Malleable task-graph scheduling with a practical speed-up model

Loris Marchal1 \hspace{1cm} Bertrand Simon1 \hspace{1cm} Oliver Sinnen2 \\
Frédéric Vivien1

1: CNRS, INRIA, ENS Lyon and Univ. Lyon, FR. \\
2: Univ. Auckland, NZ.

New Challenges in Scheduling Theory — Aussois \\
March 2016
Motivation

Context:
- Optimize the time performance of multifrontal sparse solvers (e.g., MUMPS or QR-MUMPS)
- Computations well described by a tree of tasks
- Generalization to Series-Parallel graphs
- Purpose: find a schedule achieving the lowest makespan

Objectives:
- Provide theoretical guarantees on widely used scheduling algorithms
- Design ones with smaller makespan
Motivation

Context:

- Optimize the time performance of multifrontal sparse solvers (e.g., MUMPS or QR-MUMPS)
- Computations well described by a tree of tasks
- Generalization to Series-Parallel graphs
- Purpose: find a schedule achieving the lowest makespan

![Diagram of graphs](G_1 \xrightarrow{} G_2)

Objectives:

- Provide theoretical guarantees on widely used scheduling algorithms
- Design ones with smaller makespan
Motivation

Context:
- Optimize the time performance of multifrontal sparse solvers (e.g., MUMPS or QR-MUMPS)
- Computations well described by a tree of tasks
- Generalization to Series-Parallel graphs
- Purpose: find a schedule achieving the lowest makespan

Objectives:
- Provide theoretical guarantees on widely used scheduling algorithms
- Design ones with smaller makespan
Motivation

Context:
- Optimize the time performance of multifrontal sparse solvers (e.g., MUMPS or QR-MUMPS)
- Computations well described by a tree of tasks
- Generalization to Series-Parallel graphs
- Purpose: find a schedule achieving the lowest makespan

Objectives:
- Provide theoretical guarantees on widely used scheduling algorithms
- Design ones with smaller makespan
Motivation

Context:
- Optimize the time performance of multifrontal sparse solvers (e.g., MUMPS or QR-MUMPS)
- Computations well described by a tree of tasks
- Generalization to Series-Parallel graphs
- Purpose: find a schedule achieving the lowest makespan

![Diagram of a tree structure](image)

Objectives:
- Provide theoretical guarantees on widely used scheduling algorithms
- Design ones with smaller makespan
Application modeling

Coarse-grain picture: tree of tasks (or SP task graph)
- Each task: partial factorization, graph of smaller sub-tasks

- 😊 Expand all tasks and schedule resulting graph ?
- 😊 Scheduling trees simpler than general graphs (forget sub-tasks)

Behavior of coarse-grain tasks
- parallel and malleable
- Speed-up model → trade-off between:
 - Accuracy: fits well the data
 - Tractability: amenable to perf. analysis, guaranteed algorithms
Application modeling

Coarse-grain picture: tree of tasks (or SP task graph)

- Each task: partial factorization, graph of smaller sub-tasks

- Expand all tasks and schedule resulting graph?

- Scheduling trees simpler than general graphs (forget sub-tasks)

Behavior of coarse-grain tasks

- parallel and malleable

- Speed-up model → trade-off between:
 - Accuracy: fits well the data
 - Tractability: amenable to perf. analysis, guaranteed algorithms
Application modeling

Coarse-grain picture: tree of tasks (or SP task graph)

- Each task: partial factorization, graph of smaller sub-tasks

Expand all tasks and schedule resulting graph?

Scheduling trees simpler than general graphs (forget sub-tasks)

Behavior of coarse-grain tasks

- parallel and malleable

Speed-up model \rightarrow trade-off between:
 - Accuracy: fits well the data
 - Tractability: amenable to perf. analysis, guaranteed algorithms
General speed-up models

Literature: studies with few assumptions

\[
speed-up(p) = \frac{\text{time}(1 \text{ proc.})}{\text{time}(p \text{ proc.})} \quad \mid \quad work(p) = p \cdot \text{time}(p \text{ proc.})
\]

Non-increasing speed-up and work

- Independent tasks: theoretical FPTAS and practical 2-approximations \cite{Jansen2004, Fan2012}
- SP-graphs: \(\approx 2.6 \)-approximation \cite{Lepere2001}
 with concave speed-up: \((2 + \varepsilon)\)-approximation of unspecified complexity \cite{Makarychev2014}
Previous work (Europar 2015, with A. Guermouche)

Prasanna & Musicus model [PM 1996]: \(\text{speed-up}(p) = p^\alpha \)

Conclusions:
- Average Accuracy 😞
- Rational numbers of processors 😞
- Optimal algorithm for SP-graphs 😊
- No guarantees for distributed platforms 😞
- Task finish times complex to compute 😞
Simple and reasonable model of a parallel malleable task T_i

- Perfect parallelism up to a threshold δ_i: $time = w_i / \min(p, \delta_i)$
- Rational allocation for free (McNaughton’s wrap-around rule)

Related studies

- 2-approximation [Balmin et al. 13] that we will discuss
- [Kell et al. 2015]: $time = \frac{w_i}{p} + (p - 1)c$; 2-approximation for $p = 3$, open for $p \geq 4$
Simple and reasonable model of a parallel malleable task T_i

- Perfect parallelism up to a threshold δ_i: $time = w_i / \min(p, \delta_i)$
- Rational allocation for free (McNaughton’s wrap-around rule)

Related studies

- 2-approximation [Balmin et al. 13] that we will discuss
- [Kell et al. 2015]: $time = \frac{w_i}{p} + (p - 1)c$; 2-approximation for $p = 3$, open for $p \geq 4$
Outline

1. Problem complexity

2. Analysis of PROPORTIONALMAPPING [Pothen et al. 1993]

3. Design of a greedy strategy

4. Experimental comparison

5. Conclusion
Overview of the problem

Given a SP-graph, p processors: compute the optimal makespan

- Problem known as $P|sp-graph, any, spdp-lin, \delta_i|C_{max}$
- Malleability + perfect parallelism \implies P 😊
- ... + thresholds \implies NP-complete 😞
- Existing proof in [Drozdowski and Kubiak 1999]: arguably complex

Contribution

- New NP-completeness proof
Overview of the problem

Given a SP-graph, p processors: compute the optimal makespan

- Problem known as $P|sp-graph, any, spdp-lin, \delta_i|C_{max}$
- Malleability + perfect parallelism \implies P 😊
- … + thresholds \implies NP-complete 😞
- Existing proof in [Drozdowski and Kubiak 1999]: arguably complex

Contribution

- New NP-completeness proof
Overview of the problem

Given a SP-graph, p processors: compute the optimal makespan

- Problem known as $P|sp-graph, \text{any}, spdp-lin, \delta_i|C_{\text{max}}$
- Malleability + perfect parallelism \implies P 😊
- \cdots + thresholds \implies NP-complete 😞
- Existing proof in [Drozdowski and Kubiak 1999]: arguably complex

Contribution

- New NP-completeness proof
Overview of the problem

Given a SP-graph, p processors: compute the optimal makespan

- Problem known as $P|sp-graph, any, spdp-lin, \delta_i|C_{\text{max}}$
- Malleability + perfect parallelism \implies P 😊
- \ldots + thresholds \implies NP-complete 😞
- Existing proof in [Drozdowski and Kubiak 1999] : arguably complex

Contribution

- New NP-completeness proof
Widget for the proof

Two 3-task chains

processors

\[\delta_i \approx p \]

area = \(w_i \)

time

Each task:
- \(\delta_i = w_i \)
- min. computing time of 1

Simultaneous start: \(C_{max} \approx 5 \)

Time-shift: \(C_{max} \approx 4 \)
Two 3-task chains

\[\delta_i \approx p \]

\[\text{area} = w_i \]

Each task:
- \[\delta_i = w_i \]
- min. computing time of 1

Simultaneous start: \(C_{\text{max}} \approx 5 \)

Time-shift: \(C_{\text{max}} \approx 4 \)
Two 3-task chains

\[\delta_i \approx p \]

Each task:
- \(\delta_i = w_i \)
- min. computing time of 1

Simultaneous start: \(C_{max} \approx 5 \)

Time-shift: \(C_{max} \approx 4 \)
Proof sketch

Reduction from 3-SAT (ex: $x_1 \ OR \ x_2 \ OR \ \overline{x}_2$)

- Idea: each variable \Rightarrow a modified widget (a chain for both x_i, \overline{x}_i)
- Extremities length \Rightarrow variable \rightarrow middle \Rightarrow clause
- The one starting later: TRUE
- Gray chain: profile allowing only correct behaviors
Proof sketch

Reduction from 3-SAT (ex: $x_1 \text{ OR } x_2 \text{ OR } \overline{x}_2$)

- Idea: each variable ⇒ a modified widget (a chain for both x_i, \overline{x}_i)
- Extremities length ⇒ variable — middle ⇒ clause
- The one starting later: TRUE
- Gray chain: profile allowing only correct behaviors

```
Reduction from 3-SAT (ex: $x_1 \text{ OR } x_2 \text{ OR } \overline{x}_2$)

- Idea: each variable ⇒ a modified widget (a chain for both $x_i$, $\overline{x}_i$)
- Extremities length ⇒ variable — middle ⇒ clause
- The one starting later: TRUE
- Gray chain: profile allowing only correct behaviors
```
Proof sketch

Reduction from 3-SAT (ex: $x_1 \ OR \ x_2 \ OR \ \overline{x}_2$)

- Idea: each variable \Rightarrow a modified widget (a chain for both x_i, \overline{x}_i)
- extremities length \Rightarrow variable \rightarrow middle \Rightarrow clause
- The one starting later: TRUE
- Gray chain: profile allowing only correct behaviors
Proof sketch

Reduction from 3-SAT (ex: $x_1 \ OR \ x_2 \ OR \ \overline{x_2}$)

- Idea: each variable \Rightarrow a modified widget (a chain for both $x_i, \overline{x_i}$)
- extremities length \Rightarrow variable \rightarrow middle \Rightarrow clause
- The one starting later: TRUE
- Gray chain: profile allowing only *correct* behaviors

![Diagram of processor usage over time](image-url)
Outline

1. Problem complexity

3. Design of a greedy strategy

4. Experimental comparison

5. Conclusion
Proportional Mapping [Pothen et al. 1993]

Description

- Simple allocation for trees or SP-graphs
- On $G_1 \parallel G_2$: constant share to G_i, proportional to its weight W_i

Algorithm 1: Proportional Mapping (graph G, q procs)

1. Define the share allocated to sub-graphs of G:

   ```
   if $G = G_1; G_2; \ldots G_k$ then
   \forall i, p_i \leftarrow q
   ```

   ```
   if $G = G_1 \parallel G_2 \parallel \ldots G_k$ then
   \forall i, p_i \leftarrow qW_i / \sum_j W_j
   ```

2. Call Proportional Mapping (G_i, p_i) for each sub-graph G_i

- Then schedule tasks on p_i processors ASAP

Notes

- Produces a moldable schedule (fixed allocation over time)
- Unaware of task thresholds
Analysis of \textbf{Proportional Mapping} schedules

\textbf{Theorem}

\textbf{Proportional Mapping} is a 2-approximation of the optimal makespan.

\textbf{Proof.}

- Consider makespan without thresholds: $M_{\infty} \leq M_{\text{opt}}$
- There is an \textit{idle-free path} Φ from the entry task to the end
- Split the tasks of Φ in two sets:
 - $A =$ tasks limited by their thresholds: $\text{len}(A) \leq \text{critical path} \leq M_{\text{opt}}$
 - $B =$ tasks limited by the allocation: $\text{len}(B) \leq M_{\infty} \leq M_{\text{opt}}$
- Finally, $M = \text{len}(\Phi) = \text{len}(A) + \text{len}(B) \leq 2M_{\text{opt}}$

\textbf{Note}

- Approximation ratio asymptotically tight
Analysis of **Proportional Mapping** schedules

Theorem

Proportional Mapping is a 2-approximation of the optimal makespan.

Proof.

- Consider makespan without thresholds: $M_\infty \leq M_{opt}$
- There is an *idle-free path* Φ from the entry task to the end
- Split the tasks of Φ in two sets:
 - $A = $ tasks limited by their *thresholds*: $\text{len}(A) \leq \text{critical path} \leq M_{opt}$
 - $B = $ tasks limited by the *allocation*: $\text{len}(B) \leq M_\infty \leq M_{opt}$
- Finally, $M = \text{len}(\Phi) = \text{len}(A) + \text{len}(B) \leq 2M_{opt}$

Note

- Approximation ratio asymptotically tight
Analysis of ProportionalMapping schedules

Theorem

ProportionalMapping is a 2-approximation of the optimal makespan.

Proof.

- Consider makespan without thresholds: $M_\infty \leq M_{\text{opt}}$
- There is an idle-free path Φ from the entry task to the end
- Split the tasks of Φ in two sets:
 - $A =$ tasks limited by their thresholds: $\text{len}(A) \leq \text{critical path} \leq M_{\text{opt}}$
 - $B =$ tasks limited by the allocation: $\text{len}(B) \leq M_\infty \leq M_{\text{opt}}$
- Finally, $M = \text{len}(\Phi) = \text{len}(A) + \text{len}(B) \leq 2M_{\text{opt}}$

Note

- Approximation ratio asymptotically tight
Analysis of **PROPORTIONAL MAPPING** schedules

Theorem

PROPORTIONAL MAPPING is a 2-approximation of the optimal makespan.

Proof.

- Consider makespan without thresholds: $M_\infty \leq M_{opt}$
- There is an *idle-free path* Φ from the entry task to the end
- Split the tasks of Φ in two sets:
 - $A =$ tasks limited by their thresholds: $\text{len}(A) \leq \text{critical path} \leq M_{opt}$
 - $B =$ tasks limited by the allocation: $\text{len}(B) \leq M_\infty \leq M_{opt}$
- Finally, $M = \text{len}(\Phi) = \text{len}(A) + \text{len}(B) \leq 2M_{opt}$

Note

- Approximation ratio asymptotically tight
Outline

1. Problem complexity
3. Design of a greedy strategy
4. Experimental comparison
5. Conclusion
Design of a greedy strategy: **GREEDY-FILLING**

Algorithm

- Assign priorities to tasks (usually by bottom-level)
- Consider free tasks by decreasing priority
- **Greedily insert** each task in the current schedule:
 - Compute earliest starting time
 - *Pour* task into the available processor space, respecting thresholds

Illustration

initial profile:

task insertion:

final profile:
Design of a greedy strategy: **GREEDY-FILLING**

Algorithm

- Assign priorities to tasks (usually by bottom-level)
- Consider free tasks by decreasing priority
- **Greedily insert** each task in the current schedule:
 - Compute earliest starting time
 - *Pour* task into the available processor space, respecting thresholds

Illustration

Initial profile:

Task insertion:

Final profile:
Design of a greedy strategy: \textbf{GREEDY-FILLING}

Algorithm

- Assign priorities to tasks (usually by bottom-level)
- Consider free tasks by decreasing priority
- **Greedily insert** each task in the current schedule:
 - Compute earliest starting time
 - \textit{Pour} task into the available processor space, respecting thresholds

Illustration

\begin{itemize}
 \item initial profile:
 \begin{itemize}
 \item \textit{p} \quad \text{busy}
 \end{itemize}
 \item task insertion:
 \begin{itemize}
 \item \textit{p} \quad \text{busy}
 \end{itemize}
 \item final profile:
 \begin{itemize}
 \item \textit{p} \quad \text{busy}
 \end{itemize}
\end{itemize}
Design of a greedy strategy: **GREEDY-FILLING**

Algorithm

- Assign priorities to tasks (usually by bottom-level)
- Consider free tasks by decreasing priority
- **Greedily insert** each task in the current schedule:
 - Compute earliest starting time
 - *Pour* task into the available processor space, respecting thresholds

Illustration

initial profile:

task insertion:

final profile:
Analysis of **GREEDY-FILLING** schedules

Theorem

GREEDY-FILLING is a $2 - \frac{\delta_{\min}}{p}$ approximation to the optimal makespan.

Proof.

Transposition of the classical $(2 - \frac{1}{p})$-approximation result by Graham

- Construct a path Φ in G: all idle times happen during tasks of Φ
- Bound *Used* and *Idle* areas ($\text{Used} + \text{Idle} = pM$)
 - At least δ_{\min} processors *busy* during Φ

Note

- Theorem applies to every strategy without deliberate idle time
Outline

1. Problem complexity
3. Design of a greedy strategy
4. Experimental comparison
5. Conclusion
Third algorithm to compare with: **FLOWFLEX**

- 2-approximation designed in [Balmin et al. 13] to schedule “Malleable Flows of MapReduce Jobs”
- Solve the problem on an infinite number of processors
- Downscale the allocation on intervals when it is needed

Three datasets

- **SYNTH-PROP**: Synthetic SP-graphs with $\delta_i = \alpha \times w_i$,
- **SYNTH-RAND**: Same but with a factor log-uniform in $[0.1\alpha, 10\alpha]$,
- **TREES**: Assembly trees of sparse matrices, $\delta_i = \alpha \times w_i$.
Results on SYNTH-PROP

- Y: Makespan normalized by the lower bound $LB = \max(CP, \frac{W}{p})$
- X: Number of processors normalized by:

$$parallelism = \frac{\text{makespan with all } \delta_i = 1 \text{ and } p = \infty}{\text{makespan with all } \delta_i = 1 \text{ and } p = 1}$$
Results on SYNTH-PROP

- Plot: mean + ribbon with 90% of the results
- Small/large number of processors: similar results (simpler problem)
- **Greedy-Filling**:
 - ≈ 25% of gain
 - < 20% from the lower bound
Results on SYNTH-RAND

- Similar results with random thresholds
- Larger gaps between GREEDY-FILLING and the others
- Maximum gap happens for smaller platforms
Shape of the results depends a lot on the matrix

- Here: one matrix with different ordering and amalgamation parameters
- **Greedy-Filling** (almost always) better than both others
- Smaller maximum gain (around 15%)
Outline

1. Problem complexity
2. Analysis of PROPORTIONALMAPPING [Pothen et al. 1993]
3. Design of a greedy strategy
4. Experimental comparison
5. Conclusion
Conclusion

On the algorithms

- **PROP-MAPPING**: does not take advantage of malleability
- **FLOW-FLEX**: produces gaps that cannot be filled afterwards
- **GREEDY-FILLING**: simple, greedy, close to the lower bound

On the model

- Simplest model to account for limited parallelism
- Still NP-complete 😞
- Possible to derive theoretical guarantees (2-approx. algorithms) 😊

Perspectives

- Conduct experiments to assess the model and study thresholds
- Focus on moldable tasks – study the gain of malleability
Conclusion

On the algorithms

- **PROP\textsc{Mapping}**: does not take advantage of malleability
- **FLOW\textsc{Flex}**: produces gaps that cannot be filled afterwards
- **GREEDY-\textsc{Filling}**: simple, greedy, close to the lower bound

On the model

- Simplest model to account for limited parallelism
- Still NP-complete 😞
- Possible to derive theoretical guarantees (2-approx. algorithms) 😊

Perspectives

- Conduct experiments to assess the model and study thresholds
- Focus on moldable tasks – study the gain of malleability
Conclusion

On the algorithms
- PROP-MAPPING: does not take advantage of malleability
- FLOWFLEX: produces gaps that cannot be filled afterwards
- GREEDY-FILLING: simple, greedy, close to the lower bound

On the model
- Simplest model to account for limited parallelism
- Still NP-complete 😞
- Possible to derive theoretical guarantees (2-approx. algorithms) 😊

Perspectives
- Conduct experiments to assess the model and study thresholds
- Focus on moldable tasks – study the gain of malleability