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Abstract. This paper describes a powerful attack on a verifiably com-
mitted signature scheme based on GPS and RSA proposed in Financial
Cryptography 2001. Given any partial signature, the attacker can ex-
tract the corresponding full signature. The attack works provided the
attacker previously obtained a full signature of a special form, which can
be done simply by eavesdropping a very small number of full signatures.
For example, with the originally recommended parameters choice, 66%
of the signatures are of this form. As a consequence, two “fair” protocols
using this primitive do not satisfy the fairness property. Of independent
interest, our attack shows that special attention should be paid when
building cryptographic protocols from GPS and RSA.
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1 Introduction

Consider the following situation. Alice wants to buy a CD on Bob’s web site, but Alice
and Bob do not trust each other. Alice does not want to sign the payment unless she
is sure that she will get the CD, and Bob does not want to send the CD unless he
is sure that Alice is going to pay him. This is an example of an important issue in
electronic commerce and digital rights management: the problem of exchanging items
and information in a fair way, which is known as fair exchange. For such situations,
a trusted third party, Charlie, is always required. A trivial fair exchange protocol
would involve Charlie in any step of the exchange, but it is clear that this solution is
not practical. It is thus natural to try and minimize the intervention of Charlie, by
designing protocols where Charlie only intervenes in case of problem. Such protocols
are called optimistic fair exchange protocols.

Several solutions have been proposed to achieve this [1–6, 13]. They all rely on
some cryptographic primitive allowing the commitment to a signature. This notion
was generalized by Dodis and Reyzin in [7], who proposed a model for non-interactive
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fair exchange protocols. The model relies on a kind of cryptographic primitives called
verifiably committed signatures that generalize verifiably encrypted signatures and two-
signatures.

The principle of verifiably committed signatures can be summarized as follows.
The participants in the protocol are Alice the signer, Bob the verifier, and Charlie the
semi-trusted arbitrator. The signer Alice wants to give Bob a signature on a message
m, but only if Bob fulfills some obligation I in exchange. Bob does not want to fulfill
I until he is sure that he will eventually get Alice’s signature on m. In order to do
this, Alice first computes a partial signature σ′ on m. Bob can check that this partial
signature corresponds to Alice’s valid signature on m, but cannot extract the valid
signature from the partial one. Then Bob fulfills I. Alice then sends the final signature
σ on m back to Bob. In case Alice aborts the protocol, Bob can call the arbitrator
Charlie, and if Bob can prove that he fulfilled I, Charlie extracts the full signature
from the partial one. Thus Charlie is only needed in case of problem.

We recall that a verifiably committed signature scheme should satisfy the following
(informal) security requirements [7]:

– Security against Alice: Alice should not be able to produce a valid partial signature
σ′ which Charlie cannot convert into a valid full signature σ.

– Security against Bob: Bob should not be able to produce a valid partial signature
σ′ which he did not get from Alice, and Bob should not be able to produce a valid
full signature σ which he did not get from Alice or Charlie.

– Security against Charlie: Charlie should not be able to produce a valid full signa-
ture σ without seeing a valid partial signature σ′ computed by Alice.

In [12], Markowitch and Saeednia proposed an optimistic fair exchange scheme. The
scheme relies on a verifiably committed signature scheme that they introduce1. The
verifiably committed signature scheme is constructed from the basic RSA encryption
scheme [15] and the GPS signature scheme [9, 14], and was also used later in the context
of a non-repudiation protocol [11].

In this paper, we show that the security against Bob is not satisfied in the verifiably
committed signature from [12]. We describe an attack allowing to extract the full
signature σ from a partial signature σ′. Our attack is extremely efficient (it only requires
that the attacker previously obtained a very small number of full signatures, and has a
computational cost of a few exponentiations), and breaks the fairness property of two
protocols [12, 11].

Of independent interest, we show how the combination of GPS and RSA can be
very sensitive to attacks. Informally, the problem of extracting a RSA root of a GPS
commitment has some poor security properties: there is a (non-negligible) subset of the
instances of this problem for which the knowledge of a solution allows the computation
of the solution for any instance.

The remaining of the paper is organized as follows: section 2 briefly describes the
basic GPS signature scheme, section 3 describes the verifiably committed signature
scheme based on GPS and RSA, section 4 explains the attack and discusses its efficiency,
section 5 describes some attempts at repairing the scheme, and section 6 concludes.

1 The committed signature scheme was not presented separately but appeared as
an element of the optimistic fair exchange protocol; nevertheless, from the claimed
security properties, it is clear that it is a verifiably committed signature scheme.
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2 The GPS Signature Scheme

In this section we briefly describe the GPS signature scheme. It is derived from the
GPS identification scheme [9, 14] using the standard method from Fiat and Shamir [8].
It works as follows.

Setup The TTP generates an RSA modulus n = pq where p = 2p′+1, q = 2q′+1 and
p, p′, q, q′ are primes. It chooses three integers A, B and S such that A >> BS,
and a hash function h such that the outputs of h are uniformly distributed over
[0, B[. The TTP chooses an integer α of large order modulo n. It publishes n, α, h.

To generate her key pair, the signer chooses a random integer x ∈ [0, S[ as her
secret key and computes y = αx mod n as her public key.

Sig To compute a signature on a message m, the signer takes a random integer r ∈
[0, A[ and computes t = αr mod n, and z = r + h(t, m)x. The signature is (t, z).

Ver To verify a signature (t, z) on m, the verifier checks that h(t, m) ∈ [0, B[, that
z ∈ [0, A + (B − 1)(S − 1)[ and that αz ≡ tyh(t,m) (mod n).

The security of the scheme against existential forgeries under adaptative chosen
message attacks was proven (in the random oracle model) in [14] under the hypothesis
that computing discrete logarithms with short exponents modulo n is hard.

3 Description of the Committed Signature Scheme

This section describes the verifiably committed signature scheme of [12]. In this scheme,
the idea is to use GPS signatures combined with the RSA encryption primitive, a valid
signature being a GPS signature along with the RSA decryption of the corresponding
commitment. As a consequence, the hardness of extracting a full signature from a
partial signature implicitly relies on the problem of computing the RSA decryption
of a GPS commitment given the corresponding challenge and answer, but without
knowing nor the GPS private key or the RSA private key.

We now describe the committed signature scheme according to the formal model
of [7].

Setup Charlie generates an RSA modulus n = pq where p = 2p′ + 1, q = 2q′ + 1
and p, p′, q, q′ are primes. He chooses a hash function h. Charlie chooses an integer
α of order p′q′. He also chooses an integer c coprime to p′q′, and computes d =
c−1 mod p′q′. Charlie publishes n, α, h and c. Charlie’s secret arbitration key is d.

To generate her key pair, Alice chooses a random integer x as her secret key and
computes y = αx mod n as her public key.

PSig To compute a partial signature on a message m, Alice takes a random integer r
and computes t = αcr mod n, and z = cr+h(t, m)x. The partial signature is (t, z).

PVer To verify a partial signature (t, z) on m, Bob - or any verifier - checks if αz ≡
tyh(t,m) (mod n).

Sig To compute a full signature on m corresponding to her partial signature (t, z),
Alice computes t′ = αr mod n, with the value of r used in the partial signature
process. The full signature is (t′, z) with the same z than in the partial signature.

Ver To verify a full signature, (t′, z) on m, Bob - or any verifier - checks if αz ≡
t′cyh(t′c mod n,m) (mod n).
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Res In case Alice refuses to open her signature to Bob, Charlie uses the partial sig-
nature (t, z) and his secret arbitration key d to compute the corresponding final
signature (t′, z) where t′ = td mod n.

The signature protocol is as follows: Alice computes a partial signature (t, z), where
t = αcr mod n, sends this partial signature to Bob, and stores the value t′ = αr mod n.
Bob checks that αz ≡ tyh(t,m) (mod n), then fulfills his obligation I. Alice sends t′ to
Bob, and Bob checks that t′c ≡ t (mod n).

Remarks:

1. Notice that this verifiably committed signature scheme does not exactly fit the
model of [7], since both the Sig and Ver algorithm depend on the public arbitration
key c.

2. Since z mod c = h(t, m)x mod c, where z, h(t, m) and c are public, it is clear that
some information on x mod c leaks. For this reason, the authors of [12] recommend
to take c = 3 to minimize the amount of information leaked on the secret x.

4 Extracting Full Signatures from Partial Signatures

In this section we describe an attack that allows an attacker to extract the full signature
(t′, z) on m from the partial signature (t, z). The main idea of the attack is that
computing t′, the c-th root of t = αzy−e mod n, is simple when one knows the c-th
root of αex mod cy−e mod c mod n thanks to the euclidian division. We now explain this
more in the detail.

4.1 Preliminary: the F function

Let F be the application from [0, c[ to [0, n[ defined by:

F (e) =
�
αex mod cy−e

�d

mod n

We are going to show how the properties of this function allow attacking the scheme.
In fact the two first properties already show the insecurity of the scheme for small values
of c; thus the third property may be viewed as an enhancement of the attack.

A first remark is that F (0) = 1..

Property 1 Knowing a full signature (t′, z) allows computing F (e mod c), where e =
h(t′c mod n, m).

Proof : Since t′c ≡ αzy−e mod n, we have:

(t′α−(z div c)ye div c)c ≡ αz mod cy−(e mod c) (mod n)

≡ αex mod cy−(e mod c) (mod n) (1)

Thus F (e mod c) = t′α−(z div c)ye div c mod n. ut

Property 2 Given a partial signature (t, z), the knowledge of F (e mod c) where e =
h(t mod n, m) allows computing the corresponding full signature (t′, z).
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Proof : From equation (1), we have

t′ = αz div cy−(e div c)F (e mod c) mod n

ut
Property 3 Knowing F (e0 mod c) where e0 = h(t′0

c
mod n, m) is coprime to c for

some full signature (t′0, z0) allows computing F (e) for any e ∈ [0, c[.

Proof : We can compute k = e0
−1e mod c, and we have:

F (e0 mod c)ck =
�
αe0x mod cy−e0

�k

mod n

=
�
αk(e0x mod c) div cy−(ke0 div c)

�c

αke0x mod cy−(ke0 mod c) mod n

=
�
αk(z0 mod c) div cy−(ke0 div c)

�c

(F (ke0 mod c))c mod n

Thus

F (e) = F (ke0 mod c) = F (e0 mod c)kα−(k(z0 mod c) div c)yke0 div c mod n (2)

ut

4.2 Attack strategy

The attack proceeds in two steps. In the first step, the attacker eavesdrops a small
number of full signatures from the signer. In the second step, he asks the signer any
number of committed signatures and extracts the corresponding full signature.

1. In this step, the attacker eavesdrops a number of full signatures until he finds
a signature (t′0, z0) (on a message m0) such that e0 mod c is coprime with c,
where e0 = h(t′c0 mod n, m0). Once he has obtained such a signature, he computes
F (e0 mod c) and stores the triple (e0 mod c, z0 mod c, F (e0 mod c)).

2. In this step, the attacker plays the role of the verifier. Once he gets a committed
signature (t, z), he computes F (e mod c) where e = h(t mod n, m), using the stored
triple (e0 mod c, z0 mod c, F (e0 mod c)) and equation (2). He then uses this value
of F (e mod c) to extract the full signature from the committed one, according
to property 2. The attacker thus obtains the full signature without fulfilling his
obligation. This step obviously succeeds with probability 1, and can be done with
any number of committed signatures.

4.3 An example with artificially small parameters

We take c = 3, and very small values for the other parameters. Alice, whose private key
is x = 110, takes a random r = 213, and computes t = α3×213 mod n. She computes
h(t, m) = 16, and z = cr + h(t, m)x = 3× 213 + 16× 110 = 2399. The full signature is
t′ such that t′3 ≡ α2339y−16 mod n. Since 2339 = 799 × 3 + 2 and 16 = 5 × 3 + 1, the
attacker computes τ = t′α−799y5 mod n. This τ is such that τ3 ≡ α2y−1 (mod n).

Now, given a partial signature (et, ez = 1933) such that h(et, em) = 14, he haset = α1933y−14 mod n = α3×644+1y−3×4−2 mod n, thus he needs to find a c-th root
of αy−2 mod n. This root is τ2α−1 thanks to equation (2).

Thus the attacker can compute et′ = α644y−4τ2α−1 mod n, where et′c mod n = et,
that is, et′ is the full signature corresponding to the committed one.
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4.4 Efficiency: discussion on the c parameter

Since the second step always succeeds once the first step ended successfully, the effi-
ciency of the attack only depends on the number of full signatures the attacker has
to obtain in the first step. For each signature (t′, z), the probability that e mod c is
coprime with c is ϕ(c)/c. Thus the first step succeeds after at most l tries with proba-
bility

Pl = 1−
�

1− ϕ(c)

c

�l

This formula allows us to evaluate the efficiency of the attack depending on the
value of the c parameter.

The c = 3 case It is natural to study this single case since it is the value suggested
by the authors. We have ϕ(3) = 2, thus the attack succeeds after at most l tries with
probability

Pl = 1− 1

3l

Thus eavesdropping one signature allows a success probability of 66%, while 5 signa-
tures allow a probability of success of more than 99%.

The c ≤ 210 case In [12], it is specified that c must be a very small integer. Thus we
can assume that c < 210. To compute a lower bound of ϕ(c)/c for values of c between
2 and 210, we simply compute all the possible values of ϕ(c)/c. The lower bound is
reached for c = 210. Thus we have that

∀c ∈ [1, 210],
ϕ(c)

c
≥ ϕ(210)

210
=

8

35
≈ 0.22857

While with a single signature, the lower bound on the probability of success is
already 22%, we can see that, with 10 signatures, we have a probability of success of
at least 92%.

5 Attempts to repair the scheme

5.1 Increasing the value of c

A natural idea to repair the scheme, since the efficiency of our attack depends on
ϕ(c)/c, is to minimize this value by taking a larger and specific value for c. Of course,
since x mod c leaks during any execution of the protocol, we have to take a larger value
for x. More precisely, we have to ensure that x div c is large enough (160 bits) because
yα−x mod c = (αc)x div c (mod n) thus finding x is equivalent to solve the discrete
logarithm of yα−x mod c mod n in basis αc mod n. This implies a performance decrease
since the size of the commitments must be such that r >> 2|h|c.

But we have the following well-known bound: when c is any number such that
c ≥ 5,

ϕ(c) ≥ c

6 ln ln c
(3)

Thus even if c is 4000 bit long, then 2.1% of the full signatures are such that e is
coprime with c. Thus with 33 full signatures the attacker will succeed with probability
1/2.

In short, taking a larger value for c does not prevent the attack, but just makes it
a little less efficient. We conclude that the scheme is insecure for any value of c.
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5.2 Other attempts

One might also try to remove some multiplicative properties to prevent the attack,
but these multiplicative properties seem necessary to ensure the verifiability of partial
signatures.

Another attempt to repair the scheme makes use of non-interactive proofs-of-
knowledge. The idea is that the attack is possible because t′, the c-th root of t, is
revealed by Alice. Thus we keep the same protocol except for the full signature pro-
cess. Alice proves that she knows t′, but this time she does not reveal it. This can
be done with a non-interactive zero-knowledge proof-of-knowledge of c-th root of t,
such as a non-interactive version of the Guillou-Quisquater [10] protocol, for example.
However, this does not lead to an efficient verifiably committed signature scheme.

6 Conclusion

We showed that the security against the verifier was not verified in the committed
signature scheme from [12] (also used in [11]) by describing a very simple and fast
method to extract a full signature from a partial signature.

This attack is a new example of a well-known fact: constructing a new crypto-
graphic primitive from two secure primitives can lead to a totally insecure result. But,
interestingly, we notice that GPS and RSA can be securely combined; in fact, the
RSA primitive was already used in the initial design of GPS, with self-certified public
keys [9].

We conclude that the security of a cryptographic protocol should not rely on the
hardness of computing the RSA decryption of a GPS commitment.
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8 Julien Cathalo, Benôıt Libert and Jean-Jacques Quisquater

7. Y. Dodis and L. Reyzin. Breaking and Repairing Optimistic Fair Exchange from
PODC 2003. In M. Yung, editor, ACM Workshop on Digital Rights Management
(DRM), 2003. available at http://eprint.iacr.org/2003/146/.

8. A. Fiat and A. Shamir. How to prove yourself : practical solutions of identification
and signature problems. In G. Brassard, editor, Advances in Cryptology - Proceed-
ings of CRYPTO ’86, volume 263 of Lecture Notes in Computer Science, pages
186–194. Springer-Verlag, 1987.

9. M. Girault. Self-Certified Public Keys. In D.W. Davies, editor, Advances in Cryp-
tology - Proceedings of EUROCRYPT 1991, volume 0547 of Lecture Notes in Com-
puter Science, pages 490–497. Springer, 1991.

10. L. Guillou and J.-J. Quisquater. A ”Paradoxical” Identity-Based Signature Scheme
Resulting from Zero-Knowledge Minimizing Both Transmission and Memory. In
C.G. Günther, editor, Advances in Cryptology - Proceedings of CRYPTO 1988,
pages 216–231. Springer, 1988.

11. O. Markowitch and S. Kremer. An Optimistic Non-Repudiation Protocol with
Transparent Trusted Third Party. In G.I. Davida and Y. Frankel, editors, Pro-
ceedings of the 4th International Conference on Information Security (ISC 2001),
volume 2200 of Lecture Notes in Computer Science, pages 363–378. Springer, 2001.

12. O. Markowitch and S. Saeednia. Optimistic Fair Exchange with Transparent Sig-
nature Recovery. In P.F. Syverson, editor, Proceedings of Financial Cryptography
2001, volume 2339 of Lecture Notes in Computer Science, pages 339–350. Springer,
2002.

13. J.M. Park, E. Chong, H. Siegel, and I. Ray. Constructing Fair Exchange Protocols
for E-Commerce via Distributed Computation of RSA Signatures. In Proceedings of
the 22th Annual ACM Symposium on Principles of Distributed Computing (PODC
2003), pages 172–181, July 2003.

14. G. Poupard and J. Stern. Security Analysis of a Practical on the fly Authentifi-
cation and Signature Generation. In K. Nyberg, editor, Advances in Cryptology
- Proceedings of EUROCRYPT 1998, volume 1403 of Lecture Notes in Computer
Science, pages 422–436. Springer, 1998.

15. R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. LCS TM82, MIT Laboratory for Computer Science,
Cambridge, Massachusetts, 1977.


