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Commitment schemes

The coin flipping problem:

Two distrustful parties want to play a coin flipping game over the
Internet or by phone

. . . or even jointly generate a sequence of random bits

How can they make sure the other party is not cheating?

Solution: Use a cryptographic commitment scheme
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Commitments

Digital equivalent of a sealed box

What does it provide?

Binding property: once I have sent a value in a locked box, I cannot
change it anymore

Hiding property: nobody can tell what is inside the box without the
key
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Commitments

In commitments schemes (Setup,Com,Open),

Setup(λ) given a security parameter λ ∈ N, outputs a public key pk

Compk(m) outputs a commitment com and a decommitment dec

Openpk(com, dec) outputs evidence dec that the committed message
was m

Requirements:

Hiding: for any m0,m1 ∈M, we have {Compk(m0)} ≈ {Compk(m1)}

Binding: given pk , it must be infeasible to output com and two
correct openings (m, dec), (m′, dec ′) with m 6= m′
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Commitments

Pedersen’s commitment:

Setup(λ) chooses a group G of prime order q > 2λ and g , h R← G.
It defines pk = (g , h)

Compk(m) outputs com = gm · hr , with r R← Zq, and sets
dec = (m, r)

Openpk(com, dec) returns dec = (m, r); verifier accepts if
com = gm · hr

Hiding property is unconditional

Binding property relies on the discrete logarithm problem:

Distinct openings (m, r), (m′, r ′) of a given commitment
com = gmhr = gm′hr ′ reveal

logg (h) = (r ′ − r)/(m −m′) mod q
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Commitments

RSA-based commitment:

Setup(λ) chooses an RSA modulus N = pq, with a prime e s.t.
gcd(e, ϕ(N)) = 1 and g R← Z∗N . It defines pk = (g , e,N)

Compk(m) given m ∈ {0, . . . , e − 1}, outputs com = gm · r e mod N,

with r R← Z∗N , and sets dec = (m, r)

Openpk(m, d) returns dec = (m, r); verifier accepts if
com = gm · r e mod N

Unconditionally hiding

Binding under the RSA assumption: two distinct openings (m, r),
(m′, r ′) such that

gmr e ≡ gm′r ′
e

(mod N)

reveal g1/e mod N
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Application: Coin-flipping over the Internet

Distrustful parties A and B want to jointly generate a random b ∈R {0, 1}:

B picks a random bB ∈R {0, 1} which is kept secret

A chooses bA ∈R {0, 1}, computes a commitment-decommitment pair
(com, dec) = Com(bA) and sends com to B

B reveals bB

A and B output b = bA ⊕ bB .

Output b is guaranteed to be uniform in {0, 1} as long as A or B is honest
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Zero-knowledge proofs

The identification problem: How to safely prove oneself
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The identification problem

Statement: “I am the only one who knows this secret”

How can I prove that?

1 Send the secret?
No: then the verifier also know my secret. . .

2 Take a signing key as secret, and show that I can sign a message?
Still too much: the verifier learns a signature, can prove I was there,
. . .

3 Take a private key as secret, and show that I can decrypt a message?
Still too much: the verifier might learn the decryption of something. . .
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The identification problem

I want to prove that I am the one who knows this secret, but not to
provide any other knowledge . . .

Idea: Make sure that the verifier already knows my answer!

P
��

V
c = Encpk(m)

oo
��

• com //
��

•
��

•
��

•m′oo
��

• dec // •

pk is P’s public encryption key

(com, dec)← Com(m)

dec is sent only if m = m′
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Proofs

“Traditional” mathematical proofs:

“A list of reasons that shows a statement to be true”

Non-interactive

No unique verifier in mind

It can also be an interactive conversation

Many applications require designated verifier proofs
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Interactive proofs

Three ingredients:

1 A prover P, possibly unbounded

2 A verifier V , PPT bounded

3 A language L ⊂ {0, 1}∗ defining a set of true statements

Properties:

Even if P is unbounded, he should not be able to prove wrong things

V must be able to perform his task efficiently

L can be a lot of things:

set of Diffie-Hellman tuples (g , ga, gb, gab) ∈ G4 in a cyclic
group G
set of pairs of isomorphic graphs
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Interactive proofs

The pair (P,V ) is an interactive proof system for L if:

1 Completeness: If x ∈ L then the probability that P does not
convince V is negligible in |x |

2 Soundness: If x 6∈ L then the probability that any P∗ convinces V is
negligible in |x |

Observations:

V can be convinced even if P∗ is unbounded

Proofs are probabilistic

P may generate a proof using a witness w of the membership of
x ∈ L (if one exists):

For the set of Diffie-Hellman tuples: send a

For the set of isomorphic graphs: send an isomorphism
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Zero-knowledge proofs

Motivation:

Protect the prover: the verifier should not learn anything but the fact
that x ∈ L; no information about w should leak

Idea:

Let trans be the discussion between P and any PPT V ∗ on input x

A simulator should be able to produce something indistinguishable
from trans just from x

Observations:

No verifier can convince that a transcript is “real”: he could have
produced it himself

This “simulator” can build trans in any order and even rewind the
verifier!
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Zero-knowledge proofs

(P,V ) is a perfect zero-knowledge interactive proof system for L if ∀ PPT
V ∗, ∃ a PPT simulator SV ∗ s.t. ∀D:

Pr[D(trans(P,V ∗)(x)) = 1] = Pr[D(transSV∗ (x)) = 1]

where:

trans(P,V ∗)(x) is the transcript of the interaction of P and V ∗ on
input x

transSV∗ (x) is the output of SV ∗ on input x

D is anyone who tries to distinguish the two transcripts

Remark:

One could define computational zero-knowledge:

D must be PPT
the probabilities can have a negligible difference
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Graph isomorphism

Two graphs G := (GV ,GE ) and H := (HV ,HE ) are isomorphic if

∃ a bijection f : GV → HV and

(g1, g2) ∈ GE ⇔ (f (g1), f (g2)) ∈ HE

Are these two graphs isomorphic?

No known algorithm allows deciding in PPT whether two graphs are
isomorphic
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Proof of Graph isomorphism

On input G := (GV ,GE ) and H := (HV ,HE ) (isomorphic):

1 P computes (or knows) a bijection f : GV → HV

2 P repeats n times:

a. P publishes a graph I := (IV , IE ) built as follows:

1 select a random bijection g : GV → IV ,
2 build IE s.t. (GV ,GE ) and (IV , IE ) are isomorphic

b. V sends a random bit c ∈ {0, 1} to P

c. P answers with h where:

h := g−1 if c = 0
h := fg−1 if c = 1

3 V accepts the proof if, every time, h witnesses that:

1 (IV , IE ) is isomorphic to (GV ,GE ) when c = 0
2 (IV , IE ) is isomorphic to (HV ,HE ) when c = 1
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Proof of Graph isomorphism

Completeness:

P can answer all challenges

Soundness:

If G = (GV ,GE ) and H = (HV ,HE ) are not isomorphic, then
I = (IV , IE ) can only be isomorphic to one of them

⇒ P∗ has a probability 1
2 of not being able to answer the challenge

That makes a probability 1
2n of P∗ being able to convince V
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Proof of Graph isomorphism

Perfect zero-knowledge: Build the simulator SV ∗ as follows:

1 Start V ∗ and feed it with G and H

2 Repeat until transSV∗ contains n transcripts:

a. Flip a coin b ∈R {0, 1}
b. Build a graph I , as in the normal proof, but

isomorphic to G if b = 0
isomorphic to H if b = 1

c. Send I to V ∗ and wait for c ∈ {0, 1}
d. If c = b then compute the permutation h that would be provided

in the protocol, and append 〈I , c , h〉 to transSV∗

e. If c 6= b then rewind V ∗ where it was when entering this iteration
and retry

3 Output transSV∗
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Proof of Graph isomorphism

Observations:

SV ∗ tries to guess c ∈ {0, 1}, and restart/reboot V ∗ when it fails

Failure probability is 1
2 each time

At each iteration, a valid transcript is obtained after n attempts,
except with probability 1

2n

If SV ∗ makes n attempts at each iteration, it wins except with
negligible probability 1− n/2n

If G and H are isomorphic, the simulated transcript is distributed as
the real one
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Σ-protocols

A family of:

efficient,

3-move,

honest-verifier zero-knowledge

protocols of the following form

Common input: P and V both have a statement x

Private input: P has a witness w showing that x ∈ L

1. P sends a commitment a to V

2. V sends a random challenge c ∈R {0, 1}n

3. P sends a response f

Given (a, c , f ), V outputs 0 or 1
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Σ-protocols

Π is a Σ-protocol for relation R if:

It is a 3-move protocol with completeness, made of a commitment
a, followed by a random challenge c , and ending with a response f

Special soundness: For any pair (a, c , f ) and (a, c ′, f ′) of accepting
conversations on input x where c 6= c ′, one can efficiently compute
w : (x ,w) ∈ R

Honest-verifier zero-knowledge: There is an efficient simulator
that, on input x and a challenge c ∈ {0, 1}n, produces (a, f ) such
that (a, c, f ) is distributed as in a normal proof.
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Schnorr’s protocol

Let G be a group of prime order q with generator g

P
g r

//

��

V

��
•
��

•coo

��
•

r + c · u mod q // •

P proves knowledge of u ∈ Zq to V who has h = gu ∈ G

1 P chooses r ← Zq and commits through a := g r

2 V challenges with a random c ← Z2n

3 P responds with f := r + c · u mod q

4 V accepts if g f = a · (gu)c
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Schnorr’s protocol

P
a := g r

//

��

V

��
•
��

•coo

��
•

f := r + c · u mod q // •

Completeness: obvious

Soundness:

In order to reply with non-negligible probability, P must be able to
respond to more than 2 challenges, say c and c ′

Then g f /(gu)c = g f ′/(gu)c
′

and u = f−f ′
c−c ′

Honest verifier zero-knowledge:

Given h = gu and c, choose f ∈R Zq and compute a := g f /(gu)c

(This does not works if, say, V computes c := H(g r ))
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The Guillou-Quisquater protocol

Let N = pq be an RSA modulus and a prime e such that gcd(e, ϕ(N)) = 1

P
a := r e mod N //

��

V

��
•
��

•coo

��
• f := r · uc mod N // •

P proves knowledge of u ∈ Z∗N , where I = ue mod N is public

1 P chooses r ← Z∗N and commits through a := r e mod N

2 V challenges with a random c ← {0, . . . , e − 1}
3 P responds with f := r · uc mod N

4 V accepts if f e ≡ a · I c (mod N)
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The Guillou-Quisquater protocol

Exercises:

Show the soundness property of GQ
(hint: use the binding property of the RSA-based commitment)

Show that Schnorr and GQ with binary challenges c ∈ {0, 1} are
perfectly ZK

Show that any Σ protocol implies a commitment
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Non-interactive ZK

Honest verifier ZK gives non-interactive proofs

Let H be a random oracle:

Compute c := H(a, x) and send non-interactive proof (a, c , f )!

Implies a signature scheme via the Fiat-Shamir heuristic

By including the message m in the statement c := H(a, (x ,m))

The resulting protocol is sound in the ROM. Sketch:

S starts P∗, answers H(a, x) requests with random c until it gets a
valid (a, c , f ) from P∗.

Then S restarts P∗ and answers H(a, x) requests with random c ′

until it gets a different proof for the same (a, x).
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Proving statements about ElGamal ciphertexts

ElGamal encryption in prime-order group:

Public key: (g , h) := (g , g v )

Ciphertext: (c1, c2) := (gu,m · guv )

Statement:

(c1, c2) is an encryption of m under (g , h)

(g , h, c1, c2/m) = (g , gu, g v , guv ) is a Diffie-Hellman tuple

witness: either x or y

Reformulation: L contains all (g1, g2, g3, g4) s.t. logg1(g2) = logg3(g4)

Either (g1, g2, g3, g4) := (g , gu, g v , guv ) (witness is u)

Or (g1, g2, g3, g4) := (g , gu, g v , guv ) (witness is v)
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Chaum-Pedersen protocol

Let G be a group of prime order q with generator g

P
g r
1 , g

r
3 //

��

V

��
•
��

•coo

��
•

r + c · u mod q // •

P proves that logg1(g2) = logg3(g4)(= u)

1 P chooses r ← Zq and commits through a := (a1, a3) = (g r
1 , g

r
3)

2 V challenges with a random c ← Z2n

3 P responds with f := r + c · u mod q

4 V accepts if g f
1 = a1 · (g2)c and g f

3 = a3 · (g4)c
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Chaum-Pedersen protocol

Let G be a group of prime order q with generator g

P
a := (g r

1 , g
r
3)

//

��

V

��
•
��

•coo

��
•

f := r + c · u mod q // •
Completeness: obvious

Soundness:

If P can prove with ((a1, a3), c, f ) and ((a1, a3), c ′, f ′) then
u = logg1(g2) = logg3(g4) = f−f ′

c−c ′

Honest verifier zero-knowledge:

Given c , choose f ∈R Zq and compute a1 := g f
1 /(g2)c and

a3 := g f
3 /(g4)c
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Proving OR statements

Suppose we have:

a Σ-protocol Π0 for proving that x0 ∈ L0

a Σ-protocol Π1 for proving that x1 ∈ L1

Combining proofs:

Proving that x0 ∈ L0 ∧ x1 ∈ L1 is trivial

Can we prove that x0 ∈ L0 ∨ x1 ∈ L1?

Applications:

I know one of the DL of (h1, . . . , hn) in base g (anonymous
authentication)

This is an encryption of 0 or 1 (election)
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Disjunctive proofs [CDS94]

Suppose prover has wi : (xi ,wi ) ∈ Ri (but not w1−i )

1 P selects random c1−i and runs S1−i to get a proof (a1−i , c1−i , f1−i )

2 P selects ai as Πi ’s definition

3 P commits on (a0, a1) to V

4 V challenges with c

5 P computes ci = c ⊕ c1−i and fi from (wi , ai , ci )

6 V accepts if (a0, c0, f0) and (a1, c1, f1) check for Π0 and Π1 and
c0 ⊕ c1 = c
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Disjunctive proofs

Let G be a group of prime order q with generator g

P
a0, a1 //

��

V

��
•
��

•coo

��
•

f0, f1 // •
Completeness: obvious

Soundness:

P∗ has to follow either Π0 or Π1

Honest verifier zero-knowledge:

Choose (c0, c1) at random, run S0, S1 to get (a0, c0, f0) and
(a1, c1, f1)

Simulated transcript is (a0, a1, c0 ⊕ c1, f0, f1)
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Conclusions

Zero-knowledge proof systems

I convince you that this statement is true

This is the only thing you learn

You cannot use my proof to convince anyone else (interactive case)

References (available online):

Ivan Damg̊ard and Jesper Buus Nielsen: Commitment Schemes and
Zero-Knowledge Protocols

Ivan Damg̊ard: On Σ-protocols

Slides are available online:
http://perso.ens-lyon.fr/benoit.libert/cours-ZK.pdf
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