
Efficient Traceable Signatures in the Standard Model
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Abstract. Traceable signatures (TS), suggested by Kiayias, Tsiounis and Yung (Eurocrypt’04), extend
group signatures to address various basic traceability issues beyond merely identifying the anonymous
signer of a rogue signature. Namely, they enable the efficient tracing of all signatures produced by
a misbehaving party without opening the identity of other parties. They also allow users to provably
claim ownership of a previously signed anonymous signature. To date, known TS systems all rely on the
random oracle model. In this work we present the first realization of the primitive that avoids resorting
to the random oracle methodology in its security proofs. Furthermore, our realization’s efficiency is
comparable to that of nowadays’ fastest and shortest standard model group signatures.
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1 Introduction

Group Signatures Background. Group signatures, introduced by Chaum and van Heyst [22],
allow members of a group to sign messages without revealing their identity. When the necessity
arises, an authority holding some privileged piece of information can “open” signatures and uncover
the signer’s identity. Such primitives find applications in electronic auctions or trusted computing
platforms where anonymity is a central issue.

The first scalable coalition-resistant system was proposed by Ateniese et al. [4]. The recent years
saw a continued interest in the primitive with the appearance of pairing-based constructions (e.g.
[15, 43]). In general, when it comes to signatures, pairing has been employed to achieve two goals:
(1) short signatures and (2) realizations in the standard model, not relying on the random oracle
idealization. Notably, Boneh, Boyen and Shacham [15] showed the first scheme featuring signa-
tures shorter than 200 bytes. Its security was analyzed in (a relaxation of) the model of Bellare,
Micciancio and Warinschi (BMW) [7], which captures the requirements of group signatures in three
properties but assumes static groups. The setting of dynamic groups was formalized by Bellare-
Shi-Zhang (BSZ) [9] and, independently, by Kiayias-Yung [39] while efficient systems were given in
[39, 43, 29, 26].

The aforementioned practical proposals all rely on the random oracle model [8]. In the stan-
dard model, the theoretical constructions of [7, 9] were “only” proofs of concept (plausibility re-
sults), since the main interest is in getting efficient schemes. Using improved non-interactive zero-
knowledge (NIZK) techniques [35, 34] inspired by an earlier homomorphic encryption scheme [16],
Boyen and Waters [19] showed a fairly efficient realization with logarithmic-size signatures in the
static BMW model. They subsequently improved [20] it to get rid of the dependency of signatures’
size on the group cardinality. Ateniese et al. [3] independently constructed another scheme relying
on stronger interactive assumptions. Meanwhile, Groth [32] came up with constant-size signatures
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without random oracles in the (dynamic) BSZ model but signatures remained too long for practical
use. In 2007, Groth showed [33] another standard model scheme with signatures shorter than 2 kB
and full anonymity in the BSZ model.

Traceable Signatures. In group signatures, if we are given a member’s name and his public
key, scanning all signatures and verify which ones were signed by that member is only doable by
revoking the anonymity of all signatures (in particular, signatures of honest users). To overcome
this and allow further tracing properties, Kiayias, Tsiounis and Yung [38] introduced traceable
signatures (TS). They still allow the group manager (GM) to open signatures individually. In addi-
tion, however, the GM can reveal a trapdoor allowing clerks to trace suspicious members’ signatures
without having to revoke anonymity of every single signature. Misbehaving users can thus be traced
without affecting the anonymity of honest ones. Moreover, such a traceability results in increased
scalability since tracing agents can run in parallel whereas traditional group signatures involve a
centralized tracing authority3. Traceable signatures also support a mechanism enabling users to
claim (and prove) the authorship of their own anonymously generated signatures.

Kiayias, Tsiounis and Yung (KTY) formalized the security of traceable signatures via three
properties termed misidentification security, non-frameability and anonymity. They suggested a
first implementation of the primitive (using the Fiat-Shamir heuristic [28] and thus the random
oracle model) and proved its security under the Strong RSA and the Decision Diffie-Hellman as-
sumptions. Later on, efficiency improvements were suggested by Ge and Tate [30]. Meanwhile,
Nguyen and Safavi-Naini [43] and Choi, Park and Yung [23] gave pairing-based constructions with
shorter signatures. More recently, Benjumea el al. [10] considered traceable signatures with ex-
tended capabilities in the multi-group setting and implemented them in the random oracle model.

Our Contribution. Constructions with security proofs in the random oracle model are known
to sometimes have realizability problems [21]. In this paper we construct the first efficient traceable
signature in the standard model, where we employ the Groth-Sahai [36] non-interactive witness
indistinguishable (NIWI) proof systems as part of the construction. We prove it secure in the KTY
sense under non-interactive (and thus falsifiable) assumptions.

As far as efficiency goes, our scheme is on par with most efficient standard model group sig-
natures: for recommended parameters, we obtain signatures of less than 2.6 kB, which is close
to the size of Groth’s signatures [33] while both schemes have similar computational complexities
for signing and verification. From a security standpoint, the two constructions rely on intractabil-
ity assumptions of comparable strengths. Whereas Groth’s system is proved anonymous in the
strong sense (i.e., where the adversary has access to an oracle that “removes” the anonymity of
adversarially-chosen signatures), our basic scheme is anonymous in a weaker sense but readily ex-
tends – by applying the same twist as in [33] – to achieve the same anonymity level at a quite
moderate additional cost: in this case, the signature size does not exceed 3 kB.

Our traceable signature system also allows users to non-interactively claim their own signatures
in an abuse-free manner. In previous TS realizations, claims consist in zero-knowledge proofs that
can be made non-interactive using the Fiat-Shamir transformation. In our setting, implementing
claims using the Groth-Sahai techniques requires special care to make sure that dishonest group
members will not be able to copy each other’s claims. As a contribution of independent interest
(and a novelty w.r.t. the proceedings version of this paper [40]), we thus extend the original model

3 Group signatures with verifier-local revocation [17] are an exception as verification entails to publicly run some
implicit tracing mechanism to make sure that the signer is not revoked.
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of traceable signatures [38] in order to explicitly capture that honest users’ claims cannot be copied
by dishonest users. We then give a convenient way for signers to claim their signatures and non-
malleably link their claims to a long-term public key which they previously registered in a PKI.

Related Work. Independently and concurrently, Chow [24] considered an extension of traceable
signatures where a tracing trapdoor enables the reconstruction of a set of tags, each one of which
identifies a signature from the traced user. Instead of collecting and scanning all signatures using the
tracing trapdoor, the tracing agent recomputes signature-specific tags, which are sent to signature
holders who have to compare them with deterministically-generated tags included in each signature.

This new kind of TS schemes was analyzed in both the random oracle model and in the standard
model. While the construction of [24] yields a more efficient tracing mechanism, it only provides a
weaker flavor of anonymity where the anonymity adversary is limited to observe a fixed number of
signatures from each honest user. In addition, [24] does not consider how to keep non-interactive
claims from being copied as we do.

Organization. In the following, section 2 first describes the model of the TS primitive and the
various tools and assumptions that we use. The scheme is described in section 3 and its security
results are proved in section 4.

2 Background

Throughout the paper, when S is a set, x $← S denotes the action of choosing x uniformly at
random in S. By a ∈ poly(λ), we mean that a is a polynomial in λ while b ∈ negl(λ) says that b is a
negligible function of λ (i.e., a function that decreases faster than the inverse of any a ∈ poly(λ)).
When a and b are binary strings, a||b stands for their concatenation.

2.1 Complexity Assumptions

We use groups (G,GT ) of prime order p and endowed with an efficiently computable map e :
G × G → GT such that e(ga, hb) = e(g, h)ab for any elements (g, h) ∈ G × G, a, b ∈ Z and
e(g, h) 6= 1GT whenever g, h 6= 1G.

In this algebraic setting, we rely on hardness assumptions that are all non-interactive and thus
falsifiable [42]. The first one, introduced by Boneh, Boyen and Shacham [15], allows constructing
NIWI proofs as pointed out in [36].

Definition 1. In a group G = 〈g〉 of prime order p > 2λ, the Decision Linear Problem (DLIN)
is to distinguish the distributions (ga, gb, gac, gbd, gc+d) and (ga, gb, gac, gbd, gz), with a, b, c, d $← Z∗p,
z

$← Z∗p. The Decision Linear Assumption asserts that, for any PPT distinguisher D,

AdvDLIN
G,D (λ) = |Pr[D(ga, gb, gac, gbd, gc+d) = 1|a, b, c, d $← Z∗p]

−Pr[D(ga, gb, gac, gbd, gz) = 1|a, b, c, d $← Z∗p, z
$← Z∗p]| ∈ negl(λ).

This problem amounts to deciding whether vectors ~g1 = (ga, 1, g), ~g2 = (1, gb, g) and ~g3 are linearly
dependent or not.

We also use a variant, first considered by Boyen and Waters [20], of the Strong Diffie-Hellman
assumption [13].
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Definition 2 ([20]). In a group G of prime order p, the `-Hidden Strong Diffie-Hellman
problem (`-HSDH) is, given elements (g,Ω = gω, u) $← G3 and ` triples (g1/ω+si , gsi , usi) with
s1, . . . , s` ∈ Z∗p, to find another triple (g1/ω+s, gs, us) such that s 6= si for i = 1, . . . , `.

We finally need a variant of the problem, called Triple Diffie-Hellman, recently considered by
Belenkiy et al. [6].

Definition 3. Let G be a group of prime order p. The (modified) `-Triple Diffie-Hellman
Problem (`-mTDH) is, given (g, ga, gb) ∈ G3, for randomly chosen a, b

$← Z∗p, and ` distinct pairs
(g1/(a+ci), ci) with c1, . . . , c` ∈ Z∗p, to output a triple (gµ, gbµ, gabµ) for some non-zero µ ∈ Z∗p.

The original Triple Diffie-Hellman problem [6] was to find a triple (gaµ, gbµ, gabµ) given the same
inputs. In the paper, we only need these inputs to comprise a single pair (c, g1/(a+c)) (i.e., ` = 1). A
related assumption, named BB-CDH [5], asserts the infeasibility of finding gab on input of (ga, gb)
as well as pairs (g1/(a+ci), ci) with c1, . . . , c` ∈ Z∗p. Under the knowledge of exponent assumption
(KEA)4 [25], the `-mTDH problem is equivalent to the BB-CDH problem. The hardness of `-mTDH
in generic groups is thus implied by the generic intractability of KEA [27, 1] and BB-CDH.

2.2 Model and Security Notions

As in [9, 39], we assume a PKI and require each user i to hold a private/public key pair (usk[i], upk[i])
for an ordinary signature scheme. The public key upk[i] must be properly certified before the user
registers as a group member.

A traceable signature [38] consists of the following algorithms or protocols.

Setup: given a security parameter λ ∈ N, this algorithm (possibly run by a trusted party) generates
a group public key Y, that is widely distributed, and the matching private key S which is handed
to the group manager.

Join(GM,Ui) : is an interactive protocol, between the group manager GM and the prospective user Ui,
whereby the latter obtains a membership secret seci, that nobody else knows, and a membership
certificate certi. The GM stores the whole transcript in a database called transcripts, which is a
private database also containing the coin tosses that were used by the GM.

Sign: given a certificate membership certi, a membership secret seci and a message M , this algo-
rithm outputs a traceable signature σ of M .

Verify: on input of a signature σ, a message M and a group public key Y, this deterministic
algorithm returns 0 or 1.

Open: takes as input a signature σ that verifies under the group public key Y, the corresponding
private key S and the database transcripts of all transcripts of join protocols. It outputs the
identity i of a group member.

Reveal: takes in the group manager’s private key S, the index i of a group member and the join
transcript transcripti of user i. It outputs the latter’s tracing trapdoor tracei.

Trace: on input of a valid traceable signature σ, the group public key Y and a tracing trapdoor
tracei for user i, this algorithm outputs either 0 or 1.

Claim: takes as input the group public key Y, a valid message-signature pair (M,σ) issued by user
i, the latter’s membership secret seci and certificate certi as well as his private key usk[i]. The
output is an authorship claim τ of user i for σ.

4 This assumption states that, given g, ga ∈ G, the only way to generate a pair (h, ha) ∈ G2 is to raise g and ga to
some power and thus know x = logg(h).

4



Claim-Verify: given a group public key Y, a message-signature pair (M,σ), a claim τ and the
public key upk[i] of user i, this deterministic algorithm outputs 0 or 1.

Security properties are formalized by experiments where the adversary is granted access to oracles
sharing certain variables:

- state: contains the join transcripts, membership certificates and secrets that have been defined
so far.

- N is the number of users in the group.
- Sigs: is the database of signatures issued by the Qsig oracle.
- Claims: is the database of signatures that were issued by the Qsig oracle and subsequently claimed

by the signer.
- Revs: is the set of members that have been the input of a Qreveal query.
- Up: is the set of honest users introduced in the system via a Qp-join query.
- Ua: is the set of adversarially-controlled users in the system.
- U b: is the set of users that were introduced by the adversary acting as a dishonest group manager.

For such users, the transcript of the join protocol is leaked to the adversary.

For reasons that will become apparent in security definitions (more precisely, when defining secu-
rity against framing attacks), we will consider an equivalence class for message-signature pairs. The
model of non-frameability considered in [39, 23] implicitly captures a flavor of strong unforgeability
[2] in that it can only be satisfied when adversaries are unable to randomize existing signatures
and turn them into other signatures on the same message. Here, due to the use of NIWI proof sys-
tems where non-interactive proofs are publicly re-randomizable, we will need to consider a slightly
relaxed flavor of non-frameability. To this end, we define an equivalence relation over the signature
space. In our scheme, each signature will consist of a number of traceability values, several com-
mitments and a set of proofs elements. We say that two message-signature pairs (M1, σ1), (M2, σ2)
belong to the same equivalence class, which we denote by (M1, σ1) ≡s (M2, σ2), if they pertain to
the same message (i.e., M1 = M2) and they comprise identical traceability values.

The various oracles that adversaries are given access to are listed below.

- QY : returns the public information (N,Y) of the system.
- QS : returns the group manager’s private key and thereby allows the adversary to corrupt the

latter.
- Qp-join: is an oracle that privately introduces new honest users in the group. It simulates

the join protocol in private, adds index N into Up, increases N by 1 and finally updates
variables state and transcripts as state ← state||(N, transcriptN, certN, secN) and transcripts ←
transcripts||(N, transcriptN).

- Qa-join: allows the adversary to introduce users under his control in the group. The oracle,
acting as the group manager, interacts with the malicious prospective user in the join proto-
col. If the protocol successfully terminates, the oracle increments N and finally sets state ←
state||(N, transcriptN, certN,⊥), transcripts← transcripts||(N, transcriptN) and adds N into Ua.

- Qb-join: allows the adversary, acting as a dishonest group manager, to introduce new group
members. The oracle, acting on behalf of the prospective user, interacts with the malicious
group manager in the join protocol. If the latter successfully terminates, the oracle increases N
by 1, sets state← state||(N, transcriptN, certN,⊥), and adds N into U b.
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- Qsig: on input of a message M and a user index i, the oracle checks if state contains an entry
of the form (i, ·, certi, seci). If no such record is found or if i ∈ Ua, it returns ⊥. Otherwise, it
generates and returns a traceable signature on behalf of user i using certi and seci. It also sets
Sigs← Sigs||(i,M, σ).

- QClaim: on input of a triple (i,M, σ), this oracle first checks whether i belongs to the set of good
users (which is either Up or U b depending on the considered security notion) and whether a
triple (i,M ′, σ′) such that (M ′, σ′) ≡v (M,σ) appears in Sigs. If either of these conditions fails
to hold (i.e., if user i is not an honest user or did not generate (M,σ)), it returns ⊥ and sets
Claims ← Claims||(i,M, σ). Otherwise, it outputs a non-interactive authorship claim τ for the
pair (M,σ) on behalf of user i and also sets Claims← Claims||(i,M, σ).

- Qreveal: on input of a user index i, this oracle returns ⊥ if user i does not exist or if i ∈ U b.
Otherwise, it returns the output of Reveal(i, transcripts) and adds i to Revs.

Misidentification Attacks. In a misidentification attack, the adversary is allowed to control a
number of group members, which are introduced by invoking the Qa-join oracle. Through the Qp-join

and Qsig oracles, he can observe operations while users are added and generate signatures. She
is also given access to users’ tracing information via the Qreveal oracle. His goal is to produce a
non-trivial valid signature that does not open to any of the users under his control or that cannot
be traced back to one of them.

Definition 4. A traceable signature is secure against misidentification attacks if, for any PPT
adversary A, it holds that Advmis-id

A (λ) = Pr[Exptmis-id
A (λ) = 1] ∈ negl(λ) in the experiment below.

Experiment Exptmis-id
A (λ)

1. (Y,S)← Setup(λ);
2. (M?, σ?)← A(QY , Qp-join, Qa-join, Qsig, Qreveal);
3. If Verify(M?, σ?,Y) = 0 then return 0;
4. If

(
(Open(σ?,Y,S) 6∈ Ua) ∨ (

∧
i∈Ua Trace(σ?,Reveal(i)) = 0)

)
∧
(∧

i∈Up(i,M
?, ∗) 6∈ Sigs

)
then return 1;

5. Return 0;

Framing Attacks. In a framing attack, the adversary can corrupt the group manager (via the
QS oracle) and observe the system while users are added and produce signatures. Two kinds of
framing attacks are considered. First, the adversary is deemed successful if he manages to produce
a signature that opens or traces to an innocent group member. Second, he also wins if he can either
(1) forge an honest signer’s claim w.r.t. that signer’s long term public key; (2) successfully claim
a signature produced (and possibly claimed) by another user as his own using her own long term
public key.

Definition 5. A traceable signature is secure against framing attacks if, for any PPT adversary
A involved in the experiment hereafter, Advfra

A (λ) = Pr[Exptfra
A (λ) = 1] is negligible.
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Experiment Exptfra
A (λ)

1. (Y,S)← Setup(λ);
2. (M?, σ?, τ?, upk?)← A(QY , QS , Qb-join, Qsig);
3. If Verify(M?, σ?,Y) = 0 then return 0;
4. If

(
(Open(σ?,Y,S) = i ∈ U b) ∨ (∃i ∈ U b s.t. Trace(σ?,Reveal(i)) = 1)

)
∧
(
6 ∃(i,M, σ) ∈ Sigs s.t. (M?, σ?) ≡s (M,σ)

)
then return 1;

5. If
(
∃i ∈ U b s.t. (i,M, σ) ∈ Sigs ∧ (M?, σ?) ≡s (M,σ)

)
∧
(
6 ∃(j,M, σ) ∈ Claims s.t. (j = i) ∧ (M?, σ?) ≡s (M,σ)

)
∧
(
Claim-Verify(M?, σ?, τ?, upk[i],Y) = 1 ∧ upk? = upk[i]

)
then return 1 ;

6. If
(
∃i ∈ U b s.t. (i,M, σ) ∈ Sigs ∧ (M?, σ?) ≡s (M,σ)

)
∧
(
Claim-Verify(M?, σ?, τ?, upk?,Y) = 1 ∧ upk? 6= upk[i]

)
then return 1 ;

7. Return 0;

In the above experiment, condition 5 captures the infeasibility of claiming signatures without know-
ing the appropriate key material. Condition 6 deals with the situation of the adversary illegally
claiming the authorship of some honest group member’s signature regardless of whether that mem-
ber has already claimed his signature or not. This notably implies that no two members should be
able to successfully claim the same signature.

Anonymity. An anonymity adversary runs in two stages called play and guess. In the first one, the
adversary is allowed to join the system via Qa-join-queries on polynomially-many occasions. Using
the Qp-join, Qsig oracles, he can observe the system while users are privately introduced and sign
messages. He can finally obtain tracing trapdoors for users of his choice. At the end of the play
stage, he chooses two privately introduced users i?0, i

?
1 that were not the input of a Qreveal-query

and obtains a signature on behalf of one of them. In the guess stage, he aims at finding out who
the signer was among i?0 and i?1.

In comparison with the definition of anonymity in [38], we introduce a claiming oracle Qclaim and
enable the adversary to request claims for honestly generated signatures. Of course, the adversary is
not allowed to obtain claims on behalf of i?0 and i?1 for signatures that belong to the same equivalence
class as the challenge pair (M?, σ?).

Definition 6. A traceable signature scheme provides anonymity if, for any PPT adversary A, we
have Advanon(A) := |Pr[Exptanon

A (λ) = 1]− 1/2| ∈ negl(λ), where

Experiment Exptanon
A (λ)

1. (Y,S)← Setup(λ);
2. (aux,M?, i?0, i

?
1)← A(play : QY , Qp-join, Qa-join, Qsig, Qreveal, Qclaim);

3. If (i?0 6∈ Up) ∨ (i?1 6∈ Up) ∨ (i?0 ∈ Revs) ∨ (i?1 ∈ Revs) then return 0;
4. d? $← {0, 1}; σ? ← Sign(M?,Y, certi?

d?
, seci?

d?
);

5. d′ ← A(guess, σ?, aux : QY , Qp-join, Qa-join, Qsig, Qreveal, Qclaim);
6. If

((
(i?0 ∈ Revs) ∨ (i?1 ∈ Revs)

)
∨
(
∃(j,M, σ) ∈ Claims s.t. j ∈ {i?0, i?1} ∧ (M,σ) ≡s (M?, σ?)

))
then return 0;

7. If d′ = d? then return 1;
8. Return 0;

The KTY model does not provide adversaries with an opening oracle in the definition of anonymity.
On the other hand, since tracing is a distributed operation, the model considers (via the Qreveal
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oracle) the threat of corrupted tracing agents. In the following, we will stick to that model. In
applications where anonymity should be preserved when opening queries are allowed, it is not hard
to modify our scheme (using the technique of [33]) to obtain anonymity in the CCA2 sense.

2.3 Groth-Sahai Commitments

In the following, for equal-dimension vectors or matrices A and B containing group elements, A�B
stands for their component-wise product.

When based on the DLIN assumption, the Groth-Sahai proof systems [36] make use of a common
reference string comprising vectors ~g1, ~g2, ~g3 ∈ G3 where, for some group elements g1, g2 ∈ G,
~g1 = (g1, 1, g), ~g2 = (1, g2, g). To commit to a group element X ∈ G, one picks r, s, t $← Z∗p and
computes ~C = (1, 1, X) � ~g1

r � ~g2
s � ~g3

t. When the proof system is chosen to provide perfectly
sound proofs, ~g3 is chosen as ~g3 = ~g1

ξ1 � ~g2
ξ2 with ξ1, ξ2

$← Z∗p. Commitments are then Boneh-
Boyen-Shacham (BBS) encryptions since ~C = (gr+ξ1t1 , gs+ξ2t2 , X · gr+s+t(ξ1+ξ2)) and decryption is
possible using α1 = logg(g1), α2 = logg(g2). In the WI setting, ~g1, ~g2, ~g3 are linearly independent
and ~C is a perfectly hiding commitment. Under the DLIN assumption, the two reference strings
are indistinguishable.

To commit to exponents x ∈ Zp, one uses vectors ~ϕ, ~g1, ~g2 and computes ~C = ~ϕx� ~g1
r � ~g2

s. In
the soundness setting ~ϕ, ~g1, ~g2 are linearly independent vectors whereas, in the WI setting, choosing
~ϕ = ~g1

ξ1 � ~g2
ξ2 always gives a perfectly hiding commitment given that ~C is a BBS encryption of

1G regardless of the value x.
To provide evidence that committed variables satisfy a set of relations, the proof systems of

[36] start from the relations themselves and replace variables by commitments. The prover then
generates a proof (consisting of a set of group elements) for each relation. The whole proof consists
of one commitment per variable and one proof for each relation. Such efficient non-interactive proofs
are available for pairing-product relations, which are of the type

n∏
i=1

e(Ai,Xi) ·
n∏
i=1

·
n∏
j=1

e(Xi,Xj)aij = tT ,

for variables X1, . . . ,Xn ∈ G and constants tT ∈ GT , A1, . . . ,An ∈ G, aij ∈ G, for i, j ∈ {1, . . . , n}.
Efficient proofs also exist for multi-exponentiation equations

m∏
i=1

Ayii ·
n∏
j=1

X bjj ·
m∏
i=1

·
n∏
j=1

X yiγijj = T,

for variables X1, . . . ,Xn ∈ G, y1, . . . , ym ∈ Zp and constants T,A1, . . . ,Am ∈ G, b1, . . . , bn ∈ Zp and
γij ∈ G, for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.

Multi-exponentiation equations admit zero-knowledge proofs at no additional cost. On a simu-
lated CRS (prepared for the WI setting), a trapdoor makes it is possible to simulate proofs without
knowing witnesses and simulated proofs are perfectly indistinguishable from real proofs. As for
pairing-product equations, zero-knowledge proofs are often possible but usually come at the ex-
pense of some overhead in comparison with NIWI proofs for the same equations: typically, the size
of proofs may depend on the number of variables. In the paper, we only utilize NIZK proofs for
multi-exponentiation equations.
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In both cases, proofs for quadratic equations cost 9 group elements. Linear pairing-product equa-
tions (when aij = 0 for all i, j) take 3 group elements each. Linear multi-exponentiation equations
of the type

∏n
j=1X

bj
j = T (resp.

∏m
i=1A

yi
i = T ) demand 3 (resp. 2) group elements.

3 Construction

Intuition. The group manager has a public key comprising elements (Ω = gω, h0, h1, h2) and uses
ω ∈ Z∗p to generate membership certificates. These consist of 5 elements (K1,K2,K3,K4, y) and are
reminiscent of users’ private keys in the Boyen-Waters group signature [20]. Namely, K1 is derived
as K1 = (h0 · hx1 · h

y
2)1/(ω+sID), where sID is chosen by GM and identifies the user U while x is only

known to U as his membership secret. The last element y is chosen by GM as part the tracing
trapdoor for U . The certificate also contains K3 = gsID and K4 = usID0 as in [20]. Security proofs
also require to include K2 = g1/(ω+sID) (so that, as in [18], ω and sID simultaneously appear more
than once as denominators in the exponent).

To enable traceability when the appropriate tracing trapdoor is revealed (which is sometimes
called “implicit tracing”, as opposed to the “explicit tracing” that appeals to the signature opening
algorithm), each signature must contain certain “traceability values” that make it possible to link
the signature to its issuer. One of the technical points to address is to get these traceability values
to interact with Groth-Sahai proof systems in a simple way. Indeed, at some step of the proof of
anonymity, knowledge of the underlying values will have to be simulated in a zero-knowledge manner
(i.e., without knowing the actual witnesses). Previously used approaches to achieve implicit tracing
using pairings (e.g., [23]) would require the traceability components to satisfy some pairing-product
equation [36], for which zero-knowledge proofs usually come at some additional cost when they are
at all possible. For this reason, as such traceability values, we rather let the signer include pieces of a
linear tuple (T1, T2, T3) = (gxδ1 , gyδ2 , gδ1+δ2) – which is a set of multi-exponentiation equations in the
Groth-Sahai terminology – in each signature in such a way that the tracing trapdoor (X = gx, y)
allows testing whether a signature stems from user U by checking if e(T1, g) = e(X,T3/T

1/y
2 ).

Thanks to the use of multi-exponentiation equations, knowledge of the underlying scalars δ1, δ2 will
be simulatable (in the WI setting) in a simple way in the proof of anonymity, which eventually
relies on the sole DLIN assumption.

In traceability concerns, attention must be paid to the fact that users may be tempted to alter
their membership certificate and modify the corresponding values x, y so as to defeat (implicit
or explicit) tracing attempts. In the random oracle model, the problem is usually much easier in
non-frameable pairing-based group signatures [43, 29, 26, 23], where membership certificates also
have one component of the form K1 = (h0 · hx1 · h

y
2)1/(ω+sID). In those schemes, signatures prove

knowledge of values (K1, x, y, sID) that satisfy the latter relation and, in the security proof, the
forking lemma [44] allows extracting them in order to break some number theoretic assumption. In
the present context, the problem is that committed exponents x, y, sID ∈ Zp are not fully extractable
from Groth-Sahai commitments (typically, only gx, gy, gsID are extractable) and we must settle for
extracting a non-trivial information on them when it comes to prove traceability. To this end, we
require each signature to contain redundancies in the form of (commitments to) quantities hx1 · h

y
2

and hx3 ·h
y
4, for some group elements h3 and h4, which render certificate randomizations infeasible (as

established by the proof against Type III forgeries in the security analysis against misidentification
attacks). We remark that, in [33], Groth used a different method to build a non-frameable group
signature using a certified signature scheme [12]. However, we cannot use the same technique since
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the underlying certified signature only allows signing single group elements whereas we need to
bind both X ∈ G and y ∈ Zp to the membership certificate.

In [20], group members sign messages m ∈ {0, 1}n by randomly choosing r $← Zp and computing
pairs (θ1, θ2) = (usID0 · Gv(m)r, gr) using Waters’ technique [45] and a suitable number theoretic
hash function Gv : {0, 1}n → G (termed “programmable” by Hofheinz and Kiltz [37]). In non-
frameability concerns, we force signers to also use their membership secret x and generate pairs
(θ1, θ2) somewhat in the fashion of the Waters-based multi-signature of Lu et al. [41]. Instead
of signing a message m as (θ1, θ2) = (usID0 · ux1 · Gv(m)r, gr), we need to generate such pairs as
(θ1, θ2) = (usID0 · u

xδ1
1 ·Gv(m)r, gr) for the proof of non-frameability to work. Of course, u1 and the

set of group elements that implement the number theoretic hash function Gv(.) are assumed to
come from a trusted key generation procedure. In particular, the discrete logarithm logg(u1) must
be held back from the group manager as, otherwise, a dishonest GM could frame honest users.

Signers are able to claim their signatures by proving knowledge of exponents x, y ∈ Zp such that
T3 = T

1/x
1 ·T 1/y

2 . These proofs are also non-interactive and make use of a second Waters-like number
theoretic hash function Gf : {0, 1}n → G, the parameters (f0, f1, . . . , fn) ∈R Gn+1 of which must
be generated by a trusted party (and not by the group manager as the latter could claim honest
users’ signatures if it were allowed to generate this reference string itself) when the scheme is set up.
One difficulty is to prevent possibly dishonest group members from copying each other’s claims. To
this end, non-interactive claims are non-malleably bound to the long-term public key of the group
member (as will be discussed hereafter, non-repudiation is enforced by having users register a public
key upk in a PKI and use the private key usk to sign a piece of their membership certificate). In
order to claim a signature containing traceability values (T1, T2, T3) = (gxδ1 , gyδ2 , gδ1+δ2) using their
secret information x, y ∈ Zp, signers first compute a n-bit string mc = H(M ||T1||T2||T3||upk) and
generate two pairs (Dx,1, Dx,2) = (f1/x · Gf (mc)rx , T rx1 ) and (Dy,1, Dy,2) = (f1/y · Gf (mc)ry , T

ry
1 )

using random rx, ry
$← Zp. Elements (Dx,1, Dx,2, Dy,1, Dy,2) are in turn signed using the long-term

private key usk associated with upk.
In order to ensure non-repudiation, users have to register a long term public key upk in some

PKI. In non-repudiation concerns, the underlying private key usk is used to sign (using an ordinary
signature scheme) parts (X,K1,K2,K3, y) of their membership certificate during the join protocol.

Description. In notations hereafter, it will be convenient to define the coordinate-wise pairing
E : G × G3 → G3

T such that, for any element h ∈ G and any vector ~g = (g1, g2, g3), we have
E
(
h,~g
)

=
(
e(h, g1), e(h, g2), e(h, g3)

)
. In addition, we also make use of a symmetric bilinear mapping

F : G3×G3 → G9
T such that, for any two vectors ~X = (X1, X2, X3) ∈ G3 and ~Y = (Y1, Y2, Y3) ∈ G3,

F ( ~X, ~Y ) = F̃ ( ~X, ~Y )1/2 · F̃ (~Y , ~X)1/2, where the non-commutative mapping F̃ : G3×G3 → G9
T sends

( ~X, ~Y ) onto the matrix F̃ ( ~X, ~Y ) of entry-wise pairings (i.e., containing e(Xi, Yj) in its entry (i, j)).
Also, for any z ∈ GT , ιT (z) denotes the 3 × 3 matrix containing z in position (3, 3) and 1GT

everywhere else. For X ∈ G, the notation ι(X) will sometimes denote the vector (1, 1, X) ∈ G3.

Setup(λ, n): for security parameters λ and n ∈ poly(λ), choose bilinear groups (G,GT ) of order
p > 2λ, with g, h0, h2, h3, h4, u0, u1

$← G. Select γ1, ω
$← Z∗p and set h1 = gγ1 , Ω = gω. Select

v = (v0, v1, . . . , vn) $← Gn+1. Choose vectors g = (~g1, ~g2, ~g3) such that ~g1 = (g1, 1, g) ∈ G3,
~g2 = (1, g2, g) ∈ G3, and ~g3 = ~g1

ξ1 � ~g2
ξ2 , with g1 = gα1 , g2 = gα2 and α1, α2

$← Z∗p, ξ1, ξ2
$← Zp.

It also chooses f = (f0, f1, . . . , fn) $← Gn+1 and f
$← G. The algorithm also specifies a hash

function H : {0, 1}∗ → {0, 1}n from a collision-resistant family. The group public key is defined
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to be
Y :=

(
g, h0, h1 = gγ1 , h2, h3, h4, Ω = gω, u0, u1, v, f , g, H

)
while the private key S :=

(
γ1, ω, α1, α2

)
is given to the group manager.

Join(GM,Ui) : the prospective group member Ui and the group manager GM run an interactive
protocol whereby the user obtains a membership certificate certi and a membership secret seci.
The protocol is the following:

1. User Ui and the GM execute an interactive protocol (such as Groth’s protocol [33, Section
4.1] recalled in appendix B) allowing them to jointly generate X = gx so that x ∈ Zp is
randomly distributed and known only to the user while GM learns the corresponding public
value X.

2. GM first computes hx1 = Xγ1 and then uses it to compute K1 = (h0 · hx1 · h
y
2)1/(ω+sID),

K2 = g1/(ω+sID), K3 = gsID and K4 = usID0 , for newly chosen random values sID, y
$← Z∗p.

Elements K1,K2,K3 and y are sent to the user.
3. Ui checks that received elements (K1,K2,K3, y) satisfy

e(K1, Ω ·K3) = e(h0, g) · e(h1, X) · e(h2, g)y,
e(K2, Ω ·K3) = e(g, g).

If so, he generates a signature sigi = Signusk[i]

(
X||K1||K2||K3||gy

)
and sends it back to GM.

4. If Verifyupk[i]

(
X||K1||K2||K3||gy, sigi

)
= 1, GM sends K4 = usID0 to Ui and stores the record

transcripti := (X,K1,K2,K3,K4, y, sigi) in its database transcripts. User Ui checks that
e(K3, u0) = e(g,K4). If so, he sets his membership certificate as certi := (K1,K2,K3,K4, y)
and his membership secret as seci := x.

Sign(M,Y, certi, seci): to sign M , user Ui parses certi as (K1,K2,K3,K4, y) and seci as x ∈ Z∗p and
conducts the following steps.

1. Choose δ1, δ2
$← Z∗p and compute the traceability values

T1 = gxδ1 T2 = gyδ2 T3 = gδ1+δ2

2. Set Gv(m) = v0 ·
∏n
j=1 v

mj
j with m = m1 . . .mn = H(M ||T1||T2||T3).

3. Pick rs
$← Z∗p and compute

θ1 = K1 = (h0 · hx1 · h
y
2)1/(ω+sID)

θ2 = K2 = g1/(ω+sID)

θ3 = K3 = gsID

θ4 = K4 · uxδ11 ·Gv(m)rs

= usID0 · u
xδ1
1 ·Gv(m)rs

θ5 = grs

θ6 = hx1 · h
y
2

θ7 = hx3 · h
y
4

θ8 = gx

θ9 = gy

so that

e(θ1, Ω · θ3) = e(h0, g) · e(θ6, g) (1)
e(θ2, Ω · θ3) = e(g, g) (2)

e(θ4, g) = e(u0, θ3) · e(u1, T1) · e(Gv(m), θ5). (3)
e(θ6, g) = e(h1, θ8) · e(h2, θ9) (4)
e(θ7, g) = e(h3, θ8) · e(h4, θ9) (5)
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4. Commit to variables θi, for i = 1, . . . , 9. That is, for i = 1, . . . , 9, randomly choose ri, si, ti
$←

Zp and set ~σi = (1, 1, θi) · ~g1ri · ~g2si · ~g3ti . Then, commit to exponents δ1, δ2 ∈ Zp by choosing
r10, s10, r11, s11

$← Z∗p and setting ~σ10 = ~ϕδ1 · ~g1r10 · ~g2s10 , ~σ11 = ~ϕδ2 · ~g1r11 · ~g2s11 , where
~ϕ = ~g3 � (1, 1, g).

5. Give proofs that committed variables θ1, . . . , θ9 satisfy (1)-(5) and that ~σ10, ~σ11 are com-
mitment to values δ1, δ2 satisfying

T1 = θδ18 T2 = θδ29 T3 = gδ1+δ2 (6)

a. Relations (1)-(2) are quadratic pairing-product equations (in the Groth-Sahai terminol-
ogy [36]) over variables θ1, θ2, θ3, θ6. Each relation requires a proof consisting of 9 group
elements. Let us call these proofs π1 = (~π1,1, ~π1,2, ~π1,3), π2 = (~π2,1, ~π2,2, ~π2,3). Relations
(6) are multi-exponentiation equations. The first two ones are quadratic and the corre-
sponding proofs π6 = (~π6,1, ~π6,2, ~π6,3) and π7 = (~π7,1, ~π7,2, ~π7,3) both consist of 3 vectors
of G3. The third relation of (6) is a linear multi-exponentiation equation and the proof
π8 = (π8,1, π8,2) is just 2 group elements.

b. Relations (3)-(5) are linear pairing-product equations over variables θ3, . . . , θ9. Corre-
sponding proofs cost 3 group elements each and π3, π4, π5 are all vectors of G3.

For clarity, we abstract away the construction of these proofs from the present description
and refer to appendix C for details on how proof elements are calculated.

The signature finally consists of σ = (T1, T2, T3, ~σ1, . . . , ~σ11, π1, . . . , π8).

Verify(M,σ,Y): parse the signature σ as a tuple (T1, T2, T3, ~σ1, . . . , ~σ11, π1, . . . , π8). Then, compute
m = m1 . . .mn = H(M ||T1||T2||T3) and Gv(m) = v0 ·

∏n
j=1 v

mj
j . Verifying π1, . . . , π8 entails to

check whether the following equations (some of which bear resemblance with relations (1)-(5)),
where ~ϕ = ~g3 � (1, 1, g), are all satisfied. The verifier returns 1 if they are and 0 otherwise.

1) F
(
~σ1, ι(Ω)� ~σ3

)
= ιT

(
e(h0, g)

)
� F

(
~σ6, ι(g)

)
�F
(
~g1, ~π1,1

)
� F

(
~g2, ~π1,2

)
� F

(
~g3, ~π1,3

)
2) F

(
~σ2, ι(Ω) · ~σ3

)
= ιT

(
e(g, g)

)
� F

(
~g1, ~π2,1

)
� F

(
~g2, ~π2,2)� F (~g3, ~π2,3

)
3) E

(
g, ~σ4

)
= E

(
u0, ~σ3

)
� E

(
u1, ι(T1)

)
� E

(
Gv(m), ~σ5

)
�E
(
π3,1, ~g1

)
� E

(
π3,2, ~g2

)
� E

(
π3,3, ~g3

)
4) E

(
g, ~σ6

)
= E

(
h1, ~σ8

)
� E

(
h2, ~σ9

)
� E

(
π4,1, ~g1

)
� E

(
π4,2, ~g2

)
� E

(
π4,3, ~g3

)
5) E

(
g, ~σ7

)
= E

(
h3, ~σ8

)
� E

(
h4, ~σ9

)
� E

(
π5,1, ~g1

)
� E

(
π5,2, ~g2

)
� E

(
π5,3, ~g3

)
6) F

(
~σ8, ~σ10

)
= F

(
ι(T1), ~ϕ

)
� F

(
~g1, ~π6,1

)
� F

(
~g2, ~π6,2

)
� F

(
~g3, ~π6,3

)
7) F

(
~σ9, ~σ11

)
= F

(
ι(T2), ~ϕ

)
� F

(
~g1, ~π7,1

)
� F

(
~g2, ~π7,2

)
� F

(
~g3, ~π7,3

)
8) E

(
g, ~σ10 � ~σ11

)
= E(T3, ~ϕ)� E

(
π8,1, ~g1

)
� E

(
π8,2, ~g2

)
Open(σ,Y,S): parse the signature σ as (T1, T2, T3, ~σ1, . . . , ~σ11, π1, . . . , π8) and the private key S as
{γ1, ω, α1, α2}. For each i ∈ {3, 8, 9}, parse element ~σi as a BBS ciphertext (σi,1, σi,2, σi,3) ∈ G3

and compute θi = σi,3 · σi,1−1/α1 · σi,2−1/α2 . Check whether the database transcripts contains a
record transcripti = (X,K1,K2,K3,K4, y, sigi) such that θ3 = K3, θ8 = X and θ9 = gy. If yes,
return i as the signer’s index. Otherwise, return ⊥.

Reveal(i, transcripts): to reveal the tracing trapdoor for user Ui, scan the database transcripts to
find transcripti = (X,K1,K2,K3,K4, y, sigi) and output tracei := (X, y).
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Trace(σ, tracei,Y): parse σ as (T1, T2, T3, ~σ1, . . . , ~σ11, π1, . . . , π8) and the tracing trapdoor tracei as
(X, y) ∈ G× Z∗p. Return 1 if e(T3/T

1/y
2 , X) = e(g, T1) and 0 otherwise.

Claim(M,σ, seci,Y): given σ = (T1, T2, T3, ~σ1, . . . , ~σ11, π1, . . . , π8), seci = x and part y of his mem-
bership certificate certi, the signer i parses his long term key pair as (usk[i], upk[i]) and computes
mc = H(M ||T1||T2||T3||upk[i]) = mc,1 . . .mc,n ∈ {0, 1}n as well as Gf (mc) = f0 ·

∏n
j=1 f

mc,j
j .

Then, he picks rx, ry
$← Zp and computes

(Dx,1, Dx,2) =
(
f1/x ·Gf (mc)rx , T rx1

)
, (Dy,1, Dy,2) =

(
f1/y ·Gf (mc)ry , T

ry
2

)
The non-interactive claim consists of the tuple τ := (Dx,1, Dx,2, Dy,1, Dy,2, csigi), the last part
of which is a digital signature csigi = Signusk[i](Dx,1||Dx,2||Dy,1||Dy,2).

Claim-Verify(M,σ, τ, upk,Y): given a traceable signature σ = (T1, T2, T3, ~σ1, . . . , ~σ11, π1, . . . , π8),
to verify the claim τ = (Dx,1, Dx,2, Dy,1, Dy,2, csigi), compute Gf (mc) = f0 ·

∏n
j=1 f

mc,j
j , where

mc = H(M ||T1||T2||T3||upk[i]) = mc,1 . . .mc,n ∈ {0, 1}n, and return 1 iff

e(f, T3) =
e(Dx,1, T1) · e(Dy,1, T2)
e(Gf (mc), Dx,2 ·Dy,2)

(7)

and Verifyupk[i]

(
(Dx,1||Dx,2||Dy,1||Dy,2), csigi

)
= 1.

Correctness of the Claiming Algorithm. We easily verify that honestly generated claims
(Dx,1, Dx,2, Dy,1, Dy,2) are always accepted since they satisfy the relations

e(Dx,1, T1) = e(f, gδ1) · e(Gf (mc), Dx,2)
e(Dy,1, T2) = e(f, gδ2) · e(Gf (mc), Dy,2),

so that
e(Dx,1, T1)

e(Gf (mc), Dx,2)
· e(Dy,1, T2)
e(Gf (mc), Dy,2)

= e
(
f, gδ1+δ2

)
.

Including the signer’s long-term public key upk[i] among the inputs of the hash function H
in the computation of mc prevents other dishonest groups members from tampering with user i’s
claim τ = (Dx,1, Dx,2, Dy,1, Dy,2, csigi) by replacing csigi with their own signature on the claiming
information (Dx,1||Dx,2||Dy,1||Dy,2). As we shall see in the proof of security against framing attacks,
dishonest group members will be unable to successfully claim an honest signer’s signature as long
as the Diffie-Hellman assumption holds.

Discussion. The opening algorithm performs BBS decryptions on ciphertexts ~σ3, ~σ8 and ~σ9. Theo-
retically, decrypting only ~σ3 suffices (since sID must be unique in the database transcripts). However,
also decrypting ~σ8 and ~σ9 simplifies the proofs of security against misidentification attacks and fram-
ing attacks. In the former for instance, a failure of the implicit tracing mechanism implies a failure
of the opening algorithm and reduces the number of cases to consider.

We note that the claiming algorithm does not make use of pairing-based non-interactive witness
indistinguishable proofs. However, such techniques can be adapted to work in this context as well.
Indeed, we can alternatively build on Groth’s techniques for constructing simulation-sound NIZK
proofs [32][Section 6] and have the claimer generate a simulation-sound extractable (see [32] for
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definitions) proof that he knows x, y such that T3 = T
1/x
1 ·T 1/y

2 and the private key associated with
his long-term public key. Since simulation-sound extractable proofs are also non-malleable, the ad-
versary cannot break the AND link between the two statements and re-use the proof of knowledge
of x, y such that T3 = T

1/x
1 · T 1/y

2 .
In comparison with the latter technique, the advantage of our approach is to provide a better

efficiency as claims only consist of four group elements and an ordinary signature. In addition, the
signer’s key pair (usk[i], upk[i]) can be a public key for any (not necessarily pairing-based) digital
signature scheme.

Efficiency. From an efficiency standpoint, each signature consists of 83 group elements. Using a
symmetric pairing configuration with 256-bit prime order groups, we obtain signatures of 2.593 kB.

Signing requires a few tens of exponentiations. While a number of pairing evaluations seem
necessary to verify at first glance, probabilistic batch verification techniques (as exemplified in
[11]) allow for dramatic improvements (at the expense of a small probability of wrongly accepting
an invalid signature) w.r.t. naive implementations where each pairing is calculated individually.
When suitably processed altogether, verification equations 3-5 and 8 require to compute a product
of no more than 9 pairings and a few multi-exponentiations. Verification equations 1-2 and 6-7
can be handled by first translating them into a randomized product of several bilinear maps of
the type F (·, ·). The structure of matrices F (·, ·) then makes it possible the decrease the overall
verification cost of conditions 1-2 and 6-7 to the equivalent of a product of 15 pairings and some
multi-exponentiations.

4 Security

We establish the security of the scheme in the standard model under the assumptions of section
2.1 and the assumption that the digital signature scheme in use is existentially unforgeable under
chosen-message attacks (as defined in [31] and recalled in appendix A).

4.1 Security against Misidentification Attacks

Theorem 1 (Misidentification). The scheme is secure against misidentification attacks assum-
ing that the `-HSDH problem, where ` is the total number of Qa-join and Qp-join-queries, and the
1-mTDH problem are both hard in G.

Proof. To win the misidentification game, the adversary must output a non-trivial signature for
which the opening algorithm or the implicit tracing algorithm fail to point to an adversarially-
controlled group member.

Let σ? = (T ?1 , T
?
2 , T

?
3 , ~σ1

?, . . . , ~σ11
?, π?1, . . . , π

?
8) denote the adversary’s forgery and let us first

assume that Open(σ?,Y,S) 6∈ Ua. We distinguish three cases:

- Type I forgeries are those for which the BBS decryption θ?3 = gsID of ~σ3
? does not appear

anywhere in transcripts. We distinguish Type I-A forgeries, where the underlying θ?3 = gsID never
appears at any time during the game, from Type I-B forgeries for which θ?3 does not correspond
to any record of transcripts but did appear (implicitly, as part of K3) in a join protocol (triggered
by a Qa-join query) that aborted before reaching its last step.
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- Type II forgeries are such that ~σ3
? decrypts to a value θ?3 = gsID that was assigned to some

honest user i ∈ Up (initialized via a Qp-join-query). Such forgeries thus include those for which
the opening algorithm points to some user i ∈ Up who did not sign the corresponding message.

- Type III forgeries open in such a way that ~σ3
? decrypts to the θ?3-value of an adversarially-

controlled user in transcripts but ( ~σ8
?, ~σ9

?) does not. These forgeries include those that would
defeat the implicit tracing algorithm.

Lemmas 1, 2 and 3 show that, if the adversary could produce either of such forgeries, it would be
possible to break the HSDH or the 1-mTDH assumption.

Finally, one can readily check that an adversary cannot come up with a fake signature defeating
the implicit tracing algorithm without being one of the above kinds of forgeries. Indeed, let σ? be
such a forgery and let us consider the decryption θ?3 of ~σ3

?. If it differs from any K3 appearing in
transcripts, σ? is actually a Type I forgery. If θ?3 matches K3 in transcripti for some i ∈ Up, we have
a Type II forgery. We are left with the case where θ?3 matches K3 in transcripti for some i ∈ Ua.
Here, a failure of the implicit tracing necessarily means that A, acting as a cheating group member,
was able to twist his membership certificate so as to keep the same sID and alter the membership
secret x or the “traceability component” y. We thus have a Type III forgery. ut

The security against Type I and Type II attacks can be established almost in the same way as
traceability attacks are handled in the security proof of the Boyen-Waters group signature [20] and
the proofs of lemmas 1 and 2 are available in appendix D.

Lemma 1. The advantage of any Type I forger A is bounded by

Advmis-id-I
A (λ) ≤ 2 · `a ·Adv(`a+`p)-HSDH(λ)

where `a and `p denote the number of Qa-join and Qp-join-queries respectively.

Proof. Given in appendix D.1. ut

Lemma 2. The scheme is secure against Type II forgeries under the HSDH assumption. The ad-
vantage of any Type II adversary A is at most

Advmis-id-II
A (λ, n) ≤ 4 · n · `s ·

(
1− `a

p

)−1 ·Adv`a-HSDH(λ)

where `a and `s stand for the number of Qa-join and Qsig-queries.

Proof. Detailed in appendix D.2. ut

Type III forgeries are somewhat trickier to deal with. Indeed, the proof of lemma 3 is the
most difficult part of the proof of security against misidentification attacks and it appeals to the
non-standard 1-mTDH assumption. We leave it as an interesting problem to hedge against misiden-
tification attacks using only the HSDH assumption.

Lemma 3. The advantage of any Type III adversary A is bounded by

Advmis-id-III
A (λ, n) ≤ `a ·

(
1− 1

p

)−1 ·Adv1-mTDH(λ)

where `a is the number of Qa-join-queries.
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Proof. In a successful Type III forgery σ?, by assumption, the opening algorithm decrypts ~σ3
? to

a value θ?3 = σ?3,3 · σ?3,1−1/α1 · σ?3,2−1/α2 that equals some K3 appearing in the transcript of a user in
Ua whereas the BBS decryption of ( ~σ8

?, ~σ9
?) does not match the values (X, y) that were assigned

to that user.
The simulator B receives as input a modified 1-Triple Diffie-Hellman instance consisting of

(g,A = ga, B = gb) ∈ G3 and a single pair (C = g1/(a+c), c) ∈ G×Z∗p. To prepare the public key Y,
it picks ω, ρu,0, ρu,1, β0, . . . , βn

$← Z∗p. It sets Ω = gω, vi = gβi , for i = 0, . . . , n, and ui = gρu,i for
i = 0, 1. Then, it draws new random values ρ, γ0, γ1, γ2, γ3, γ4, x

?, y?
$← Z∗p and defines h1 = gρ ·Bγ1 ,

h2 = gρ · Bγ2 , h3 = gγ3 · Aρ, h4 = gγ4 · Aρ and h0 = gγ0 · h−x?1 · h−y
?

2 . It finally chooses vector sets
g, f to have perfectly sound proof systems.
The group public key is

Y :=
(
g, {hi}i=0,...,4, Ω, u0, u1, {vi}i=0,...,n, g, f

)
.

At the outset of the simulation, B draws an index i?
$← {1, . . . , `a} and initializes variables

ctra, ctr
′
a, ctrp ← 0.

- Qa-join-queries: B increments ctr′a and considers the following two cases.

- If ctr′a 6= i?, B acts as the group manager as specified by the protocol (recall that it knows
ω and can always properly generate certificates).

- If ctr′a = i?, B simulatesA’s view in the first step of the join protocol to forceA’s membership
secret to be x? (so that the public value is X = gx

?
). The simulation implicity defines

sIDi? = 1
a+c − ω (and thus 1/(sIDi? + ω) = a+ c) by setting

K1 = (h0 · hx
?

1 · h
y?

2 )
1

ω+si? = (A · gc)γ0

K2 = g
1

ω+si? = A · gc

K3 = gsi? = g1/(a+c) · g−ω = C · g−ω

K4 = u
si?
0 = (C · g−ω)ρu,0

In step 2, B first sends K1,K2,K3, y
? to A and aborts if he fails to send back a valid signature

on X||K1||K2||K3||gy
?
. If A correctly answers, B hands him K4, increments ctra and stores

a record (N, transcriptsN), with N = ctra + ctrp in transcripts.
- Qp-join-queries and Qsig-queries: to answer Qp-join-queries, B follows the join protocol using the

group secret key S := (γ1, ω, p) and increments ctrp. It can also perfectly answer signing queries
on behalf of honest user since it knows their membership certificates and secrets.

- QY and Qreveal(i)-queries: can be handled according to the specification of the scheme since B
always knows the values requested by A.

- Qsig-queries: always involve users in Up and B thus always knows private elements that it needs
to answer the query.

Eventually, the adversary A comes up with a message M? along with a valid traceable signature
σ? = (T ?1 , T

?
2 , T

?
3 , ~σ1

?, . . . , ~σ11
?, π?1, . . . , π

?
8) that must be a type III forgery. At this stage, B fails if

the decryption of ~σ3
? differs from the element K3 = C · g−ω that B calculated at the i?th Qa-join-

query (as it guessed the wrong i?).
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Otherwise, for all i ∈ {1, . . . , 9}\{3}, it decrypts other ~σi? into θ?i . as in the proofs of lemmas 1
and 2. Since the proof system is configured for the perfect soundness setting, it comes that

θ?1 = (h0 · hx
′

1 · h
y′

2 )
1

ω+sIDi? θ?6 = hx
′

1 · h
y′

2

=
(
gγ0 · h(x′−x?)

1 · hy
′−y?

2

)a+c
θ?7 = hx

′
3 · h

y′

4

θ?8 = gx
′

θ?9 = gy
′

for some x′, y′ ∈ Z∗p that B does not know. However, if we set ∆x = x′ − x? and ∆y = y′ − y?, B
can compute

Z1 = θ?1/K1 =
(
h∆x1 · h∆y2

)a+c =
(
gρ(∆x+∆y) ·Bγ1∆x+γ2∆y

)a+c
Z2 = θ?7/(h

x?

3 · h
y?

4 ) = h∆x3 · h∆y4 = gγ3∆x+γ4∆y ·Aρ(∆x+∆y)

Z3 = θ?8/g
x? = g∆x

Z4 = θ?9/g
y? = g∆y

Z5 = θ?6/(h
x?

1 · h
y?

2 ) = h∆x1 · h∆y2 = gρ(∆x+∆y) ·Bγ1∆x+γ2∆y

which in turn reveal

Z6 = (A · gc)ρ(∆x+∆y) =
(
Z2/(Z

γ3
3 · Z

γ4
4 )
)
· (Z3 · Z4)ρc

Z7 = Bγ1∆x+γ2∆y = Z5 · (Z3 · Z4)ρ

and finally
Z8 = gab(γ1∆x+γ2∆y) = Ba(γ1∆x+γ2∆y) = Z1/(Z6 · Zc7),

so that, if we implicitly define µ = γ1∆x+ γ2∆y, B has eventually found a triple

(gµ, gbµ, gabµ) = (Zγ13 · Z
γ2
4 , Z7, Z8).

Since γ1 and γ2 are both random and perfectly hidden from A’s view, we have gµ 6= 1G (and thus
γ1∆x + γ2∆y 6= 0 mod p) with overwhelming probability (greater than 1 − 1/p) and the triple
(gµ, gbµ, gabµ) is non-trivial. We easily check that, if A is successful, so is B as long as it correctly
guesses i? ∈ {1, . . . , `a}. ut

4.2 Security against Framing Attacks

Establishing the security of the scheme against framing attacks also entails to separately consider
several kinds of forgeries.

Theorem 2 (Non-frameability). The scheme is secure against framing attacks assuming that:
(i) the 1-mTDH assumption holds in G; (ii) the underlying digital signature is existentially un-
forgeable under chosen-message attacks; (iii) H is a collision-resistant hash function.

Proof. As required by the model, we consider two kinds of frameability attacks.

- Type I attacks: the adversary outputs a pair (M?, σ?) that opens or traces to signer i ∈ U b
whereas i did not produce a pair (M,σ) such that (M,σ) ≡s (M?, σ?). We further distinguish
Type I-A attacks, where no signer i ∈ U b produced (M,σ) with (M,σ) ≡s (M?, σ?), from Type
I-B attacks, where at least one such pair was produced by another signer j 6= i.
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- Type II attacks: the adversary breaks the security of the claiming procedure. In other words,
he outputs a tuple (M?, σ?, τ?, upk?) that causes the experiment of definition 5 to return 1 in
either step 5 (i.e., the adversary forges an honest member’s claim) or step 6 (i.e., an honest
member’s signature is claimed in the name of somebody else).

Lemmas 4 and 5 show that no PPT adversary can produce either kind of forgery as long as the
1-mTDH assumption holds. ut

The proof of lemma 4 is based on standard techniques (notably in the simulation of signing
queries as in [14, 45]) and separately considers two kinds of Type I attacks. An alternative proof
allows considering a single kind of Type I attack. However, this alternative reduction is looser
by another multiplicative factor of O(`b) (since it has to guess upfront which honest user will be
framed) and eventually ends up with a degradation factor of O(`s · `b). By separately analyzing
Type I-A and Type I-B attacks as in lemma 4, the security bound only declines with max(`s, `b).

Lemma 4. The scheme is secure against framing attacks of Type I if the 1-mTDH problem is hard
and if H is a collision-resistant hash function. More precisely, the advantage of any adversary after
`s signing queries, `b Qb-join-queries and `c Qclaim-queries is at most

Advfra-I(λ, n) ≤ 2 ·AdvCR(n) + 4n ·max(`s, `b) ·
(
1− `c

p

)−1 ·Adv1-mTDH(λ),

where the first term accounts for the probability of finding collisions on H.

Proof. As discussed earlier, we distinguish two cases. The bound of the lemma’s statement stems
from the fact that B has to guess upfront, by flipping a fair binary coin independently of A’s view,
whether A will mount a Type I-A or Type I-B attack and set up the scheme accordingly. With
probability 1/2, B guesses the correct type of attack and the result follows.

Type I-A attacks. We first assume that a Type I-A adversary A comes up with a forgery
(M?, σ?) that traces to some honest user i ∈ U b and that no message-signature pair (M,σ) such
that (M,σ) ≡s (M?, σ?) was produced by any honest group member. We show that such an
adversary allows solving a problem that is not easier than 1-mTDH since it consists in finding a
triple (C1, C2, C3) = (gµ, gbµ, gabµ) given only (g,A = ga, B = gb). We note that a triple (C1, C2, C3)
is an admissible solution if and only if it satisfies

e(C3, g) = e(C2, A) and e(C1, B) = e(C2, g). (8)

Given a problem instance (g,A = ga, B = gb), the simulator B chooses the GM private key
ω, α1, α2

$← Z∗p. It sets u1 = A ∈ G and also picks k $← {0, . . . , n}, integers ρf , ρu,0, ρ0, . . . , ρn
$← Z∗p

and β0, . . . , βn
$← {0, . . . , 2`s − 1}. It then defines Ω = gω, v0 = uβ0−2k`s

1 · gρ0 , vi = uβi1 · gρi for
i = 1, . . . , n as well as u0 = gρu,0 and f = Bρf . It also sets hi = gγi ∈ G for i = 0, . . . , 4 with
γ0, . . . , γ4

$← Z∗p and chooses g for the perfect soundness setting as specified by the setup algorithm,
with ~g1 = (g1 = gα1 , 1, g), ~g2 = (1, g2 = gα2 , g) and ~g3 = ~g1

ξ1 � ~g2
ξ2 , for some random exponents

ξ1, ξ2
$← Z∗p. It finally chooses f = (f0, f1, . . . , fn) $← Gn+1 at random.

Throughout the game, B interacts with A as follows.

- QS-queries: if A decides to corrupt the group manager, B hands him the group manager’s
private key S = {γ1, ω, α1, α2}.
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- Qb-join-queries: when A, acting as a corrupted group manager, wants to introduce a new honest
user i in the group, B starts interacting with A in an execution of the join protocol and assumes
the role of the new user. Namely, B chooses xi

$← Z∗p, sets Xi = Bxi ∈ G and simulates A’s
view in the first step to force user i’s membership secret to implicitly become seci = bxi (and
the associated public value to be Xi). At step 2 of the join protocol, A outputs K1,K2,K3, y
and B generates a signature on Xi||K1||K2||K3||gy. Then, A replies with the final part K4 of
user i’s certificate.

- QY -queries: are treated as in the proof of lemma 1 and the simulator always knows the values
requested by A.

- Qsig-queries: when A asks user i ∈ U b to sign a message M , algorithm B first retrieves the
membership certificate (K1,K2,K3,K4, y) and the previously stored Xi = Bxi . It randomly
picks δ1, δ2

$← Z∗p and computes a tuple of traceability values (T1 = Xδ1
i , T2 = gyδ2 , T3 = gδ1+δ2),

which is hashed as m = m1 . . .mn = H(M ||T1||T2||T3). Then, the number theoretic hash value
Gv(m) = v0 ·

∏n
j=1 v

mj
j can be expressed as Gv(m) = u

Jv(m)
1 · gKv(m) where

Jv(m) = β0 − 2k`s +
n∑
j=1

βjmj , Kv(m) = ρ0 +
n∑
j=1

ρjmj .

Here, B aborts if Jv(m) = 0. Otherwise, it picks rs
$← Z∗p and computes(

θ4 = K4 ·Gv(m)rs · T
−Kv(m)
Jv(m)

1 , θ5 = grs · T
− 1
Jv(m)

1

)
,

which has the required distribution since, if we implicitly define r̃s = rs−(bxiδ1)/Jv(m), it can be
written (θ4 = K4 ·uxiδ11 ·Gv(m)r̃s , θ5 = gr̃s). Together with certificate components (K1,K2,K3),
the newly generated pair (θ4, θ5) allows computing a traceable signature since elements (θ6, θ7)
can be obtained as (θ6, θ7) = (Xγ1

i · h
y
2, X

γ3
i · h

y
4).

- Qclaim-queries: at any time,A is also allowed to request claims for signatures that were previously
generated by honest group members. For each claiming query (i,M, σ), where the signature σ
parses as (T1, T2, T3, ~σ1, . . . , ~σ11, π1, . . . , π8), B returns ⊥ if i 6∈ U b or if Sigs does not contain
an entry (i,M, σ′) such that σ′ contains (T1, T2, T3). Otherwise, B is always able to compute
a valid claim τ . Indeed, the pair (D1,x, D2,x) = (f1/(bxi) · G(mc)rx , T rx1 ) is computable from
f1/(bxi) = gρf/xi and (D1,y, D2,y) does not involve any secret.

Finally, A outputs a traceable signature σ? = (T ?1 , T
?
2 , T

?
3 , ~σ1

?, . . . , ~σ11
?, π?1, . . . , π

?
8), for some mes-

sage M?, that traces to some user i? ∈ U b and for which no honest user produced a signature
involving the same (M?, T ?1 , T

?
2 , T

?
3 ). In the event that Sigs contains a tuple (M ′, T ′1, T

′
2, T

′
3) for

which m? = H(M?||T ?1 ||T ?2 ||T ?3 ) = H(M ′||T ′1||T ′2||T ′3) but (M ′, T ′1, T
′
2, T

′
3) 6= (M?, T ?1 , T

?
2 , T

?
3 ), A was

necessarily able to break the collision-resistance of H. Otherwise, B uses α1, α2 to BBS-decrypt
θ?i = σi,3 · σ?i,1

−1/α1 · σ?i,2
−1/α2 for i = 1, . . . , 9. The perfect soundness of the proof system ensures

that

θ?3 = gsID? θ?4 = u
sID?
0 · ux

′δ1
1 ·Gv(m?)rs θ?5 = grs T ?1 = gx

′δ1 ,

for some exponents sID? , rs, x′, δ1 ∈ Z∗p, and where

Gv(m?) = v0 ·
n∏
j=1

v
mj
j = u

Jv(m?)
1 · gKv(m?).
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Then, the simulator B halts and declares failure if Jv(m?) 6= 0. Otherwise, B is able to compute
Θ = ux

′δ1
1 = θ?4/(θ

?
5
Kv(m?) · θ?3ρu,0), which must satisfy the equality e(Θ, g) = e(u1, T

?
1 ). Since σ?

traces to user i? by assumption, we must have e(Xi? , T
?
3 /T

?
2

1/y?) = e(T ?1 , g), where y? is part of the
tracing trapdoor that A assigned to i? and Xi? = Bxi? for some xi? which is known to B. Since
u1 = A, we find that the assignment

C?1 = T ?3 /T
?
2

1/y? C?2 = T ?1
1/xi? C?3 = Θ1/xi?

must satisfy relation (8) and thus solve the problem instance.
B’s probability not to abort can be shown to be at least 1/(2n`s) as in the proof of lemma 2.

The situation where σ? accuses user i? via the opening algorithm (instead of the implicit tracing)
can be handled in the same way. Indeed, the perfect soundness of the proof system guarantees that,
if a signature opens to user i?, the tracing algorithm necessarily points to the same user.

Type I-B attacks. We still have to consider Type I-B forgeries σ? that open or trace to some user
i? but involve a tuple (M?, T ?1 , T

?
2 , T

?
3 ) also appearing in a signature produced by j? 6= i? ∈ U b. We

show that such forgeries imply an algorithm solving an equivalent formulation of the Diffie-Hellman
problem (that is not easier than 1-mTDH) which is to compute gb/a given (A = ga, B = gb). The
simulator B performs the setup as in the expectation of a Type I-A attack but chooses u1 ∈ G so
as to know ρu,1 = logg(u1). Another difference is that, while f is still set as f = Bρf , for some
random ρf

$← Zp, the vector f = (f0, f1, . . . , fn) is chosen by setting fi = fαf,i ·Aβf,i , for randomly
drawn αf,i, βf,i

$← Zp, for i = 0 to n. As in the case of Type I-A attacks, h1, h3 ∈ G are chosen
in such a way that B knows γ1 = logg(h1) and γ3 = logg(h3). Additionally, B chooses an index
k

$← {1, . . . , `b} and interacts with the adversary A as follows.

- QS and QY -queries: are handled as when dealing with Type I-A attacks.

- Qb-join-queries: when A decides to introduce a new user i, B’s behavior depends on the index
i ∈ {1, . . . , `b} of the Qb-join-query.

- If i 6= k, B runs the join protocol on behalf of the prospective honest group member. It
chooses xi

$← Z∗p, sets Xi = Axi ∈ G and simulates A’s view to end up with the public value
Xi (so that seci = axi is the implicitly defined membership secret). The next steps of the
join protocol are executed as in the case of Type I-A forgeries.

- If i = k, B proceeds as in the first case but rather simulates A’s view to force the public
value Xk to become B = gb (which implicitly sets seck = b).

- Qsig-queries: since B knows ρu,1 = logg(u1), γ1 = logg(h1) and γ3 = logg(h3), it can perfectly
simulate Qsig-queries by computing θ4 using useci

1 = X
ρu,1
i and (θ6, θ7) as (Xγ1

i · h
y
2, X

γ3
i · h

y
4).

The simulator also retains the random values δ1, δ2 ∈ Zp that are used to calculate T1, T2, T3 at
each query.

- Qclaim-queries: for each claiming query (i,M, σ), the simulator B first performs the same checks
as in the case of Type I-A attacks. Then, B is able to generate claims on behalf of user k
since Xk = B and f1/b = gρf is computable. For each user i ∈ U b such that i 6= k, B first
computes the n-bit string mc = H(M ||T1||T2||T3||upk) = mc,1 . . .mc,n ∈ {0, 1}n and evaluates
J = αf,0 +

∑n
j=1 αf,jmc,j and K = βf,0 +

∑n
j=1 βf,jmc,j such that Gf (mc) = fJ · AK . It

aborts in the unlikely event that J = 0 (since the random values αf,0, . . . , αf,n are completely
independent of A’s view, this occurs with negligible probability 1/p at each query). Otherwise,
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B recalls the value δ1 such that T1 = Xδ1
i = Axiδ1 . It then picks rx

$← Zp and computes
(D1,x, D2,x) =

(
Gf (mc)rx ·g−K/(xiJ), T rx1 ·g−δ1/J

)
, which has the proper distribution since it can

be expressed as (f1/(axi) ·Gf (mc)r̃x , T r̃x1 ), where r̃x = rx − 1/(axiJ).

After polynomially-many queries, A outputs a Type I-B forgery σ? that opens or traces to some
user i? ∈ U b. By assumption, another user j? ∈ U b must have issued a signature with the same
(M?, T ?1 , T

?
2 , T

?
3 ). At this stage, B fails if j? is not the user that was introduced at the kth Qb-join-

query. With probability 1/`b however, B correctly guessed k. It also still knows the exponent δ1
that was used by user j? to calculate T ?1 = Xδ1

k = Bδ1 . Moreover, since σ? traces to user i?, there
must exist δ′1, δ

′
2 ∈ Zp such that (T ?1 , T

?
2 , T

?
3 ) = (Axi?δ

′
1 , gyi?δ

′
2 , gδ

′
1+δ′2) and, given that B also knows

the tracing trapdoor yi? (that was supplied by A during the kth Qb-join-query), it can compute
gδ
′
1 = T ?3 /T

?
2

1/yi? and thus gb/a = (gδ
′
1)(xi?/δ1). ut

The security against Type II attacks relies on the standard Computational Diffie-Hellman as-
sumption and the security of the ordinary signature scheme in the sense of [31]. It makes (now
classical) use of the technique of [13, 45] and the “programmability” [37] of the number theoretic
hash function Gf : {0, 1}n → G. The proof is deferred to appendix E.

Lemma 5. The scheme is secure against Type II framing attacks if the Computational Diffie-
Hellman problem is hard in G, if H is a collision-resistant hash function and if the ordinary digital
signature is existentially unforgeable under chosen-message attacks. More precisely, the advantage
of any adversary after `s signing queries, `b Qb-join-queries and `c claiming queries is at most
Advfra-II(λ, n) ≤ AdvCR(n)+2·Adveuf-sig(λ)+4·n·`c·AdvCDH(λ), where the first and second terms
account for the probability of breaking the collision-resistance of H and the existential unforgeability
of the signature, respectively.

Proof. Given in appendix E. ut

4.3 Anonymity

Since we introduced a claiming oracle in the modeling of anonymity, we are faced with the additional
difficulty of simulating the Qclaim oracle without always knowing the appropriate secret elements
in the reduction. Fortunately, we can prove the result using only the DLIN assumption.

Theorem 3 (Anonymity). The scheme is anonymous assuming that the Decision Linear Problem
is hard in G. More precisely, we have

Advanon
A (λ) ≤ `p ·

(`c
p

+ 3 ·AdvDLIN
G (λ)

)
where `p and `c denote the number of Qp-join-queries and the number of Qclaim-queries, respectively.

Proof. The proof proceeds with a sequence of games organized in such a way that even a com-
putationally unbounded adversary has no advantage in the final game while the first one is the
real attack game. Throughout the sequence, we always call Si the event that the adversary wins
and his advantage is measured by Advi = |Pr[Si] − 1/2|. Also, when we speak of user i, for some
i ∈ {1, . . . , `p}, we mean the ith user that joins the group after a Qp-join query.
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Game 1: operates as the real game does. The challenger B performs the setup according to the
specification of the scheme. It chooses random exponents ω, γ1, . . . , γ4, ρu,1, ξ1, ξ2

$← Z∗p and sets gω,
hi = gγi for i = 1, . . . , 4 and u1 = gρu,1 . It also picks h0, u0, f, g1, g2

$← G and vectors v ∈ Gn+1,
f = (f0, f1, . . . , fn) $← Gn+1 and defines ~g1 = (g1, 1, g), ~g2 = (1, g2, g), ~g3 = ~g1

ξ1 � ~g2
ξ2 . Using

ω, γ1, it answers Qa-join and Qp-join-queries and updates transcripts each time. When the adversary
A makes a Qreveal-query (resp. Qsig-query), B uses the database transcripts to return the queried
tracing trapdoor (resp. recover the appropriate certi and seci and generate a signature on behalf
of user i ∈ Up). At the challenge phase, the adversary chooses two users i?0, i

?
1 ∈ Up such that

i?0, i
?
1 6∈ revs and is returned a traceable signature σ? on behalf of signer i?d? . Unlike what occurs in

the real game, the challenger retains the values γi = logg(hi), for i = 1, . . . , 4, and ρu,1 = logg(u1)
but this does not impact A’s behavior. Eventually, he outputs a guess d′ ∈ {0, 1} and his advantage
is Adv1 = |Pr[S1]− 1/2|, where S1 denotes the event that d′ = d?.

Game 2: we modify the simulation. At the beginning, B picks an index i?
$← {1, . . . , `p}. In the

challenge phase, B aborts if A’s chosen pair (i?0, i
?
1) does not contain i?. It also fails if i? is ever

queried to Qreveal before the challenge step. Assuming that B is lucky when choosing i? at the
outset of the game (which is the case with probability 2/`p since i? is independent of A’s view),
the introduced abortion rule does not apply. We can write Adv2 = 2 ·Adv1/`p.

Game 3: we add yet another abortion rule. At the challenge step, we must have i? ∈ {i?0, i?1} unless
the abortion rule of Game 2 applies. The new rule is the following: when B flips its secret coin
d?

$← {0, 1}, it aborts if i?d? 6= i?. With probability 1/2, this new rule does not apply and we have
Adv3 = 1/2 ·Adv2.

Game 4: we bring two modifications to the setup phase. Namely, B considers random group el-
ements Z1 = gz1 , Z2 = gz2 in G. It first defines f = Z

ρf
2 for a random αf

$← Zp. The vector
~f = (f0, f1, . . . , fn) ∈ Gn+1 is then generated as follows. For i = 0 to n, it picks αf,i, βf,i

$← Zp and
sets fi = fαf,i ·Zβf,i1 . This change is purely conceptual since the distribution of f and (f0, f1, . . . , fn)
remains unchanged. We thus have Pr[S4] = Pr[S3] and Adv4 = Adv3.

In the upcoming games, it will be convenient to define functions J,K : {0, 1}n → Zp that map
n-bit strings m = m1 . . .mn onto J(m) = αf,0 +

∑n
j= αf,jmj and K(m) = βf,0 +

∑n
j= βf,jmj .

Game 5: we introduce a failure event F5. Namely, when the simulator B has to claim a previ-
ously generated signature σ = (T1, T2, T3, ~σ1, . . . , ~σ11, π1, . . . , π8), it first computes the hash value
mc = mc,1 . . .mc,n = H(M ||T1||T2||T3||upk[i]) ∈ {0, 1}n, evaluates J(mc) = αf,0 +

∑n
j=1 αf,jmc,j

and aborts in the event5 that J(mc) = 0. Since the values {αf,i}ni=0 are completely random and
independent of A’s view, this can only happen by pure chance. At each query, the probability to
have J(mc) = 0 is thus at most 1/p. In addition, Game 5 and Game 4 proceed identically until
event F5 causes B to abort. It comes that |Pr[S5]− Pr[S4]| ≤ Pr[F5] ≤ `c/p.

Game 6: we modify the treatment of signing queries involving user i?. Now, B re-uses the values
z1 = logg(Z1) and z2 = logg(Z2) (introduced in Game 4) and implicitly defines user i?’s membership
secret to be seci? = z1 while the value y of his membership certificate is z2. More precisely, its

5 A difference with the security proof of Waters’ identity-based encryption scheme [45] is that we do not need J(.)
to cancel in the challenge phase, which is why {αf,i}ni=0 can be chosen uniformly in Zp (rather than in a much
smaller interval as in [45]). For the same reason, Game 5 and Game 4 can be linked by a transition based on a
failure event of small probability and no artificial abort step is needed.

22



membership certificate is calculated as per

K1 =
(
h0 · Zγ11 · Z

γ2
2

)1/(ω+sIDi? )
K2 = g1/(ω+sIDi? ) K3 = gsIDi? K4 = usIDi? ,

for a random sIDi?
$← Z∗p. Unless the failure event of Game 2 occurs, no Qreveal query is made for

i? and B can answer signing queries without using z1, z2 and knowing only Z1, Z2. Indeed, signing
queries related to i? can be answered by calculating θ6 = Zγ11 ·Z

γ2
2 , θ7 = Zγ31 ·Z

γ4
2 , θ8 = Z1, θ9 = Z2,

T1 = Zδ11 , T2 = Zδ22 and T3 = gδ1+δ2 , using random δ1, δ2
$← Z∗p. It then sets uz1δ11 = T

ρu,1
1 in the

computation of θ4. The challenge signature, which B generates on behalf of i? unless one of the
previous failure events occurs, is produced in the same way. These changes do not affect A’s view,
so that Pr[S6] = Pr[S5] and Adv6 = Adv5.

Game 7: we modify the treatment of Qclaim-queries involving user i?. Recall that, since Game 6,
the simulator B answers Qsig-queries involving i? by setting T1 = Zδ11 , T2 = Zδ22 and T3 = gδ1+δ2

for random δ1, δ2
$← Z∗p. In this game, when it comes to claim a previously generated signature

(T1, T2, T3, ~σ1, . . . , ~σ11, π1, . . . , π8), B computes mc = mc,1 . . .mc,n = H(M ||T1||T2||T3||upk[i?]) and
then evaluates functions J(mc) = αf,0 +

∑n
j= αf,jmc,j and K(mc) = βf,0 +

∑n
j= βf,jmc,j such

that Gf (mc) = f0 ·
∏n
j=1 f

mc,j
j = fJ(mc) · ZK(mc)

1 . We must have J(mc) 6= 0 unless the failure

event introduced in Game 5 applies. As long as J(mc) 6= 0, B can pick rx
$← Zp, implicitly define

r̃x = rx − 1/(z1J(mc)) and compute the first part of the claim as

(Dx,1, Dx,2) = (Gf (mc)rx · g−K(mc)/J(mc), T rx1 · g
−δ1/J(mc)) = (f1/z1 ·Gf (mc)r̃x , T r̃x1 ). (9)

As for the second piece (Dy,1, Dy,2) = (f1/z2 · Gf (mc)ry , T
ry
2 ) of the claim, B can generate it from

f1/z2 = gρf , which is computable thanks to the way that f is chosen since Game 4. In Game 7, we
note that B does not use the values z1, z2 ∈ Zp at any time. Still, the introduced modifications are
only conceptual and do not alter A’s view. We can thus write Pr[S7] = Pr[S6] and Adv7 = Adv6

Game 8: we modify the setup phase and choose ~g3 as ~g3 = ~g1
ξ1 � ~g2

ξ2 � (1, 1, g)−1 instead of
~g3 = ~g1

ξ1 � ~g2
ξ2 . We note that vectors ~g1, ~g3, ~g3 are now linearly independent. Any noticeable

change in the adversary’s behavior is easily seen6 to imply a statistical test for the Decision Linear
problem so that we can write |Pr[S8]− Pr[S7]| = 2 ·AdvDLIN(B).

Game 9: in this game, we modify the generation of the challenge signature σ? on behalf of i?.
The generation of ~σ1

?, . . . , ~σ9
? and π?1, . . . , π

?
5 is still made using the actual witnesses seci?, certi? .

In particular, B sets ~σ8
? = ι(Z1) � ~g1

r8 � ~g2
s8 � ~g3

t8 and ~σ9
? = ι(Z2) � ~g1

r9 � ~g2
s9 � ~g3

t9 as
in Game 5. However, instead of generating ~σ10

?, ~σ11
? as well as π?6, π?7 and π?8 using δ1, δ2 such

that T ?1 = Zδ11 and T ?2 = Zδ22 , B uses the simulated reference string and its trapdoor information
(ξ1, ξ2) to generate simulated proofs. Namely, ~σ10

? = ~g1
r10 � ~g2

s10 and ~σ11
? = ~g1

r11 � ~g2
s11 are both

6 Indeed, Pr[B(g1, g2, g
ξ1
1 , g

ξ2
2 , g

ξ1+ξ2) = 1] and Pr[B(g1, g2, g
ξ1
1 , g

ξ2
2 , g

ξ1+ξ2−1) = 1] are both within distance
AdvDLIN(B) from Pr[B(g1, g2, g

ξ1
1 , g

ξ2
2 , g

z) = 1], where z is random.
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calculated as commitments to 0. As for proof elements π?6, π
?
7, π

?
8, B obtains them as

π?6 = ( ~π61
?, ~π62

?, ~π63
?)

=
(
~σ8
?r10 � ι(g)r10t8 � ι(T ?1 )−ξ1 � ~σ10

?−ξ1t8 ,

~σ8
?s10 � ι(g)s10t8 � ι(T ?1 )−ξ2 � ~σ10

?−ξ2t8 , ~σ10
?t8
)
,

π?7 = ( ~π71
?, ~π72

?, ~π73
?)

=
(
~σ9
?r11 � ι(g)r11t9 � ι(T ?2 )−ξ1 � ~σ11

?−ξ1t9 ,

~σ9
?s11 � ι(g)s11t9 � ι(T ?1 )−ξ2 � ~σ11

?−ξ2t9 , ~σ11
?t9
)
,

π?8 =
(
gr10+r11 · T ?3

−ξ1 , gs10+s11 · T ?3
−ξ2
)
.

It can be checked that verification equations 6, 7 and 8 are still satisfied by the above assignment.
To achieve perfect witness indistinguishability, π?6 and π?7 must be re-randomized (as explained
in [36]) to be uniform in the space of valid proofs for quadratic equations. On a simulated CRS
(~g1, ~g2, ~g3), simulated proofs are known to be perfectly indistinguishable from real proofs. Hence,
this change is only conceptual and we have Pr[S9] = Pr[S8].

Game 10: we bring a new change to the generation of the challenge σ?. In Game 9, we had T ?1 = Zδ11 ,
T ?2 = Zδ22 and T ?3 = gδ1+δ2 , where δ1, δ2

$← Z∗p. Now, B rather chooses T ?3
$← G at random (and still

computes π?6, π
?
7, π

?
8 from T ?1 , T

?
2 , T

?
3 as in Game 9). Under the Decision Linear assumption7 in G,

this change is not noticeable by A and we have |Pr[S10]− Pr[S9]| ≤ AdvDLIN(B).
In Game 10, we claim that Pr[S10] = 1/2 (and Adv10 is thus zero). To see this, let us consider

what A knows in the information theoretic sense. By observing two signatures from i? = i?d? (and
more precisely the traceability values T1, T2, T3 in each signature), A can figure out the values of
his membership secret seci? = z1 and part y = z2 of his membership certificate. She can also infer
their counterpart for user i?1−d? by requesting two signatures from the latter.

When A sees the challenge signature σ?, however, T ?1 , T ?2 and T ?3 reveal no information on
d? ∈ {0, 1}. Indeed, T ?3 is completely random and T ?1 , T ?2 are compatible with either candidate i?0, i

?
1.

Moreover, ~σ1
?, . . . , ~σ9

? are all perfectly hiding commitments and, in the WI setting, proofs π?1, . . . , π
?
5

reveal no information on underlying witnesses seci? , certi? . Finally ~σ10
?, ~σ11

? are independent of
d? ∈ {0, 1} and so are simulated proofs π?6, π

?
7, π

?
8. ut

5 Conclusion

This paper described the first efficient construction of traceable signature in the standard model.
We additionally extended the original model in order to offer support for abuse-free non-interactive
claiming mechanisms.

Securely implementing all the functionalities of the primitive without appealing to the random
oracle idealization raised its deal of technical issues and we had to use several (non-standard)
intractability assumptions to solve all problems encountered on the road. It would be interesting
to see if TS systems can be even more efficiently obtained without sacrificing security guarantees
7 We note that the DLIN distinguisher that “bridges” between Game 10 and Game 9 cannot directly decide whether

(Z1, Z2, T
?
1 , T

?
2 , T

?
3 ) forms a linear tuple by generating a claim for the challenge signature σ?. The reason is that it

does not know the exponent δ1 = logZ1
(T ?1 ), which prevents it from computing a claim as per (9).
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in the standard model. Another open problem would be to extend the results of [10] and design
multi-group extensions of traceable signatures outside the random oracle heuristic.
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A Security Definition for Digital Signatures

A digital signature is a triple of algorithms Σ = (Keygen,Sign,Verify) such that:

(i) On input of a security parameter λ ∈ N, Keygen(λ) outputs a key pair (usk, upk).
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(ii) Sign is a possibly randomized algorithm that takes in a message M and the private key usk. It
outputs a signature σ.

(iii) Verify is a deterministic algorithm that takes as input a message M , a public key upk and a
signature σ. It outputs 1 or 0 depending on whether σ is deemed valid or not.

The standard notion of security for digital signatures is the one given by Goldwasser, Micali and
Rivest [31].

Definition 7 ([31]). A digital signature Σ is existentially unforgeable under chosen-message at-
tacks if, for any PPT adversary A playing the game hereafter, it holds that Adveuf-sig(A) ∈ negl(λ).

1. The game begins with the challenger running (usk, upk) ← Keygen(λ) and giving upk to the
adversary A.

2. A adaptively interacts with a signing oracle. Namely, at any time, A can ask for a signature
on an arbitrary message M and the challenger responds by computing σ ← Signusk(M) and
returning σ to A.

3. A outputs a message M? and a signature σ?. He wins if M? was never queried for signature
and Verifyupk(M?, σ?) = 1.

A’s advantage Adveuf-sig(A) is simply his probability of victory, taken over all coin tosses.

B Groth’s Key Generation Protocol

In [33], Groth described the following 5-move protocol that allows a prospective group member U
and a group manager GM to jointly generate X = gx ∈ G in such a way that only the user gets
to know the membership secret seci = x ∈ Z∗p and the latter is further guaranteed to be uniformly
distributed. The user U first generates ga. Both parties run a coin-flipping protocol to generate a
random value b+ c, that also serves as a challenge when U proves knowledge of a, and the common
output finally consists of X = ga+b+c, whereas only U happens to know x = a+ b+ c.

1. U picks a, r $← Zp, η $← Z∗p and sends A = ga, R = gr, h = gη to GM.

2. GM picks b, s $← Zp and sends a commitment B = gb · hs to U .

3. U sends c $← Zp to GM.
4. GM opens the commitment B and sends the values b, s back to U .
5. U checks that B = gb · hs. If so, U sends z = (b + c)a + r mod p and η to GM and outputs
x = a+ b+ c.

6. GM finally checks that η ∈ Z∗p, h = gη and Ab+c ·R = gz. If so, GM outputs X = A · gb+c.

Under the discrete logarithm assumption in G, this protocol has black-box simulators that can
emulate the view of a malicious user or a malicious group manager. In the former case, the simulator
has rewind access to the malicious user and can force his private output to be a given value x ∈ Zp.
In the latter case, the view of the malicious issuer can be simulated to get his output to be a given
X ∈ G. Moreover, the simulator does not need to know x = logg(X).
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C Details on the Construction of Proof Elements

To construct proof elements, the signer starts from an assignment of π1, . . . , π8 that satisfies the
verification equations, which can be obtained as follows.

π1 = (~π1,1, ~π1,2, ~π1,3)

=
(
ι(θ1)r3 � ~g1

2r1r3 � ~g2
s1r3+r1s3 � ~g3

t1r3+r1t3 � ι(Ω · θ3)r1 · ι(g)−r6 ,

ι(θ1)s3 � ~g1
r1s3+r3s1 � ~g2

2s1s3 � ~g3
t1s3+s1t3 · ι(Ω · θ3)s1 · ι(g)−s6 ,

ι(θ1)t3 · ~g1r1t3+r3t1 � ~g2
s1t3+s3t1 � ~g3

2t1t3 � ι(Ω · θ3)t1 � ι(g)−t6
)

π2 = (~π2,1, ~π2,2, ~π2,3)

=
(
ι(Ω · θ3)r2 � ~g1

2r2r3 � ~g2
r2s3+s2r3 � ~g3

r2t3+t2r3 � ι(θ2)r3 ,

ι(Ω · θ3)s2 � ~g1
r3s2+r2s3 � ~g2

2s2s3 � ~g3
t3s2+t2s3 � ι(θ2)s3 ,

ι(Ω · θ3)t2 � ~g1
r3t2+r2t3 � ~g2

s3t2+s2t3 � ~g3
2t2t3 � ι(θ2)t3

)
π3 = (π3,1, π3,2, π3,3)

= (gr4 · u−r30 ·Gv(m)−r5 , gs4 · u−s30 ·Gv(m)−s5 , gt4 · u−t30 ·Gv(m)−t5)
π4 = (π4,1, π4,2, π4,3)

= (gr6 · h−r81 · h−r92 , gs6 · h−s81 · h−s92 , gt6 · h−t81 · h−t92 )
π5 = (π5,1, π5,2, π5,3)

= (gr7 · h−r83 · h−r94 , gs7 · h−s83 · h−s94 , gt7 · h−t83 · h−t94 )

π6 =
(
~π6,1, ~π6,2, ~π6,3

)
=
(
~ϕr8δ1 � ι(X)r10 � ~g1

r8r10 � ~g2
s8r10 � ~g3

t8r10 ,

~ϕs8δ1 � ι(X)s10 � ~g1
r8s10 � ~g2

s8s10 � ~g3
t8s10 , ~ϕt8δ1

)
π7 =

(
~π7,1, ~π7,2, ~π7,3

)
=
(
~ϕr9δ2 � ι(X)r11 � ~g1

r9r11 � ~g2
s9r11 � ~g3

t9r11 ,

~ϕs9δ2 � ι(X)s11 � ~g1
r9s11 � ~g2

s9s11 � ~g3
t9s11 , ~ϕt9δ2

)
π8 = (π8,1, π8,2) = (gr10+r11 , gs10+s11)

To obtain perfectly witness-indistinguishable proofs with a simulated common reference string,
the signer needs to randomize π1, π2, π6, π7 (i.e., that relate to quadratic pairing product equations)
and make them uniform in the space of proofs satisfying verification equations 1-2 and 6-7.

D Proofs of Lemmas 1 and 2

D.1 Proof of Lemma 1

The proof is similar to the one of lemma A.1 in [20]. The simulator B is given a HSDH instance
consisting of (g,Ω = gω, u) ∈ G3 and triples {Ai = g1/(ω+sIDi ), Bi = gsIDi , Ci = usIDi}i=1,...,`, with
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` = `a + `p, in G. Before preparing the simulation, B makes a guess dmode
$← {0, 1} as to whether

A will produce a Type I-A or Type I-B forgery.

Type I-A forgeries. In the expectation of a Type I-A forgery (dmode = 0), algorithm B picks
ρu,1, ρ0, . . . , ρn

$← Z∗p and sets vi = gρi , for i = 0, . . . , n, and u1 = gρu,1 . It also defines u0 = u ∈ G
and hi = gγi ∈ G for i = 0, . . . , 4 using randomly drawn γ0, . . . , γ4

$← Z∗p. It finally chooses
α1, α2

$← Z∗p, ξ1, ξ2
$← Zp, vector sets g = (~g1, ~g2, ~g3) and f = (~f, ~f1, ~f2) so that ~g1 = (gα1 , 1, g),

~g2 = (1, gα2 , g) and ~g3 = ~g1
ξ1 · ~g2ξ2 while f spans G3. It defines the group public key as

Y :=
(
g, {hi}i=0,...,4, Ω, u0, u1, {vi}i=0,...,n, g, f

)
.

Then, B starts interacting with A and initializes ctra, ctr′a and ctrp to 0.

- Qa-join-queries: when A wants to introduce a malicious user in the group, he triggers an execution
of the join protocol with B acting as the issuer. Then, B increments ctr′a, chooses x, y $← Z∗p
and simulates A’s view (using the black-box simulation technique of theorem 3 in [33]) in step
1 of the protocol to make it end up with the public value X = gx (so that the new user’s
membership secret becomes x). Next, B uses (Actr, Bctr, Cctr), with ctr = ctr′a + ctrp, and
generates a certificate (K1,K2,K3,K4) = (A(γ0+xγ1+yγ2)

ctr , Actr, Bctr, Cctr). Parts K1,K2,K3 are
sent to A along with y ∈ Z∗p. When A responds with a signature on X||K1||K2||K3||gy, B checks
that the latter is valid. If so, B provides A with the final part K4 of the membership certificate,
increments ctra, adds the current value of N = ctra + ctrp in Ua and stores (N, transcriptN) in
transcripts.

- Qp-join-queries: when A asks B to introduce a new honest user, B increments ctrp and proceeds
in the same way as with Qa-join-queries. The only difference is that it executes the join protocol
in private and does not have the simulate the view of a malicious user in the first step. As
previously, it uses the ctrth triple (Actr, Bctr, Cctr), with ctr = ctr′a+ctrp, of the HSDH input to
compute K1, . . . ,K4. Also, B stores the index N = ctra+ctrp of the new user in Up and the entry
(N, transcriptN) in transcripts. The latter transcript is used to consistently answer subsequent
signing queries that involve the new user.

- QY -queries: upon A’s request, B sends him the public key Y and the current number of users
N = ctra + ctrp in the group.

- Qsig-queries: to answer signing queries involving honest group members (in Up), B simply runs
the signing algorithm according the its specification using the (known) membership certificate
and the membership secret.

- Qreveal(i)-queries: at any time, A may also ask for the tracing trapdoor of any user i ∈ Up (he
already knows those of users in Ua). The simulator B can always answer such queries since it
chose values (X = gx, y) itself when answering the matching Qp-join query.

When A outputs a Type I forgery σ? = (T ?1 , T
?
2 , T

?
3 , ~σ1

?, . . . , ~σ11
?, π?1, . . . , π

?
8) for some message M?,

B computes m? = m1 . . .mn = H(M?||T ?1 ||T ?2 ||T ?3 ). It uses α1, α2 to compute a BBS decryption
θ?i = σi,3

? · σ?i,1
−1/α1 · σ?i,2

−1/α2 , where ~σi
? = (σ?i,1, σ

?
i,2, σ

?
3,i), for i = 1, . . . , 9. The perfect soundness

of the proof system guarantees that

θ?2 = g
1

ω+sID? , θ?3 = gsID? , θ?4 = usID? · uxδ11 ·
(
v0 ·

n∏
j=1

v
mj
j

)rs ,
θ?5 = grs , T ?1 = gxδ1
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for some sID? ∈ Z∗p (that differs from values sID1 , . . . , sID` with overwhelming probability8) and
rs, x, δ1 ∈ Z∗p. Then, B can extract a HSDH solution as

(g1/(ω+sID? ), gsID? , usID? ) =
(
θ?2, θ

?
3, θ

?
4/(T

?
1
ρu,1 · θ?5

ρ0+
∑n
j=1 ρjmj )

)
.

Type I-B forgeries. We now consider the case of a Type I-B forgery. When dmode = 1, B initially
picks a random i?

$← {1, . . . , `a}. The group public key Y is generated in the same way. The
difference with the case dmode = 1 lies in the treatment of Qa-join queries: at the i?th such query
(when ctr′a 6= i?, B behaves as when dmode = 0), B conducts the first step as in the case dmode = 0
but the second step is run in a different way. It constructs (K1,K2,K3) by picking t

$← Z∗p, and
defining

K1 = g
γ0+xγ1+yγ2

t K2 = g1/t K3 = gt ·Ω−1.

This implicitly defines sID ∈ Z∗p to be t−ω. If A, acting as the malicious user, does not fail to respond
as specified by the final step of the protocol, B aborts. Otherwise, the simulation continues. If A
eventually outputs a forgery for which the BBS decryption of ~σ3

? is K3 = gt ·Ω−1 (which occurs with
probability 1/`a in a Type I-B forgery), the BBS decryption θ?4 of ~σ4

? must be ut−ω · uxδ11 ·Gv(m)r.
Along with T ?1 = gxδ1 , ρu,1 = logg(u1) and the decryption gr of ~σ5

?, θ?4 must provide B with a new
`-HSDH triple (g1/t, gt−ω, ut−ω).

To conclude the proof, the actual kind of Type I forgery will match the value of dmode with
probability 1/2 since dmode is independent of A’s view. ut

D.2 Proof of Lemma 2

The proof is based on lemma A.2 in the security proof of the Boyen-Waters group signature
[20]. As in the latter, the simulator B receives as input a `a-HSDH instance comprising elements
(g,Ω = gω, u) ∈ G3 as well as a set of triples {Ai = g1/(ω+sIDi ), Bi = gsIDi , Ci = usIDi}i=1,...,`a .

To prepare the public key Y, it picks a random index k $← {0, . . . , n}, exponents ρu,1, ρ0, . . . , ρn
$←

Z∗p and integers β0, . . . , βn
$← {0, . . . , 2`s−1}. It sets v0 = uβ0−2k`s ·gρ0 , vi = uβi ·gρi for i = 1, . . . , n

and u1 = gρu,1 . It also defines u0 = u ∈ G and hi = gγi ∈ G for i = 0, . . . , 4 using random
γ0, . . . , γ4

$← Z∗p and finally chooses vector sets g, f as specified by the setup algorithm.
Before starting its interaction with the Type II forger A, B initializes counters ctra, ctr′a and

ctrp to 0. These will account for the number of users in Ua, the number of Qa-join-queries so far,
and the number of users in Up, respectively.

- Qa-join-queries: adversarial-join queries are handled as in the proof of lemma 1. Namely, B in-
crements ctr′a, chooses random values x, y $← Z∗p and simulates A’s view in the first step of the
protocol so as to force the new user’s membership secret to become x. To generate A’s mem-
bership certificate, B uses the next unused triple (Actr′a , Bctr′a , Cctr′a) to produce K1,K2,K3,K4.
If the join protocol successfully terminates, B increments ctra, stores a record (N, transcriptN),
with N = ctra + ctrp, containing the interaction transcript in transcripts and adds index N in
the set Ua.

8 With negligible probability smaller than `/p, it may happen that sID? collides with some sIDi that B did not use.
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- Qp-join-queries: when a new honest user is requested to privately join the system, B increments
both ctr and ctrp and sets N = ctra + ctrp. Then, B chooses x, y $← Z∗p. It also randomly selects
tN

$← Z∗p and calculates

K1 = g(γ0+xγ1+yγ2)/tN , K2 = g1/tN ,

K3 = gtN ·Ω−1, K4 = ?,

where ? is a placeholder for an unknown group element. This implicitly defines sID = logg(K3) to
be tN−ω. The value N is added to Up while (K1,K2,K3,K4, y) is stored as part of transcriptsN.
In the expectation of future signing queries involving the user, B retains secN = x and tN.

- QY and Qreveal(i)-queries: are treated as in the proof of lemma 1 and the simulator always knows
the values requested by A.

- Qsig-queries: when A requests user i ∈ Up (with 1 ≤ i ≤ N) to sign message M , B first retrieves
the tuple (K1,K2,K3,K4, y) from transcripti and the previously stored seci = x and ti ∈ Z∗p.
Since i ∈ Up, K4 = ? is not available and B must simulate knowing it. To do so, it begins by
generating a triple (T1 = gxδ1 , T2 = gyδ2 , T3 = gδ1+δ2) which is hashed along with M to obtain
m = m1 . . .mn = H(M ||T1||T2||T3). At this stage, it is convenient to write Gv(m) = v0·

∏n
j=1 v

mj
j

as uJv(m) · gKv(m) where Jv(m) = β0 − 2k`s +
∑n

j=1 βjmj , Kv(m) = ρ0 +
∑n

j=1 ρjmj . If Jv(·) is

zero in Z∗p, B aborts. Otherwise, it can pick rs
$← Z∗p and compute a pair(

θ4 = uti · gx·δ1·ρu,1 ·Ω
Kv(m)
Jv(m) ·Gv(m)rs , θ5 = grs ·Ω

1
Jv(m)

)
,

which can be re-written as (θ4 = uti−ω · ux·δ11 · Gv(m)r̃s , θ5 = gr̃s) if one implicitly defines
r̃s = rs + ω/Jv(m). This pair has the required distribution and, together with (K1,K2,K3),
allows generating an appropriately anonymized signature.

At the end of the game, the adversary A outputs a message M? together with a Type II forgery
(T ?1 , T

?
2 , T

?
3 , ~σ1

?, . . . , ~σ11
?, π?1, . . . , π

?
8). By assumption, ~σ3

? must be a BBS encryption of a value K3

appearing in the transcript of some user i? ∈ Up. Then, B computes the bitstring m? = m1 . . .mn.
As in the proof of lemma 1, it performs BBS decryptions θ?i = σi,3·σ?i,1

−1/α1 ·σ?i,2
−1/α2 for i = 1, . . . , 9.

By the perfect soundness of the proof system, these values must satisfy

θ?2 = g1/(ω+sIDi? ) θ?3 = gsIDi? θ?4 = usIDi? · uxδ11 ·Gv(m?)rs

θ?5 = grs T ?1 = gxδ1 ,

for some rs, x, δ1 ∈ Z∗p, and where Gv(m?) = v0 ·
∏n
j=1 v

mj
j = uJv(m

?) · gKv(m?) and sIDi? = ti? − ω.
Then, the simulator B aborts if Jv(m?) = β0 +

∑n
j=1 βjmj − 2k`s 6= 0. Otherwise, B can compute

usIDi∗ = θ?4/(θ
?
5
Kv(m?) · T ?1 ρu,1), which yields a full tuple

(
g1/(ω+sIDi? ), gsIDi? , usIDi?

)
such that the

underlying sIDi? = ti? − ω differs from sID1 , . . . , sID`a with probability at least 1 − `a/p (since the
value ti? was chosen at random when answering a Qp-join-query).

To assess B’s probability not to abort throughout the simulation, we can proceed as in [45, 20].
Namely, one can show that Jv(m) 6= 0 in all signing queries with probability ≥ 1/2. Conditioned
on the event that B does not abort before the forgery stage, the probability to have Jv(m?) = 0 is
then shown to be at least 1/(2n`s) (see [45] for a detailed probabilistic analysis). ut
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E Proof of Lemma 5

For convenience, we use the same variant of the CDH problem as in the treatment of framing
attacks of Type I-B (in the proof of lemma 4). Namely, if the adversary is able to claim a signature
of the same equivalence class as one created by an honest signer, we show how to compute gb/a

given (A = ga, B = gb).
We also consider two kinds of Type II attacks: Type II-A attacks are those for which step 6 is

executed (which means that the condition of step 5 is not fulfilled) in the experiment of definition
5 whereas, in Type II-B attacks, the experiment returns 1 and halts at step 5.

As in the proof of lemma 4, the simulator has to guess whether A will be a Type II-A or a Type
II-B attacker beforehand. To this end, he flips a fair binary coin at the very beginning of the game
and prepares the public key accordingly.

Type II-A attacks. Let us first consider Type II-A attacks and assume an adversary A for which
step 6 is reached in the non-frameability experiment (the case of the experiment returning 1 at step
5 will be easier to explain then). We outline a simulator B that uses A to solve a CDH instance
(A = ga, B = gb). Namely, B prepares Y as in the proof of security against Type I-B attacks. In
particular, it knows discrete logarithms ω = logg(Ω), α1 = logg(g1), α2 = logg(g2), ρu,1 = logg(u1)
and γi = logg(hi) for i = 0 to 4.

It also defines f = B and, as in previous lemmas, it randomly chooses a vector of group elements
f = (f0, f1, . . . , fn) ∈ Gn using the technique of [45] in such a way that, for any mc ∈ {0, 1}n, it
holds that Gf (mc) = fJ(mc) · AK(mc), for some integer-valued functions J(.),K(.) such that J(.)
is small in absolute value and cancels with probability O(1/(n+ 1) · `c). Throughout the game, B
interacts with A as follows:

- QS and QY -queries: are handled as when dealing with Type I forgeries.

- Qb-join-queries: at the ith such query, B runs the join protocol and plays the role of the prospective
honest group member. It picks xi

$← Z∗p, sets Xi = Axi ∈ G and simulates A’s view in such a
way that the public value becomes Xi (and the underlying membership secret happens to be
seci = axi). Other steps of the join protocol are conducted as previously.

- Qsig-queries: at the jth Qsig-query involving user i ∈ U b, B retrieves the previously stored element
Xi = Axi and generates signature components (θ1, θ2, θ3) using the membership certificate
(K1,K2,K3,K4, yi). It then chooses δ1,ij , µij

$← Z∗p and calculates θ4 = K4 ·X
ρu,1δ1,ij
i ·Gv(m)rs ,

θ5 = grs for a random rs
$← Z∗p. It finally computes traceability values (T1, T2, T3) as

T1 = X
δ1,ij
i = Axiδ1,ij , T2 = Ayiµij , T3 = gδ1,ij ·Aµij ,

which implicitly defines δ̃2,ij = aµij in such a way that T2 = gyiδ̃2,ij and T3 = gδ1,ij+δ̃2,ij .
Signature components (θ6, θ7) are computable as (Xγ1

i · h
yi
2 , X

γ3
i · h

yi
2 ). Also, since B knows

α1, α2, ξ1, ξ2 such that ~ϕ = (gα1ξ1 , gα2ξ2 , gξ1+ξ2+1), it is able to compute the commitment to
δ̃2,ij (i.e., ~σ11 = ~ϕ

˜δ2,ij � ~g1
r11 � ~g2

s11 , using random exponents r11, s11
$← Z∗p) and the proof

element π7 (as described in appendix C).
- Qclaim-queries: when user i ∈ U b is required to claim a message-signature pair (M,σ), where
σ = (T1, T2, T3, ~σ1, . . . , ~σ11, π1, . . . , π8), B returns ⊥ if i 6∈ U b or if user i did not previously create
a message-signature pair involving (M,T1, T2, T3). Otherwise, B recalls the value xi, yi ∈ Zp
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such that Xi = Axi and certi = (K1,i,K2,i,K3,i,K4,i, yi) as well as the scalars δ1,ij , µij ∈R Zp
that were used to define T1 = Axiδ1,ij , T2 = Ayiµij and T3 = gδ1,ij · Aµij . Then, B computes
mc = H(M ||T1||T2||T3||upk[i]) ∈ {0, 1}n, where upk[i] is the previously defined long term key of
user i, and evaluates the functions J(mc) and K(mc) such that Gf (mc) = fJ(mc) · AK(mc). If
J(mc) = 0, B halts and reports failure. Otherwise, the first part (Dx,1, Dx,2) of the claim can
be obtained by choosing rx

$← Zp and computing

(Dx,1, Dx,2) =
(
Gf (mc)rx · g−xiK(mc)/J(mc), T rx1 · g

−δ1,ij/J(mc)
)
,

which is well-distributed since it can be written (Dx,1, Dx,2) = (f1/(axi) ·Gf (mc)r̃x , T r̃x1 ) if we im-
plicitly define r̃x = rx− 1

axiJ(mc)
. As for the second part (Dy,1, Dy,2) of the claim, B can compute

it as specified by the claiming algorithm since it knows yi ∈ Zp. The tuple (Dx,1, Dx,2, Dy,1, Dy,2)
can then be signed using the private key usk[i] of user i.

The game ends with A outputting a message M? and a triple (σ?, τ?, upk?) such that σ? opens or
traces to i? ∈ U b, Claim-Verify(M?, σ?, τ?, upk?,Y) = 1 and user i? produced a message-signature
pair (M?, σ?) with the same traceability values (T ?1 , T

?
2 , T

?
3 ). In addition, (M?, σ?) may have been

claimed by the legitimate signer (holding a long term key upk[i?]) upon adversarial request. By
assumption, however, the claim τ? = (D?

x,1, D
?
x,2, D

?
y,1, D

?
y,2, csig

?) must be valid and pertain to a
public key upk? such that upk? 6= upk[i?].

At this stage, B computes m?
c = H(M?||T ?1 ||T ?2 ||T ?3 ||upk?) ∈ {0, 1}n and evaluates the functions

J(m?
c) and K(m?

c). It fails if J(m?
c) 6= 0 or if it happens that m?

c = H(M ′||T ′1||T ′2||T ′3||upk′) for
some (M ′, T ′1, T

′
2, T

′
3, upk′) 6= (M?, T ?1 , T

?
2 , T

?
3 , upk?) that was previously involved in Qclaim-query.

Otherwise, since we have G(m?
c) = AK(m?c) and since τ? satisfies the verification test of equation

(7), it must hold that

e
(
D?
x,1, A

xiδ1,ij
)
· e
(
D?
y,1, A

yiµij
)

e
(
AK(m?c), D?

x,2 ·D?
y,2

) = e(B, gδ1,ij ·Aµij ). (10)

If we now re-arrange terms in the above equation, we find

e
(
A,D?

x,1
xi ·D?

y,1
yiµij/δ1,ij · (D?

x,2 ·D?
y,2)−K(m?c)/δ1,ij ·B−µij/δ1,ij

)
= e(g,B),

which implies that

D?
x,1

xi ·D?
y,1

yiµij/δ1,ij · (D?
x,2 ·D?

y,2)−K(m?c)/δ1,ij ·B−µij/δ1,ij = gb/a

is computable by B. If the hash function H is collision-resistant, a sufficient condition for gb/a to
be computable is to have J(mc) 6= 0 in each Qclaim-query and J(m?

c) = 0 in the adversary’s output
(M?, σ?, τ?). As in previous lemmas, known results [37, 45] on “programmable” hash functions tell
us that this condition is satisfied with probability O(1/4n`c).

Type II-B attacks. We are left with the case of Type II-B attacks where the experiment of
definition 5 returns 1 at step 5 and does not reach step 6. In such a situation, the adversary breaks
either the security (i.e., the existential unforgeability under chosen-message attack) of the ordinary
signature scheme used by group members or the Diffie-Hellman assumption. Namely, when the ad-
versary outputs (M?, σ?, τ?), where σ? contains (T ?1 , T

?
2 , T

?
3 ) and with τ? = (D?

x,1, D
?
x,2, D

?
y,1, D

?
y,2),

two situations can be distinguished.
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- The simulator B did not sign the tuple (D?
x,1, D

?
x,2, D

?
y,1, D

?
y,2) using member i’s signing key usk[i]

when answering Qclaim-queries. In this case, A is necessarily able to break the unforgeability of
the ordinary signature scheme (we omit the proof which is straightforward).

- B signed the same tuple (D?
x,1, D

?
x,2, D

?
y,1, D

?
y,2) when answering a Qclaim-query for another

signature involving a tuple (M,T1, T2, T3) 6= (M?, T ?1 , T
?
2 , T

?
3 ). In this case, B can either find a

collision for H or solve a Diffie-Hellman instance (A = ga, B = gb) by proceeding exactly as
in the case where the experiment reaches step 6. To this end, B can prepare the public key Y
exactly in the same way and obtain gb/a with the same probability O(1/4n`c).

ut
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