Commitment Schemes and Zero-knowledge proofs

Benoît Libert benoit.libert@ens-lyon.fr The coin flipping problem:

- Two distrustful parties want to play a coin flipping game over the Internet or by phone
- ... or even jointly generate a sequence of random bits
- How can they make sure the other party is not cheating?
- **Solution:** Use a cryptographic commitment scheme

Digital equivalent of a sealed box

What does it provide?

- **Binding** property: once I have sent a value in a locked box, I cannot change it anymore
- **Hiding** property: nobody can tell what is inside the box without the key

- In commitments schemes (Setup, Com, Open),
 - Setup(λ) given a security parameter $\lambda \in \mathbb{N}$, outputs a public key *pk*
 - $\operatorname{Com}_{pk}(m)$ outputs a commitment com and a decommitment dec
 - Open_{pk}(com, dec) outputs evidence dec that the committed message was m
- Requirements:
 - Hiding: for any $m_0, m_1 \in \mathcal{M}$, we have $\{\operatorname{Com}_{pk}(m_0)\} \approx \{\operatorname{Com}_{pk}(m_1)\}$
 - Binding: given pk, it must be infeasible to output com and two correct openings (m, dec), (m', dec') with m ≠ m'

イロト 不得下 イヨト イヨト 二日

Pedersen's commitment:

- Setup(λ) chooses a group \mathbb{G} of prime order $q > 2^{\lambda}$ and $g, h \stackrel{R}{\leftarrow} \mathbb{G}$. It defines pk = (g, h)
- Com_{pk}(m) outputs $com = g^m \cdot h^r$, with $r \stackrel{R}{\leftarrow} \mathbb{Z}_q$, and sets dec = (m, r)
- Open_{pk}(com, dec) returns dec = (m, r); verifier accepts if com = g^m · h^r
- Hiding property is unconditional
- **Binding** property relies on the *discrete logarithm* problem:

Distinct openings (m, r), (m', r') of a given commitment $com = g^m h^r = g^{m'} h^{r'}$ reveal

$$\log_g(h) = (r' - r)/(m - m') \bmod q$$

A (10) A (10) A (10)

Pedersen's commitment:

- Setup(λ) chooses a group \mathbb{G} of prime order $q > 2^{\lambda}$ and $g, h \stackrel{R}{\leftarrow} \mathbb{G}$. It defines pk = (g, h)
- Com_{pk}(m) outputs $com = g^m \cdot h^r$, with $r \stackrel{R}{\leftarrow} \mathbb{Z}_q$, and sets dec = (m, r)
- Open_{pk}(com, dec) returns dec = (m, r); verifier accepts if com = g^m ⋅ h^r
- Hiding property is unconditional
- **Binding** property relies on the *discrete logarithm* problem:

Distinct openings (m, r), (m', r') of a given commitment $com = g^m h^r = g^{m'} h^{r'}$ reveal

$$\log_g(h) = (r' - r)/(m - m') \bmod q$$

- 4 目 ト - 4 日 ト - 4 日 ト

Pedersen's commitment:

- Setup(λ) chooses a group G of prime order q > 2^λ and g, h ^R G. It defines pk = (g, h)
- Com_{pk}(m) outputs $com = g^m \cdot h^r$, with $r \stackrel{R}{\leftarrow} \mathbb{Z}_q$, and sets dec = (m, r)
- Open_{pk}(com, dec) returns dec = (m, r); verifier accepts if com = g^m ⋅ h^r
- Hiding property is unconditional
- Binding property relies on the *discrete logarithm* problem:

Distinct openings (m, r), (m', r') of a given commitment $com = g^m h^r = g^{m'} h^{r'}$ reveal

$$\log_g(h) = (r' - r)/(m - m') \bmod q$$

Pedersen's commitment:

- Setup(λ) chooses a group \mathbb{G} of prime order $q > 2^{\lambda}$ and $g, h \stackrel{R}{\leftarrow} \mathbb{G}$. It defines pk = (g, h)
- Com_{pk}(m) outputs $com = g^m \cdot h^r$, with $r \stackrel{R}{\leftarrow} \mathbb{Z}_q$, and sets dec = (m, r)
- Open_{pk}(com, dec) returns dec = (m, r); verifier accepts if com = g^m ⋅ h^r
- Hiding property is unconditional
- **Binding** property relies on the *discrete logarithm* problem:

Distinct openings (m, r), (m', r') of a given commitment $com = g^m h^r = g^{m'} h^{r'}$ reveal

$$\log_g(h) = (r' - r)/(m - m') \bmod q$$

- 4 個 ト 4 国 ト - 4 国 ト - 三日

RSA-based commitment:

- Setup(λ) chooses an RSA modulus N = pq, with a prime e s.t. $gcd(e, \varphi(N)) = 1$ and $g \stackrel{R}{\leftarrow} \mathbb{Z}_N^*$. It defines pk = (g, e, N)
- Com_{pk}(m) given $m \in \{0, ..., e-1\}$, outputs $com = g^m \cdot r^e \mod N$, with $r \stackrel{R}{\leftarrow} \mathbb{Z}_N^*$, and sets dec = (m, r)
- Open_{pk}(m, d) returns dec = (m, r); verifier accepts if com = g^m · r^e mod N
- Unconditionally hiding
- **Binding** under the *RSA assumption*: two distinct openings (*m*, *r*), (*m'*, *r'*) such that

$$g^m r^e \equiv g^{m'} r'^e \pmod{N}$$

reveal $g^{1/e} \mod N$

(人間) トイヨト イヨト

RSA-based commitment:

- Setup(λ) chooses an RSA modulus N = pq, with a prime e s.t. $gcd(e, \varphi(N)) = 1$ and $g \stackrel{R}{\leftarrow} \mathbb{Z}_N^*$. It defines pk = (g, e, N)
- Com_{pk}(m) given $m \in \{0, \ldots, e-1\}$, outputs $com = g^m \cdot r^e \mod N$, with $r \stackrel{R}{\leftarrow} \mathbb{Z}^*_N$, and sets dec = (m, r)
- Open_{pk}(m, d) returns dec = (m, r); verifier accepts if com = g^m · r^e mod N
- Unconditionally hiding
- **Binding** under the *RSA assumption*: two distinct openings (*m*, *r*), (*m*', *r*') such that

$$g^m r^e \equiv g^{m'} r'^e \pmod{N}$$

reveal $g^{1/e} \mod N$

- 4 同 6 4 日 6 4 日 6

RSA-based commitment:

- Setup(λ) chooses an RSA modulus N = pq, with a prime e s.t. $gcd(e, \varphi(N)) = 1$ and $g \stackrel{R}{\leftarrow} \mathbb{Z}_N^*$. It defines pk = (g, e, N)
- Com_{pk}(m) given $m \in \{0, \ldots, e-1\}$, outputs $com = g^m \cdot r^e \mod N$, with $r \stackrel{R}{\leftarrow} \mathbb{Z}^*_N$, and sets dec = (m, r)
- Open_{pk}(m, d) returns dec = (m, r); verifier accepts if com = g^m ⋅ r^e mod N
- Unconditionally hiding
- **Binding** under the RSA assumption: two distinct openings (m, r), (m', r') such that

$$g^m r^e \equiv g^{m'} r'^e \pmod{N}$$

reveal $g^{1/e} \mod N$

- 4 目 ト - 4 日 ト - 4 日 ト

Distrustful parties A and B want to jointly generate a random $b \in_R \{0, 1\}$:

- B picks a random $b_B \in_R \{0,1\}$ which is kept secret
- A chooses b_A ∈_R {0,1}, computes a commitment-decommitment pair (com, dec) = Com(b_A) and sends com to B

• B reveals b_B

• A and B output $b = b_A \oplus b_B$.

Output b is guaranteed to be uniform in $\{0,1\}$ as long as A or B is honest

イロト イポト イヨト イヨト

Distrustful parties A and B want to jointly generate a random $b \in_R \{0, 1\}$:

- B picks a random $b_B \in_R \{0,1\}$ which is kept secret
- A chooses b_A ∈_R {0,1}, computes a commitment-decommitment pair (com, dec) = Com(b_A) and sends com to B

• B reveals b_B

• A and B output $b = b_A \oplus b_B$.

Output b is guaranteed to be uniform in $\{0,1\}$ as long as A or B is honest

イロト 不得下 イヨト イヨト 二日

Distrustful parties A and B want to jointly generate a random $b \in_R \{0, 1\}$:

- B picks a random $b_B \in_R \{0,1\}$ which is kept secret
- A chooses b_A ∈_R {0,1}, computes a commitment-decommitment pair (com, dec) = Com(b_A) and sends com to B

• B reveals b_B

• A and B output $b = b_A \oplus b_B$.

Output b is guaranteed to be uniform in $\{0,1\}$ as long as A or B is honest

イロト イポト イヨト イヨト

Distrustful parties A and B want to jointly generate a random $b \in_R \{0, 1\}$:

- B picks a random $b_B \in_R \{0,1\}$ which is kept secret
- A chooses b_A ∈_R {0,1}, computes a commitment-decommitment pair (com, dec) = Com(b_A) and sends com to B
- B reveals b_B
- A and B output $b = b_A \oplus b_B$.

Output b is guaranteed to be uniform in {0,1} as long as A or B is honest

イロト 不得下 イヨト イヨト 二日

Distrustful parties A and B want to jointly generate a random $b \in_R \{0, 1\}$:

- B picks a random $b_B \in_R \{0,1\}$ which is kept secret
- A chooses b_A ∈_R {0,1}, computes a commitment-decommitment pair (com, dec) = Com(b_A) and sends com to B
- B reveals b_B
- A and B output $b = b_A \oplus b_B$.

Output b is guaranteed to be uniform in $\{0,1\}$ as long as A or B is honest

イロト イポト イヨト イヨト 二日

Zero-knowledge proofs

The identification problem: How to safely prove oneself

(日) (周) (三) (三)

Statement: "I am the only one who knows this secret"

How can I prove that?

Send the secret?
 No: then the verifier also know my secret...

- Take a signing key as secret, and show that I can sign a message? Still too much: the verifier learns a signature, can prove I was there,
- Take a private key as secret, and show that I can decrypt a message? Still too much: the verifier might learn the decryption of something...

Statement: "I am the only one who knows this secret"

How can I prove that?

- Send the secret?
 No: then the verifier also know my secret...
- Take a signing key as secret, and show that I can sign a message? Still too much: the verifier learns a signature, can prove I was there,
- Take a private key as secret, and show that I can decrypt a message? Still too much: the verifier might learn the decryption of something...

Statement: "I am the only one who knows this secret"

How can I prove that?

- Send the secret?
 No: then the verifier also know my secret...
- Take a signing key as secret, and show that I can sign a message? Still too much: the verifier learns a signature, can prove I was there, ...
- Take a private key as secret, and show that I can decrypt a message? Still too much: the verifier might learn the decryption of something...

Statement: "I am the only one who knows this secret"

How can I prove that?

- Send the secret?
 No: then the verifier also know my secret...
- Take a signing key as secret, and show that I can sign a message? Still too much: the verifier learns a signature, can prove I was there, ...
- Take a private key as secret, and show that I can decrypt a message? Still too much: the verifier might learn the decryption of something...

I want to prove that I am the one who knows this secret, but not to provide any other knowledge ...

Idea: Make sure that the verifier already knows my answer!

- *pk* is *P*'s public encryption key
- $(com, dec) \leftarrow Com(m)$
- dec is sent only if m = m'

I want to prove that I am the one who knows this secret, but not to provide any other knowledge \dots

Idea: Make sure that the verifier already knows my answer!

- pk is P's public encryption key
- $(com, dec) \leftarrow Com(m)$
- dec is sent only if m = m'

• "Traditional" mathematical proofs:

- Non-interactive
- No unique verifier in mind
- It can also be an interactive conversation
- Many applications require designated verifier proofs

• "Traditional" mathematical proofs:

- Non-interactive
- No unique verifier in mind
- It can also be an interactive conversation
- Many applications require designated verifier proofs

• "Traditional" mathematical proofs:

- Non-interactive
- No unique verifier in mind
- It can also be an interactive conversation
- Many applications require designated verifier proofs

• "Traditional" mathematical proofs:

- Non-interactive
- No unique verifier in mind
- It can also be an interactive conversation
- Many applications require designated verifier proofs

Three ingredients:

- A prover P, possibly unbounded
- 2 A verifier V, PPT bounded
- **③** A language $L \subset \{0,1\}^*$ defining a set of true statements

Properties:

- Even if P is unbounded, he should not be able to prove wrong things
- V must be able to perform his task efficiently
- L can be a lot of things:
 - set of Diffie-Hellman tuples $(g,g^a,g^b,g^{ab})\in \mathbb{G}^4$ in a cyclic group \mathbb{G}
 - set of pairs of isomorphic graphs

▲ 同 ▶ → ● ▶

Three ingredients:

- A prover P, possibly unbounded
- 2 A verifier V, PPT bounded
- **③** A language $L \subset \{0,1\}^*$ defining a set of true statements

Properties:

- Even if P is unbounded, he should not be able to prove wrong things
- V must be able to perform his task efficiently
- L can be a lot of things:
 - set of Diffie-Hellman tuples $(g,g^a,g^b,g^{ab})\in \mathbb{G}^4$ in a cyclic group \mathbb{G}
 - set of pairs of isomorphic graphs

The pair (P, V) is an *interactive proof system* for L if:

- Completeness: If x ∈ L then the probability that P does not convince V is negligible in |x|
- Soundness: If x ∉ L then the probability that any P* convinces V is negligible in |x|

Observations:

- V can be convinced even if P^* is unbounded
- Proofs are probabilistic
- P may generate a proof using a witness w of the membership of x ∈ L (if one exists):
 - For the set of Diffie-Hellman tuples: send a
 - For the set of isomorphic graphs: send an isomorphism

The pair (P, V) is an *interactive proof system* for L if:

- Completeness: If x ∈ L then the probability that P does not convince V is negligible in |x|
- Soundness: If x ∉ L then the probability that any P* convinces V is negligible in |x|

Observations:

- V can be convinced even if P^* is unbounded
- Proofs are probabilistic
- *P* may generate a proof using a *witness w* of the membership of x ∈ L (if one exists):
 - For the set of Diffie-Hellman tuples: send a
 - For the set of isomorphic graphs: send an isomorphism

イロト イポト イヨト イヨト

The pair (P, V) is an *interactive proof system* for L if:

- Completeness: If x ∈ L then the probability that P does not convince V is negligible in |x|
- Soundness: If x ∉ L then the probability that any P* convinces V is negligible in |x|

Observations:

- V can be convinced even if P^* is unbounded
- Proofs are probabilistic
- *P* may generate a proof using a *witness w* of the membership of x ∈ L (if one exists):
 - For the set of Diffie-Hellman tuples: send a
 - For the set of isomorphic graphs: send an isomorphism

イロト 不得下 イヨト イヨト 二日

The pair (P, V) is an *interactive proof system* for L if:

- Completeness: If x ∈ L then the probability that P does not convince V is negligible in |x|
- Soundness: If x ∉ L then the probability that any P* convinces V is negligible in |x|

Observations:

- V can be convinced even if P^* is unbounded
- Proofs are probabilistic
- *P* may generate a proof using a *witness w* of the membership of x ∈ L (if one exists):
 - For the set of Diffie-Hellman tuples: send a
 - For the set of isomorphic graphs: send an isomorphism

イロト 不得 トイヨト イヨト 二日

The pair (P, V) is an *interactive proof system* for L if:

- Completeness: If x ∈ L then the probability that P does not convince V is negligible in |x|
- Soundness: If x ∉ L then the probability that any P* convinces V is negligible in |x|

Observations:

- V can be convinced even if P^* is unbounded
- Proofs are probabilistic
- *P* may generate a proof using a *witness w* of the membership of x ∈ L (if one exists):
 - For the set of Diffie-Hellman tuples: send a
 - For the set of isomorphic graphs: send an isomorphism

Zero-knowledge proofs

Motivation:

 Protect the prover: the verifier should not learn anything but the fact that x ∈ L; no information about w should leak

Idea:

- Let *trans* be the discussion between P and any PPT V^* on input x
- A simulator should be able to produce something indistinguishable from *trans* just from *x*

Observations:

- No verifier can convince that a transcript is "real": he could have produced it himself
- This "simulator" can build *trans* in any order and even rewind the verifier!

(日) (同) (日) (日)

Zero-knowledge proofs

Motivation:

 Protect the prover: the verifier should not learn anything but the fact that x ∈ L; no information about w should leak

Idea:

- Let *trans* be the discussion between P and any PPT V^* on input x
- A simulator should be able to produce something indistinguishable from *trans* just from *x*

Observations:

- No verifier can convince that a transcript is "real": he could have produced it himself
- This "simulator" can build *trans* in any order and even rewind the verifier!

(日) (同) (三) (三)
Zero-knowledge proofs

Motivation:

 Protect the prover: the verifier should not learn anything but the fact that x ∈ L; no information about w should leak

Idea:

- Let *trans* be the discussion between P and any PPT V^* on input x
- A simulator should be able to produce something indistinguishable from *trans* just from *x*

Observations:

- No verifier can convince that a transcript is "real": he could have produced it himself
- This "simulator" can build *trans* in any order and even rewind the verifier!

Zero-knowledge proofs

(P, V) is a *perfect zero-knowledge* interactive proof system for L if \forall PPT V^* , \exists a PPT simulator S_{V^*} s.t. $\forall D$:

$$\mathsf{Pr}[\mathcal{D}(\mathit{trans}_{(\mathcal{P},V^*)}(x)) = 1] = \mathsf{Pr}[\mathcal{D}(\mathit{trans}_{\mathcal{S}_{V^*}}(x)) = 1]$$

where:

- trans_(P,V*)(x) is the transcript of the interaction of P and V* on input x
- $trans_{\mathcal{S}_{V^*}}(x)$ is the output of \mathcal{S}_{V^*} on input x
- $\bullet \ \mathcal{D}$ is anyone who tries to distinguish the two transcripts

Remark:

- One could define *computational zero-knowledge*:
 - \mathcal{D} must be PPT
 - the probabilities can have a negligible difference

イロト イヨト イヨト イヨト

Zero-knowledge proofs

(P, V) is a *perfect zero-knowledge* interactive proof system for L if \forall PPT V^* , \exists a PPT simulator S_{V^*} s.t. $\forall D$:

$$\Pr[\mathcal{D}(\mathit{trans}_{(\mathcal{P}, V^*)}(x)) = 1] = \Pr[\mathcal{D}(\mathit{trans}_{\mathcal{S}_{V^*}}(x)) = 1]$$

where:

- trans_(P,V*)(x) is the transcript of the interaction of P and V* on input x
- $trans_{\mathcal{S}_{V^*}}(x)$ is the output of \mathcal{S}_{V^*} on input x
- $\bullet \ \mathcal{D}$ is anyone who tries to distinguish the two transcripts

Remark:

- One could define *computational zero-knowledge*:
 - ${\mathcal D}$ must be PPT
 - the probabilities can have a negligible difference

Graph isomorphism

Two graphs $G := (G_V, G_E)$ and $H := (H_V, H_E)$ are isomorphic if

- \exists a bijection $f: G_V \to H_V$ and
- $(g_1,g_2)\in G_E \Leftrightarrow (f(g_1),f(g_2))\in H_E$

Are these two graphs isomorphic?

No known algorithm allows deciding in PPT whether two graphs are isomorphic

- 4 同 6 4 日 6 4 日 6

Graph isomorphism

Two graphs $G := (G_V, G_E)$ and $H := (H_V, H_E)$ are isomorphic if

- \exists a bijection $f: G_V \to H_V$ and
- $(g_1,g_2)\in G_E \Leftrightarrow (f(g_1),f(g_2))\in H_E$

Are these two graphs isomorphic?

No known algorithm allows deciding in PPT whether two graphs are isomorphic

On input $G := (G_V, G_E)$ and $H := (H_V, H_E)$ (isomorphic):

• P computes (or knows) a bijection $f: G_V \to H_V$

P repeats n times:

a. P publishes a graph $I := (I_V, I_E)$ built as follows:

- select a random bijection $g: G_V \rightarrow I_V$,
- **2** build I_E s.t. (G_V, G_E) and (I_V, I_E) are isomorphic
- b. V sends a random bit $c \in \{0,1\}$ to P
- c. P answers with h where:

It is a set of the proof of

• (I_V, I_E) is isomorphic to (G_V, G_E) when c = 0

② (I_V, I_E) is isomorphic to (H_V, H_E) when c=1

(日) (周) (三) (三)

On input $G := (G_V, G_E)$ and $H := (H_V, H_E)$ (isomorphic):

• P computes (or knows) a bijection $f: G_V \to H_V$

P repeats n times:

- a. P publishes a graph $I := (I_V, I_E)$ built as follows:
 - select a random bijection $g: G_V \to I_V$,
 - **2** build I_E s.t. (G_V, G_E) and (I_V, I_E) are isomorphic
- b. V sends a random bit $c \in \{0,1\}$ to P
- c. P answers with h where:

I v accepts the proof if, every time, h witnesses that:

- (I_V, I_E) is isomorphic to (G_V, G_E) when c = 0
- **2** (I_V, I_E) is isomorphic to (H_V, H_E) when c = 1

On input $G := (G_V, G_E)$ and $H := (H_V, H_E)$ (isomorphic):

• P computes (or knows) a bijection $f: G_V \to H_V$

P repeats n times:

- a. P publishes a graph $I := (I_V, I_E)$ built as follows:
 - select a random bijection $g: G_V \to I_V$,
 - **2** build I_E s.t. (G_V, G_E) and (I_V, I_E) are isomorphic
- b. V sends a random bit $c \in \{0,1\}$ to P
- c. P answers with h where:

•
$$h := g^{-1}$$
 if $c = 0$

- $h := fg^{-1}$ if c = 1
- V accepts the proof if, every time, h witnesses that:
 - (I_V, I_E) is isomorphic to (G_V, G_E) when c = 0
 - **2** (I_V, I_E) is isomorphic to (H_V, H_E) when c = 1

イロト イポト イヨト イヨト 二日

Completeness:

• P can answer all challenges

Soundness:

• If $G = (G_V, G_E)$ and $H = (H_V, H_E)$ are not isomorphic, then $I = (I_V, I_E)$ can only be isomorphic to one of them

 $\Rightarrow P^*$ has a probability $rac{1}{2}$ of not being able to answer the challenge

• That makes a probability $\frac{1}{2^n}$ of P^* being able to convince V

* (四) * * (日) * * (日)

Completeness:

• P can answer all challenges

Soundness:

- If $G = (G_V, G_E)$ and $H = (H_V, H_E)$ are not isomorphic, then $I = (I_V, I_E)$ can only be isomorphic to one of them
 - $\Rightarrow P^*$ has a probability $\frac{1}{2}$ of not being able to answer the challenge
- That makes a probability $\frac{1}{2^n}$ of P^* being able to convince V

・ 回 ト ・ ヨ ト ・ ヨ ト

Perfect zero-knowledge: Build the simulator \mathcal{S}_{V^*} as follows:

• Start V^* and feed it with G and H

Repeat until trans_{Sv*} contains n transcripts:

a. Flip a coin $b \in_R \{0,1\}$

b. Build a graph I, as in the normal proof, but

- isomorphic to G if b = 0
- isomorphic to H if b = 1
- c. Send I to V^* and wait for $c \in \{0,1\}$
- d. If c = b then compute the permutation h that would be provided in the protocol, and append $\langle l, c, h \rangle$ to $trans_{S_{V^*}}$
- e. If $c \neq b$ then rewind V^* where it was when entering this iteration and retry
- Output trans_{Sv*}

圖 医水原 医水原

Perfect zero-knowledge: Build the simulator S_{V^*} as follows:

- Start V* and feed it with G and H
- **2** Repeat until *trans*_{S_{V*}} contains *n* transcripts:
 - a. Flip a coin $b \in \mathbb{R} \{0, 1\}$
 - b. Build a graph I, as in the normal proof, but
 - isomorphic to G if b = 0
 - isomorphic to H if b = 1
 - c. Send I to V^{*} and wait for $c \in \{0, 1\}$
 - d. If c = b then compute the permutation h that would be provided in the protocol, and append $\langle I, c, h \rangle$ to trans_{Sv*}
 - e. If $c \neq b$ then rewind V^{*} where it was when entering this iteration and retry
- Output trans_{Sv*}

過 ト イヨ ト イヨト

Observations:

- \mathcal{S}_{V^*} tries to guess $c \in \{0,1\}$, and restart/reboot V^* when it fails
- Failure probability is $\frac{1}{2}$ each time
- At each iteration, a valid transcript is obtained after *n* attempts, except with probability $\frac{1}{2^n}$
- If S_{V^*} makes *n* attempts at each iteration, it wins except with negligible probability $1 n/2^n$
- If G and H are isomorphic, the simulated transcript is distributed as the real one

Σ -protocols

A family of:

- efficient,
- 3-move,
- honest-verifier zero-knowledge

protocols of the following form

Common input: P and V both have a statement x **Private input:** P has a witness w showing that $x \in L$

- 1. P sends a *commitment a* to V
- 2. V sends a random challenge $c \in_R \{0,1\}^n$
- 3. P sends a response f

Given (a, c, f), V outputs 0 or 1

3

Σ -protocols

 Π is a Σ -protocol for relation R if:

- It is a 3-move protocol with **completeness**, made of a *commitment a*, followed by a random *challenge c*, and ending with a *response f*
- Special soundness: For any pair (a, c, f) and (a, c', f') of accepting conversations on input x where c ≠ c', one can efficiently compute w : (x, w) ∈ R
- Honest-verifier zero-knowledge: There is an efficient simulator that, on input x and a challenge c ∈ {0,1}ⁿ, produces (a, f) such that (a, c, f) is distributed as in a normal proof.

Let \mathbb{G} be a group of prime order q with generator g

P proves knowledge of $u \in \mathbb{Z}_q$ to V who has $h = g^u \in \mathbb{G}$

- I P chooses $r \leftarrow \mathbb{Z}_q$ and commits through $a := g^r$
- ② V challenges with a random $c \leftarrow \mathbb{Z}_{2^n}$
- 3 *P* responds with $f := r + c \cdot u \mod q$

• V accepts if
$$g^f = a \cdot (g^u)^c$$

Let \mathbb{G} be a group of prime order q with generator g

P proves knowledge of $u \in \mathbb{Z}_q$ to V who has $h = g^u \in \mathbb{G}$

- P chooses $r \leftarrow \mathbb{Z}_q$ and commits through $a := g^r$
- 2 V challenges with a random $c \leftarrow \mathbb{Z}_{2^n}$
- **(3)** *P* responds with $f := r + c \cdot u \mod q$

• V accepts if
$$g^f = a \cdot (g^u)^c$$

Completeness: obvious

Soundness:

 In order to reply with non-negligible probability, P must be able to respond to more than 2 challenges, say c and c'

• Then
$$g^f/(g^u)^c = g^{f'}/(g^u)^{c'}$$
 and $u = rac{f-f'}{c-c'}$

Honest verifier zero-knowledge:

 Given h = g^u and c, choose f ∈_R Z_q and compute a := g^f/(g^u)^c (This does not works if, say, V computes c := H(g^r))

Completeness: obvious

Soundness:

 In order to reply with non-negligible probability, P must be able to respond to more than 2 challenges, say c and c'

• Then
$$g^f/(g^u)^c = g^{f'}/(g^u)^{c'}$$
 and $u = rac{f-f'}{c-c'}$

Honest verifier zero-knowledge:

• Given $h = g^u$ and c, choose $f \in_R \mathbb{Z}_q$ and compute $a := g^f / (g^u)^c$ (This does not works if, say, V computes $c := \mathcal{H}(g^r)$)

The Guillou-Quisquater protocol

Let N = pq be an RSA modulus and a prime e such that $gcd(e, \varphi(N)) = 1$

P proves knowledge of $u \in \mathbb{Z}_N^*$, where $I = u^e \mod N$ is public

• P chooses
$$r \leftarrow \mathbb{Z}_N^*$$
 and commits through $a := r^e \mod N$

- (a) V challenges with a random $c \leftarrow \{0, \ldots, e-1\}$
- I responds with f := r · u^c mod N

• V accepts if
$$f^e \equiv a \cdot I^c \pmod{N}$$

The Guillou-Quisquater protocol

Let N = pq be an RSA modulus and a prime e such that $gcd(e, \varphi(N)) = 1$

P proves knowledge of $u \in \mathbb{Z}_N^*$, where $I = u^e \mod N$ is public

- P chooses $r \leftarrow \mathbb{Z}_N^*$ and commits through $a := r^e \mod N$
- **2** *V* challenges with a random $c \leftarrow \{0, \ldots, e-1\}$
- **③** *P* responds with $f := r \cdot u^c \mod N$

• V accepts if
$$f^e \equiv a \cdot I^c \pmod{N}$$

The Guillou-Quisquater protocol

Exercises:

- Show the soundness property of GQ (hint: use the binding property of the RSA-based commitment)
- Show that Schnorr and GQ with binary challenges $c \in \{0,1\}$ are perfectly ZK
- Show that any Σ protocol implies a commitment

Non-interactive ZK

Honest verifier ZK gives non-interactive proofs

Let \mathcal{H} be a random oracle:

- Compute $c := \mathcal{H}(a, x)$ and send *non-interactive* proof (a, c, f)!
- Implies a signature scheme via the Fiat-Shamir heuristic
 By including the message m in the statement c := H(a, (x, m))

The resulting protocol is sound in the ROM. Sketch:

- S starts P*, answers H(a, x) requests with random c until it gets a valid (a, c, f) from P*.
- Then S restarts P* and answers H(a, x) requests with random c' until it gets a different proof for the same (a, x).

▲ 同 ▶ → ● ▶

Non-interactive ZK

Honest verifier ZK gives non-interactive proofs

Let ${\mathcal H}$ be a random oracle:

- Compute $c := \mathcal{H}(a, x)$ and send *non-interactive* proof (a, c, f)!
- Implies a signature scheme via the Fiat-Shamir heuristic
 By including the message m in the statement c := H(a, (x, m))

The resulting protocol is sound in the ROM. Sketch:

- S starts P*, answers H(a, x) requests with random c until it gets a valid (a, c, f) from P*.
- Then S restarts P* and answers H(a, x) requests with random c' until it gets a different proof for the same (a, x).

(4回) (4回) (4回)

Non-interactive ZK

Honest verifier ZK gives non-interactive proofs

Let ${\mathcal H}$ be a random oracle:

- Compute $c := \mathcal{H}(a, x)$ and send *non-interactive* proof (a, c, f)!
- Implies a signature scheme via the Fiat-Shamir heuristic
 By including the message m in the statement c := H(a, (x, m))

The resulting protocol is sound in the ROM. Sketch:

- S starts P*, answers H(a, x) requests with random c until it gets a valid (a, c, f) from P*.
- Then S restarts P* and answers H(a, x) requests with random c' until it gets a different proof for the same (a, x).

イロト 不得 トイヨト イヨト 二日

Proving statements about ElGamal ciphertexts

ElGamal encryption in prime-order group:

• Public key:
$$(g, h) := (g, g^{\nu})$$

• Ciphertext:
$$(c_1, c_2) := (g^u, m \cdot g^{uv})$$

Statement:

• (c_1, c_2) is an encryption of m under (g, h)

- $(g, h, c_1, c_2/m) = (g, g^u, g^v, g^{uv})$ is a Diffie-Hellman tuple
- witness: either x or y

Reformulation: L contains all (g_1, g_2, g_3, g_4) s.t. $\log_{g_1}(g_2) = \log_{g_3}(g_4)$

- Either $(g_1, g_2, g_3, g_4) := (g, g^u, g^v, g^{uv})$ (witness is u)
- Or $(g_1, g_2, g_3, g_4) := (g, g^u, g^v, g^{uv})$ (witness is v)

Proving statements about ElGamal ciphertexts

ElGamal encryption in prime-order group:

• Public key:
$$(g, h) := (g, g^{\nu})$$

• Ciphertext:
$$(c_1, c_2) := (g^u, m \cdot g^{uv})$$

Statement:

- (c_1, c_2) is an encryption of *m* under (g, h)• $(\sigma, h, c_2, c_2/m) = (\sigma, \sigma^{\mu}, \sigma^{\nu}, \sigma^{\mu\nu})$ is a Diffie Hellr
- (g, h, c₁, c₂/m) = (g, g^u, g^v, g^{uv}) is a Diffie-Hellman tuple
 witness: either x or y

Reformulation: L contains all (g_1, g_2, g_3, g_4) s.t. $\log_{g_1}(g_2) = \log_{g_3}(g_4)$

- Either $(g_1, g_2, g_3, g_4) := (g, g^u, g^v, g^{uv})$ (witness is u)
- Or $(g_1, g_2, g_3, g_4) := (g, g^u, g^v, g^{uv})$ (witness is v)

・ 回 ト ・ ヨ ト ・ ヨ ト

Proving statements about ElGamal ciphertexts

ElGamal encryption in prime-order group:

• Public key:
$$(g, h) := (g, g^{\nu})$$

• Ciphertext:
$$(c_1, c_2) := (g^u, m \cdot g^{uv})$$

Statement:

- (c_1, c_2) is an encryption of m under (g, h)
- $(g, h, c_1, c_2/m) = (g, g^u, g^v, g^{uv})$ is a Diffie-Hellman tuple
- witness: either x or y

Reformulation: L contains all (g_1, g_2, g_3, g_4) s.t. $\log_{g_1}(g_2) = \log_{g_3}(g_4)$

- Either $(g_1, g_2, g_3, g_4) := (g, g^u, g^v, g^{uv})$ (witness is u)
- Or $(g_1, g_2, g_3, g_4) := (g, g^u, g^v, g^{uv})$ (witness is v)

イロト イポト イヨト イヨト 二日

Chaum-Pedersen protocol

Let \mathbb{G} be a group of prime order q with generator g

P proves that $\log_{g_1}(g_2) = \log_{g_3}(g_4)(=u)$

1 P chooses $r \leftarrow \mathbb{Z}_q$ and commits through $a := (a_1, a_3) = (g_1^r, g_3^r)$

- @ V challenges with a random $c \leftarrow \mathbb{Z}_{2^n}$
- I responds with f := r + c ⋅ u mod q
- V accepts if $g_1^f = a_1 \cdot (g_2)^c$ and $g_3^f = a_3 \cdot (g_4)^c$

Chaum-Pedersen protocol

Let \mathbb{G} be a group of prime order q with generator g

P proves that $\log_{g_1}(g_2) = \log_{g_3}(g_4)(=u)$

- P chooses $r \leftarrow \mathbb{Z}_q$ and commits through $a := (a_1, a_3) = (g_1^r, g_3^r)$
- 2 V challenges with a random $c \leftarrow \mathbb{Z}_{2^n}$
- P responds with $f := r + c \cdot u \mod q$
- V accepts if $g_1^f = a_1 \cdot (g_2)^c$ and $g_3^f = a_3 \cdot (g_4)^c$

Chaum-Pedersen protocol

Let \mathbb{G} be a group of prime order q with generator g

Completeness: obvious

Soundness:

• If P can prove with $((a_1, a_3), c, f)$ and $((a_1, a_3), c', f')$ then $u = \log_{g_1}(g_2) = \log_{g_3}(g_4) = \frac{f - f'}{c - c'}$

Honest verifier zero-knowledge:

• Given c, choose $f\in_R\mathbb{Z}_q$ and compute $a_1:=g_1^f/(g_2)^c$ and $a_3:=g_3^f/(g_4)^c$

Proving OR statements

Suppose we have:

- a Σ -protocol Π_0 for proving that $x_0 \in L_0$
- a Σ -protocol Π_1 for proving that $x_1 \in L_1$

Combining proofs:

- Proving that $x_0 \in L_0 \land x_1 \in L_1$ is trivial
- Can we prove that $x_0 \in L_0 \lor x_1 \in L_1$?

Applications:

- I know one of the DL of (h_1, \ldots, h_n) in base g (anonymous authentication)
- This is an encryption of 0 or 1 (election)

Proving OR statements

Suppose we have:

- a Σ -protocol Π_0 for proving that $x_0 \in L_0$
- a Σ -protocol Π_1 for proving that $x_1 \in L_1$

Combining proofs:

- Proving that $x_0 \in L_0 \land x_1 \in L_1$ is trivial
- Can we prove that $x_0 \in L_0 \lor x_1 \in L_1$?

Applications:

- I know one of the DL of (h_1, \ldots, h_n) in base g (anonymous authentication)
- This is an encryption of 0 or 1 (election)

Disjunctive proofs [CDS94]

Suppose prover has $w_i : (x_i, w_i) \in R_i$ (but not w_{1-i})

- **9** P selects random c_{1-i} and runs S_{1-i} to get a proof $(a_{1-i}, c_{1-i}, f_{1-i})$
- **2** *P* selects a_i as Π_i 's definition
- P commits on (a_0, a_1) to V
- V challenges with c
- Solution P computes $c_i = c \oplus c_{1-i}$ and f_i from (w_i, a_i, c_i)
- V accepts if (a_0, c_0, f_0) and (a_1, c_1, f_1) check for Π_0 and Π_1 and $c_0 \oplus c_1 = c$

Disjunctive proofs

Let \mathbb{G} be a group of prime order q with generator g

Completeness: obvious

Soundness:

• P^* has to follow either Π_0 or Π_1

Honest verifier zero-knowledge:

- Choose (c_0, c_1) at random, run S_0 , S_1 to get (a_0, c_0, f_0) and (a_1, c_1, f_1)
- Simulated transcript is $(a_0, a_1, c_0 \oplus c_1, f_0, f_1)$

Conclusions

Zero-knowledge proof systems

- I convince you that this statement is true
- This is the only thing you learn
- You cannot use my proof to convince anyone else (interactive case)

References (available online):

- Ivan Damgård and Jesper Buus Nielsen: Commitment Schemes and Zero-Knowledge Protocols
- Ivan Damgård: On Σ-protocols

Slides are available online:

http://perso.ens-lyon.fr/benoit.libert/cours-ZK.pdf