA modulus N = pgq, with a prime e s.t.
gcd(e, o(N)) =1 and g & Z4,. It defines pk = (g, e, N)

e Compy(m) given m € {0,...,e — 1}, outputs com = g™ - r® mod N,
with r & Z3,, and sets dec = (m, r)

e Open,(m,d) returns dec = (m, r); verifier accepts if
com=g™m-r® mod N

@ Unconditionally hiding

e Binding under the RSA assumption: two distinct openings (m, r),
(m', r') such that

gm"rt=gmr® (mod N)
reveal g1/¢ mod N

B. Libert Commitments and ZK proofs April 25, 2014 6 /34

Application: Coin-flipping over the Internet

Distrustful parties A and B want to jointly generate a random b € {0,1}:

@ B picks a random bg € {0,1} which is kept secret

B. Libert Commitments and ZK proofs April 25, 2014 7 /34

Application: Coin-flipping over the Internet

Distrustful parties A and B want to jointly generate a random b € {0,1}:

@ B picks a random bg € {0,1} which is kept secret

@ A chooses by €r {0,1}, computes a commitment-decommitment pair
(com, dec) = Com(ba) and sends com to B

B. Libert Commitments and ZK proofs April 25, 2014 7 /34

Application: Coin-flipping over the Internet

Distrustful parties A and B want to jointly generate a random b € {0,1}:

@ B picks a random bg € {0,1} which is kept secret

@ A chooses by €r {0,1}, computes a commitment-decommitment pair
(com, dec) = Com(ba) and sends com to B

@ B reveals b

B. Libert Commitments and ZK proofs April 25, 2014 7 /34

Application: Coin-flipping over the Internet

Distrustful parties A and B want to jointly generate a random b € {0,1}:

@ B picks a random bg € {0,1} which is kept secret

@ A chooses by €r {0,1}, computes a commitment-decommitment pair
(com, dec) = Com(ba) and sends com to B

@ B reveals b

@ A and B output b= by @ bg.

B. Libert Commitments and ZK proofs April 25, 2014 7 /34

Application: Coin-flipping over the Internet

Distrustful parties A and B want to jointly generate a random b € {0,1}:

@ B picks a random bg € {0,1} which is kept secret

@ A chooses by €g {0,1}, computes a commitment-decommitment pair
(com, dec) = Com(ba) and sends com to B

@ B reveals b

@ A and B output b = bs P bg.

Output b is guaranteed to be uniform in {0,1} as long as A or B is honest

B. Libert Commitments and ZK proofs April 25, 2014 7 /34

Zero-knowledge proofs

The identification problem: How to safely prove oneself

EH,VOus DELX/ Ie PENSE BiEN: 3 ' » MERCT. VENEZ,
/ CoeTTo, ERGO - \VOUS Alh-..
LE MOT DE PASSE. g ason. .

RNONS) RETOURNONS !
5

B. Libert Commitments and ZK proofs April 25, 2014 8 /34

The identification problem

Statement: “l am the only one who knows this secret”

How can | prove that?

B. Libert Commitments and ZK proofs April 25, 2014 9 /34

The identification problem

Statement: “l am the only one who knows this secret”
How can | prove that?

@ Send the secret?
No: then the verifier also know my secret. ..

B. Libert Commitments and ZK proofs April 25, 2014 9 /34

The identification problem

Statement: “l am the only one who knows this secret”
How can | prove that?

@ Send the secret?
No: then the verifier also know my secret. ..

@ Take a signing key as secret, and show that | can sign a message?
Still too much: the verifier learns a signature, can prove | was there,

B. Libert Commitments and ZK proofs April 25, 2014 9 /34

The identification problem

Statement: “l am the only one who knows this secret”
How can | prove that?

© Send the secret?
No: then the verifier also know my secret. ..

@ Take a signing key as secret, and show that | can sign a message?
Still too much: the verifier learns a signature, can prove | was there,

© Take a private key as secret, and show that | can decrypt a message?
Still too much: the verifier might learn the decryption of something. ..

B. Libert Commitments and ZK proofs April 25, 2014 9 /34

The identification problem
| want to prove that | am the one who knows this secret, but not to

provide any other knowledge . ..

Idea: Make sure that the verifier already knows my answer!

B. Libert Commitments and ZK proofs April 25, 2014 10 / 34

The identification problem

| want to prove that | am the one who knows this secret, but not to
provide any other knowledge . ..

Idea: Make sure that the verifier already knows my answer!

¢ = Encpi(m)

P 4
v com v
[] []
v m' v
[] []
v dec v
[] []

@ pk is P's public encryption key
e (com, dec) < Com(m)

@ dec is sent only if m = m’

B. Libert Commitments and ZK proofs April 25, 2014 10 / 34

Proofs

e “Traditional” mathematical proofs:

“A list of reasons that shows a statement to be true”

B. Libert Commitments and ZK proofs April 25, 2014 11 /34

Proofs

e “Traditional” mathematical proofs:

“A list of reasons that shows a statement to be true”

o Non-interactive

e No unique verifier in mind

B. Libert Commitments and ZK proofs April 25, 2014 11 /34

Proofs

e “Traditional” mathematical proofs:

“A list of reasons that shows a statement to be true”

o Non-interactive

e No unique verifier in mind

@ It can also be an interactive conversation

B. Libert Commitments and ZK proofs April 25, 2014 11 /34

Proofs

e “Traditional” mathematical proofs:

“A list of reasons that shows a statement to be true”

o Non-interactive

e No unique verifier in mind

@ It can also be an interactive conversation

@ Many applications require designated verifier proofs

B. Libert Commitments and ZK proofs April 25, 2014 11 /34

Interactive proofs

Three ingredients:

@ A prover P, possibly unbounded
@ A verifier V, PPT bounded
© A language L C {0,1}* defining a set of true statements

B. Libert Commitments and ZK proofs April 25, 2014 12 / 34

Interactive proofs
Three ingredients:

@ A prover P, possibly unbounded
Q A verifier V, PPT bounded
© A language L C {0,1}* defining a set of true statements

Properties:

@ Even if P is unbounded, he should not be able to prove wrong things
@ V must be able to perform his task efficiently

@ L can be a lot of things:

o set of Diffie-Hellman tuples (g, g?, g", g??) € G* in a cyclic
group G

o set of pairs of isomorphic graphs

B. Libert Commitments and ZK proofs April 25, 2014 12 / 34

Interactive proofs

The pair (P, V) is an interactive proof system for L if:

o = £ DA
B. Libert Commitments and ZK proofs

Interactive proofs

The pair (P, V) is an interactive proof system for L if:

© Completeness: If x € L then the probability that P does not
convince V is negligible in |x]|

@ Soundness: If x & L then the probability that any P* convinces V is
negligible in |x|

B. Libert Commitments and ZK proofs April 25, 2014 13 / 34

Interactive proofs

The pair (P, V) is an interactive proof system for L if:

© Completeness: If x € L then the probability that P does not
convince V is negligible in |x]|

@ Soundness: If x & L then the probability that any P* convinces V is
negligible in |x|

Observations:

@ V can be convinced even if P* is unbounded

B. Libert Commitments and ZK proofs April 25, 2014 13 / 34

Interactive proofs

The pair (P, V) is an interactive proof system for L if:

@ Completeness: If x € L then the probability that P does not
convince V is negligible in |x]|

@ Soundness: If x & L then the probability that any P* convinces V is
negligible in |x|

Observations:
@ V can be convinced even if P* is unbounded

@ Proofs are probabilistic

B. Libert Commitments and ZK proofs April 25, 2014 13 / 34

Interactive proofs

The pair (P, V) is an interactive proof system for L if:

@ Completeness: If x € L then the probability that P does not
convince V is negligible in |x]|

@ Soundness: If x & L then the probability that any P* convinces V is
negligible in |x|

Observations:

@ V can be convinced even if P* is unbounded

@ Proofs are probabilistic

@ P may generate a proof using a witness w of the membership of
x € L (if one exists):

o For the set of Diffie-Hellman tuples: send a

o For the set of isomorphic graphs: send an isomorphism

B. Libert Commitments and ZK proofs April 25, 2014 13 / 34

Zero-knowledge proofs

Motivation:

@ Protect the prover: the verifier should not learn anything but the fact
that x € L; no information about w should leak

B. Libert Commitments and ZK proofs April 25, 2014 14 / 34

Zero-knowledge proofs

Motivation:

@ Protect the prover: the verifier should not learn anything but the fact
that x € L; no information about w should leak

Idea:

@ Let trans be the discussion between P and any PPT V* on input x

@ A simulator should be able to produce something indistinguishable
from trans just from x

B. Libert Commitments and ZK proofs April 25, 2014 14 / 34

Zero-knowledge proofs

Motivation:

@ Protect the prover: the verifier should not learn anything but the fact
that x € L; no information about w should leak

Idea:

@ Let trans be the discussion between P and any PPT V* on input x
@ A simulator should be able to produce something indistinguishable
from trans just from x

Observations:

@ No verifier can convince that a transcript is “real”: he could have
produced it himself
@ This “simulator” can build trans in any order and even rewind the

verifier!

B. Libert Commitments and ZK proofs April 25, 2014 14 / 34

Zero-knowledge proofs

(P, V) is a perfect zero-knowledge interactive proof system for L if ¥V PPT
V*, 3 a PPT simulator Sy« s.t. VD:

Pr[D(trans(p,y+)(x)) = 1] = Pr[D(transs,.(x)) = 1]

where:
@ trans(p y+)(x) is the transcript of the interaction of P and V* on

input x
e transs,,.(x) is the output of Sy« on input x
@ D is anyone who tries to distinguish the two transcripts

B. Libert Commitments and ZK proofs April 25, 2014 15 / 34

Zero-knowledge proofs

(P, V) is a perfect zero-knowledge interactive proof system for L if ¥V PPT
V*, 3 a PPT simulator Sy« s.t. VD:

Pr[D(trans(p,y+)(x)) = 1] = Pr[D(transs,.(x)) = 1]

where:
@ trans(p y+)(x) is the transcript of the interaction of P and V* on

input x
e transs,,.(x) is the output of Sy« on input x
@ D is anyone who tries to distinguish the two transcripts

Remark:
@ One could define computational zero-knowledge:

o D must be PPT
o the probabilities can have a negligible difference

B. Libert Commitments and ZK proofs April 25, 2014 15 / 34

Graph isomorphism

Two graphs G := (Gy, Gg) and H := (Hy, Hg) are isomorphic if
@ J a bijection f : Gy — Hy and
° (g1,8) € Ge & (f(e1), f(g2)) € He

Are these two graphs isomorphic?

B. Libert Commitments and ZK proofs April 25, 2014 16 / 34

Graph isomorphism

Two graphs G := (Gy, Gg) and H := (Hy, Hg) are isomorphic if
@ J a bijection f : Gy — Hy and
° (g1,8) € Ge & (f(e1), f(g2)) € He

Are these two graphs isomorphic?

No known algorithm allows deciding in PPT whether two graphs are
isomorphic

B. Libert Commitments and ZK proofs April 25, 2014 16 / 34

Proof of Graph isomorphism
On input G := (Gy, Gg) and H := (Hy, Hg) (isomorphic):

@ P computes (or knows) a bijection f : Gy — Hy

B. Libert Commitments and ZK proofs April 25, 2014 17 / 34

Proof of Graph isomorphism
On input G := (Gy, Gg) and H := (Hy, Hg) (isomorphic):
@ P computes (or knows) a bijection f : Gy — Hy

@ P repeats n times:

a. P publishes a graph | := (ly, Ig) built as follows:

@ select a random bijection g : Gy — Iy,

@ build I s.t. (Gy, Gg) and (ly, Ig) are isomorphic
b. V sends a random bit ¢ € {0,1} to P
c. P answers with h where:

o hi=glifc=0

o hi=fglifc=1

B. Libert Commitments and ZK proofs April 25, 2014 17 / 34

Proof of Graph isomorphism
On input G := (Gy, Gg) and H := (Hy, Hg) (isomorphic):
@ P computes (or knows) a bijection f : Gy — Hy

@ P repeats n times:

a. P publishes a graph | := (ly, Ig) built as follows:
@ select a random bijection g : Gy — Iy,
@ build I s.t. (Gy, Gg) and (ly, Ig) are isomorphic
b. V sends a random bit ¢ € {0,1} to P
c. P answers with h where:
o hi=glifc=0
o hi=fglifc=1
© V accepts the proof if, every time, h witnesses that:
o (lv, Ig) is isomorphic to (Gy, Gg) when ¢ =0
@ (lv,Ig) is isomorphic to (Hy, Hg) when ¢ =1

B. Libert Commitments and ZK proofs April 25, 2014 17 / 34

Proof of Graph isomorphism

Completeness:

@ P can answer all challenges

o = £ DA
B. Libert Commitments and ZK proofs

Proof of Graph isomorphism

Completeness:

@ P can answer all challenges

Soundness:

e If G =(Gy, Gg) and H = (Hy, Hg) are not isomorphic, then
I = (v, Ig) can only be isomorphic to one of them

= P* has a probability % of not being able to answer the challenge

@ That makes a probability 2—1,, of P* being able to convince V

B. Libert Commitments and ZK proofs April 25, 2014 18 / 34

Proof of Graph isomorphism
Perfect zero-knowledge: Build the simulator Sy« as follows:

@ Start V* and feed it with G and H

B. Libert Commitments and ZK proofs April 25, 2014 19 / 34

Proof of Graph isomorphism
Perfect zero-knowledge: Build the simulator Sy« as follows:

@ Start V* and feed it with G and H

O Repeat until transg,. contains n transcripts:
a. Flip a coin b € {0,1}
b. Build a graph /, as in the normal proof, but

e isomorphicto G if b=10
e isomorphicto Hif b=1
c. Send | to V* and wait for ¢ € {0,1}

d. If ¢ = b then compute the permutation h that would be provided
in the protocol, and append (/, c, h) to transs,,.

e. If ¢ # b then rewind V* where it was when entering this iteration
and retry

© Output transs,,.

B. Libert Commitments and ZK proofs April 25, 2014 19 / 34

Proof of Graph isomorphism

Observations:

@ Sy~ tries to guess ¢ € {0, 1}, and restart/reboot V* when it fails
o Failure probability is % each time

@ At each iteration, a valid transcript is obtained after n attempts,
except with probability %

o If Sy« makes n attempts at each iteration, it wins except with
negligible probability 1 — n/2"

o If G and H are isomorphic, the simulated transcript is distributed as
the real one

B. Libert Commitments and ZK proofs April 25, 2014 20 / 34

> -protocols

A family of:

o efficient,
@ 3-move,
@ honest-verifier zero-knowledge

protocols of the following form

Common input: P and V both have a statement x

Private input: P has a witness w showing that x € L

1. P sends a commitment a to V
2. V sends a random challenge ¢ €g {0,1}"
3. P sends a response f

Given (a, ¢, f), V outputs 0 or 1

B. Libert Commitments and ZK proofs April 25, 2014 21/ 34

> -protocols

IMis a X-protocol for relation R if:

@ It is a 3-move protocol with completeness, made of a commitment
a, followed by a random challenge c, and ending with a response f

e Special soundness: For any pair (a,c, f) and (a, c’, f) of accepting
conversations on input x where ¢ # ¢/, one can efficiently compute
w:(x,w)€ER

@ Honest-verifier zero-knowledge: There is an efficient simulator
that, on input x and a challenge ¢ € {0,1}", produces (a, f) such
that (a, ¢, f) is distributed as in a normal proof.

B. Libert Commitments and ZK proofs April 25, 2014 22 / 34

Schnorr’s protocol

Let G be a group of prime order g with generator g

r

g

C

r+c-umodq

e<—e0<=Ty
0=

P proves knowledge of u € Zg to V who has h=g" € G

B. Libert Commitments and ZK proofs April 25, 2014 23 / 34

Schnorr’s protocol

Let G be a group of prime order g with generator g

r

g

C

r+c-umodq

R
0=

P proves knowledge of u € Zg to V who has h=g" € G

© P chooses r < Zg and commits through a := g"
@ V challenges with a random ¢ < Zpn

© P responds with f :=r+c-umod g

Q V accepts if gf = a-(g¥)¢

B. Libert Commitments and ZK proofs April 25, 2014 23 /34

Schnorr’s protocol

f:=r+4+c-umodgqg

e<=—0<="T
5 ..
0= =<

Completeness: obvious
Soundness:

@ In order to reply with non-negligible probability, P must be able to
respond to more than 2 challenges, say ¢ and ¢’

o Then g"/(g")" = & /(g") and u=E=F,
Honest verifier zero-knowledge:
o Given h = g“ and c, choose f €g Z, and compute a := g’ /(g")¢

B. Libert Commitments and ZK proofs April 25, 2014 24 / 34

Schnorr’s protocol

f:=r+4+c-umodgqg

e<=—0<="T
R ..
0= =<

Completeness: obvious
Soundness:

@ In order to reply with non-negligible probability, P must be able to
respond to more than 2 challenges, say ¢ and ¢’

o Then g”/(g")° = g /(g*)¢ and u= =5

c—cC

Honest verifier zero-knowledge:

o Given h = g“ and c, choose f €g Z, and compute a := g’ /(g")¢
(This does not works if, say, V computes ¢ := H(g"))

B. Libert Commitments and ZK proofs April 25, 2014 24 / 34

The Guillou-Quisquater protocol

Let N = pq be an RSA modulus and a prime e such that gcd(e, p(N)) =1

a:=rmodN

C

f:=r-umod N

e—e<=Ty
ei—e=<

P proves knowledge of u € Z},, where | = u® mod N is public

B. Libert Commitments and ZK proofs April 25, 2014 25 / 34

The Guillou-Quisquater protocol

Let N = pq be an RSA modulus and a prime e such that gcd(e, p(N)) =1

a:=rmodN

C

f:=r-umod N

e—e<=Ty
ei—e=<

P proves knowledge of u € Z},, where | = u® mod N is public

© P chooses r <— Zjy, and commits through a := r® mod N
@ V challenges with a random ¢ < {0,...,e — 1}

© P responds with f :=r - u® mod N

Q V acceptsif f¢=a-I¢ (mod N)

B. Libert Commitments and ZK proofs April 25, 2014 25 / 34

The Guillou-Quisquater protocol

Exercises:

@ Show the soundness property of GQ
(hint: use the binding property of the RSA-based commitment)

@ Show that Schnorr and GQ with binary challenges ¢ € {0,1} are
perfectly ZK

@ Show that any X protocol implies a commitment

B. Libert Commitments and ZK proofs April 25, 2014 26 / 34

Non-interactive ZK

Honest verifier ZK gives non-interactive proofs

o = = £ DA
B. Libert Commitments and ZK proofs

Non-interactive ZK

Honest verifier ZK gives non-interactive proofs

Let H be a random oracle:
e Compute c := H(a, x) and send non-interactive proof (a, c, f)!
@ Implies a signature scheme via the Fiat-Shamir heuristic

By including the message m in the statement ¢ := H(a, (x, m))

B. Libert Commitments and ZK proofs April 25, 2014 27 / 34

Non-interactive ZK

Honest verifier ZK gives non-interactive proofs

Let H be a random oracle:
e Compute ¢ := H(a, x) and send non-interactive proof (a, c, f)!
@ Implies a signature scheme via the Fiat-Shamir heuristic

By including the message m in the statement ¢ := H(a, (x, m))

The resulting protocol is sound in the ROM. Sketch:

e S starts P*, answers H(a, x) requests with random ¢ until it gets a
valid (a, c,) from P*.

@ Then S restarts P* and answers H(a, x) requests with random ¢’
until it gets a different proof for the same (a, x).

B. Libert Commitments and ZK proofs April 25, 2014 27 / 34

Proving statements about ElGamal ciphertexts

ElGamal encryption in prime-order group:

@ Public key: (g,h) :=(g,g")
o Ciphertext: (c1,) := (g%, m-g"")

B. Libert Commitments and ZK proofs April 25, 2014 28 / 34

Proving statements about ElGamal ciphertexts

ElGamal encryption in prime-order group:
@ Public key: (g,h) :=(g,g")
o Ciphertext: (c1,) := (g%, m-g"")
Statement:

@ (c1,) is an encryption of m under (g, h)
e (g,h,c1,c0/m) = (g,g",8",8") is a Diffie-Hellman tuple

@ witness: either x or y

B. Libert Commitments and ZK proofs April 25, 2014 28 / 34

Proving statements about ElGamal ciphertexts

ElGamal encryption in prime-order group:

@ Public key: (g,h) :=(g,g")
o Ciphertext: (c1,) == (g“, m-g")

Statement:

@ (c1,) is an encryption of m under (g, h)

e (g,h,c1,c0/m) = (g,g",8",8") is a Diffie-Hellman tuple
@ witness: either x or y

Reformulation: L contains all (g1, 82,83, 84) s-t. log,, (82) = log,, (g4)

o Either (g1,82,83,84) == (g.8",8",8"") (witness is u)
e Or (g1,82,83,81) = (g,8",8%, ") (witness is v)

B. Libert Commitments and ZK proofs April 25, 2014 28 / 34

Chaum-Pedersen protocol

Let G be a group of prime order g with generator g

gl, 8%

C

ei—e=<

r+c-umodq

e—e<=Tp

P proves that log,, (g2) = log,,(g4)(= v)

B. Libert Commitments and ZK proofs April 25, 2014 29 / 34

Chaum-Pedersen protocol

Let G be a group of prime order g with generator g

gl, 8%

C

e—e<=Ty
ei—e=<

r+c-umodq

P proves that log,, (g2) = log,,(g4)(= v)

@ P chooses r < Zq and commits through a := (a1, a3) = (g7, &3)
@ V challenges with a random ¢ < Zpn

© P responds with f :=r+ c-umod q

Q V accepts if gf = a1 (g2)€ and gf = a3 - (&u)°

B. Libert Commitments and ZK proofs April 25, 2014 29 / 34

Chaum-Pedersen protocol

Let G be a group of prime order g with generator g

a:=(gf,&3)

C

f:=r+c-umodgqg

e<—0<=T
00 =<

Completeness: obvious
Soundness:
e If P can prove with ((a1, a3),c, f) and ((a1, a3), ¢/, f’) then
u = logg, (g2) = logg, (&) = =5
Honest verifier zero-knowledge:
e Given c, choose f €g Z4 and compute a1 := gf /(g2)¢ and
a3 == gf/(&s)°

B. Libert Commitments and ZK proofs April 25, 2014 30/ 34

Proving OR statements

Suppose we have:
@ a X-protocol Iy for proving that xp € Lo
@ a X-protocol Iy for proving that x; € L
Combining proofs:

@ Proving that xp € Lo A x3 € L is trivial
@ Can we prove that xg € LoV x1 € L17?

B. Libert Commitments and ZK proofs April 25, 2014 31/ 34

Proving OR statements

Suppose we have:

@ a X-protocol Iy for proving that xp € Lo
@ a X-protocol Iy for proving that x; € L

Combining proofs:

@ Proving that xp € Lo A x3 € L is trivial
@ Can we prove that xg € LoV x1 € L17?

Applications:

@ | know one of the DL of (h1,...,h,) in base g (anonymous
authentication)

@ This is an encryption of 0 or 1 (election)

B. Libert Commitments and ZK proofs April 25, 2014 31/ 34

Disjunctive proofs [CDS94]

Suppose prover has w; : (x;, w;) € R; (but not wy_;)

@ P selects random c¢;_; and runs S;_; to get a proof (a1—j, c1—j, fi—;)

@ P selects a; as [1;'s definition

© P commits on (&g, a1) to V

© V challenges with ¢

@ P computes ¢; = ¢ @ ¢ and f; from (w;, aj, ¢;)

@ V accepts if (ao, co, fo) and (a1, c1, 1) check for My and Iy and
cPDc=c

B. Libert Commitments and ZK proofs April 25, 2014 32 /34

Disjunctive proofs

Let G be a group of prime order g with generator g

40, d1

C

fo, fi

e=0<=T
0= =<

Completeness: obvious
Soundness:
@ P* has to follow either Mg or My
Honest verifier zero-knowledge:
@ Choose (¢, c1) at random, run Sp, S to get (ap, co, fo) and
(a1, c1, f1)
e Simulated transcript is (ap, a1, co @ c1, fo, 1)

B. Libert Commitments and ZK proofs April 25, 2014 33 /34

Conclusions

Zero-knowledge proof systems
@ | convince you that this statement is true
@ This is the only thing you learn

@ You cannot use my proof to convince anyone else (interactive case)

References (available online):

o Ivan Damgard and Jesper Buus Nielsen: Commitment Schemes and
Zero-Knowledge Protocols

@ Ivan Damgard: On X-protocols

Slides are available online:
http://perso.ens-1lyon.fr/benoit.libert/cours-ZK.pdf

B. Libert Commitments and ZK proofs April 25, 2014 34 /34

http://perso.ens-lyon.fr/benoit.libert/cours-ZK.pdf

	Front
	Commitment schemes
	Definition
	Examples
	Appication: distributed coin-flipping

	Zero-knowledge proofs
	Definitions
	Proofs of graph isomorphisms

	 protocols
	Schnorr's protocol
	Proofs about ElGamal ciphertexts

