Loris Marchal1 \hspace{1cm} Bertrand Simon1 \hspace{1cm} Oliver Sinnen2 \\
Frédéric Vivien1

1: CNRS, INRIA, ENS Lyon and Univ. Lyon, FR. \\
2: Univ. Auckland, NZ.

Solhar plenary meeting

December 2nd, 2016
Motivation

Context:
- Optimize the time performance of multifrontal sparse solvers (e.g., MUMPS or QR-MUMPS)
- Computations well described by a tree of tasks
- Generalization to Series-Parallel graphs
- Purpose: find a schedule achieving the shortest makespan

Objectives:
- Provide theoretical guarantees on widely used scheduling algorithms
- Design algorithms with shorter makespan
Motivation

Context:

- Optimize the time performance of multifrontal sparse solvers (e.g., MUMPS or QR-MUMPS)
- Computations well described by a tree of tasks
- Generalization to Series-Parallel graphs
- Purpose: find a schedule achieving the shortest makespan

Objectives:

- Provide theoretical guarantees on widely used scheduling algorithms
- Design algorithms with shorter makespan
Motivation

Context:

- Optimize the time performance of multifrontal sparse solvers (e.g., MUMPS or QR-MUMPS)
- Computations well described by a tree of tasks
- Generalization to Series-Parallel graphs
- Purpose: find a schedule achieving the shortest makespan

Objectives:

- Provide theoretical guarantees on widely used scheduling algorithms
- Design algorithms with shorter makespan
Motivation

Context:
- Optimize the time performance of multifrontal sparse solvers (e.g., MUMPS or QR-MUMPS)
- Computations well described by a tree of tasks
- Generalization to Series-Parallel graphs
- Purpose: find a schedule achieving the shortest makespan

Objectives:
- Provide theoretical guarantees on widely used scheduling algorithms
- Design algorithms with shorter makespan
Motivation

Context:

- Optimize the time performance of multifrontal sparse solvers (e.g., MUMPS or QR-MUMPS)
- Computations well described by a tree of tasks
- Generalization to Series-Parallel graphs
- Purpose: find a schedule achieving the shortest makespan

Objectives:

- Provide theoretical guarantees on widely used scheduling algorithms
- Design algorithms with shorter makespan
Coarse-grain picture: tree of tasks (or SP task graph)

- Each task is itself a parallel task

Behavior of tasks

- parallel and malleable
 (processor allotment can change during task execution)

\[
\text{speed-up}(p) = \frac{\text{time}(1 \text{ proc.})}{\text{time}(p \text{ proc.})} \quad \text{work}(p) = p \cdot \text{time}(p \text{ proc.})
\]

- Speed-up model \(\rightarrow\) trade-off between:
 - Accuracy: fits well the data
 - Tractability: amenable to perf. analysis, guaranteed algorithms
General speed-up models

Literature: studies with few assumptions

Non-increasing speed-up and non-decreasing work

- SP-graphs: \(\approx 2.6 \)-approximation [Lepère et al. 2001]
 with concave speed-up: \((2 + \varepsilon)\)-approximation of unspecified complexity [Makarychev et al. 2014]
Prasanna & Musicus’ model [Prasanna and Musicus 1996]

- Speed-up \(p \rightarrow p^\alpha \), with \(0 < \alpha \leq 1 \)

Task \(T_i \) of weight \(w_i \):

Processing time of \(T_i \): \(= \arg \min_{C} \left\{ \int_{0}^{C} p_i(t)^\alpha \, dt \geq w_i \right\} \)
Results for Prasanna & Musicus’ model

Theorem (Prasanna & Musicus)

In optimal schedules, at any parallel node $G_1 \parallel G_2$, the ratio of processors given to each branch is constant.

Corollary

- $G \approx$ equivalent task T_G of weight \mathcal{W}_G defined by:
 - $\mathcal{W}_{T_i} = L_i$
 - $\mathcal{W}_{G_1; G_2} = \mathcal{W}_{G_1} + \mathcal{W}_{G_2}$
 - $\mathcal{W}_{G_1 \parallel G_2} = \left(\mathcal{W}_{G_1}^{1/\alpha} + \mathcal{W}_{G_2}^{1/\alpha} \right)^\alpha$
- The (unique) optimal schedule S_{PM} can be computed in polynomial time.
Previous work (Europar 2015, with Abdou Guermouche)

Prasanna & Musicus model [PM 1996]:
\[\text{speed-up}(p) = p^\alpha \]

Conclusions:

▶ Optimal algorithm for SP-graphs 😊
▶ Average Accuracy 😊
▶ Rational numbers of processors 😊
▶ Task finish times complex to compute 😞
▶ No guarantees for distributed platforms 😞
Today: simpler model

Simple and reasonable model of a parallel malleable task T_i

- Perfect then linear then plateau, speedup function s_i:

\[
\text{speed-up} \uparrow
\]

\[
\Sigma_i
\]

slope $= 1$

slope < 1

δ_i^1

δ_i^2

processors

Related studies

- $\delta_i^1 = \delta_i^2$: Loris Marchal’s talk at last meeting (we refined the model)
- 2-approximation [Balmin et al. 2013] that we will discuss

- [Kell et al. 2015]:

\[
time = w_i + (p - 1) c
\]

2-approximation for $p = 3$, open for $p \geq 4$
Today: simpler model

Simple and reasonable model of a parallel malleable task T_i

- **Perfect** then linear then plateau, speedup function s_i:

 \[\delta_1^i \leq s_i \leq \delta_2^i \]

 \[\Sigma_i \]

 \[\text{slope} = 1 \]

 \[\text{slope} < 1 \]

 \[\delta_1^i \]

 \[\delta_2^i \]

Related studies

- $\delta_1^i = \delta_2^i$: Loris Marchal’s talk at last meeting (we refined the model)

 2-approximation [Balmin et al. 13] that we will discuss

- [Kell et al. 2015]: time $= \frac{w_i}{p} + (p - 1)c$;

 2-approximation for $p = 3$, open for $p \geq 4$
Experimental validation

Setup

- Graph: elimination tree of sparse matrices (task: QR decomposition of a dense rectangular matrix)
- Platform: Miriel node of Plafrim (24 cores)
- Time each task with 1 to 24 cores
 - Plot speedup, correct decrease then compute parameters (δ_1, δ_2, Σ)

Conclusion

- Accurate fitting: median $R^2 = 0.98$ 😊
Experimental validation

Setup

- Graph: elimination tree of sparse matrices (task: QR decomposition of a dense rectangular matrix)
- Platform: Miriel node of Plafrim (24 cores)
- Time each task with 1 to 24 cores
 - Plot speedup, correct decrease then compute parameters (δ_1, δ_2, Σ)

Conclusion

- Accurate fitting: median $R^2 = 0.98$ 😊
Experimental validation

Setup

- Graph: elimination tree of sparse matrices (task: QR decomposition of a dense rectangular matrix)
- Platform: Miriel node of Plafrim (24 cores)
- Time each task with 1 to 24 cores
 - Plot speedup, correct decrease then compute parameters ($\delta^1, \delta^2, \Sigma$)

Conclusion

- Accurate fitting: median $R^2 = 0.98$ 😊

![Graph showing speedup vs. number of processors]

Matrix 13007x15575

<table>
<thead>
<tr>
<th>Processors</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

L. Marchal, B. Simon, O. Sinnen, F. Vivien
Scheduling Series-Parallel Graphs of Malleable Tasks 9 / 25
Experimental validation

Setup

- Graph: elimination tree of sparse matrices (task: QR decomposition of a dense rectangular matrix)
- Platform: Miriel node of Plafrim (24 cores)
- Time each task with 1 to 24 cores
 - Plot speedup, correct decrease then compute parameters ($\delta^1, \delta^2, \Sigma$)

Conclusion

- Accurate fitting: median $R^2 = 0.98$
- Single-threshold model: median $R^2 = 0.90$
Question: should we allow allotments of rational number of cores?

Answer: yes, we can transform such a schedule to integer allotments

Why: piecewise linear speedup ensures McNaughton rule
Question: should we allow allotments of *rational* number of cores?

Answer: yes, we can transform such a schedule to integer allotments

Why: piecewise linear speedup ensures *McNaughton rule*
Outline

1. Analysis of **Proportional Mapping** [Pothen et al. 1993]
2. Design of a greedy strategy
3. Analysis of **FlowFlex** [Balmin et al. 2013]
4. Experimental comparison
5. Conclusion
Proportional Mapping [Pothen et al. 1993]

Description

- Simple allocation for trees or SP-graphs
- On $G_1 \parallel G_2$: constant share to G_i, proportional to its weight W_i

Algorithm 1: ProportionalMapping (graph G, q procs)

1. Define the share allocated to sub-graphs of G:

 \[
 \begin{align*}
 \text{if } G &= G_1; G_2; \ldots G_k \text{ then} & \text{if } G &= G_1 \parallel G_2 \parallel \ldots G_k \\
 \forall i, \; p_i &\leftarrow q & \forall i, \; p_i &\leftarrow q \frac{W_i}{\sum_j W_j}
 \end{align*}
 \]

2. Call ProportionalMapping (G_i, p_i) for each sub-graph G_i

- Then schedule tasks on p_i processors ASAP

Notes

- Produces a moldable schedule (fixed allocation over time)
- Unaware of task thresholds
Analysis of ProportionalMapping schedules

Theorem

ProportionalMapping is a \((1 + r)\)-approximation of the optimal makespan, with
\[r = \max_i \left(\frac{\delta_i^2}{\Sigma_i} \right) \geq 1. \]

Proof.

- Consider makespan with perfect speedup: \(M_\infty \leq M_{opt} \)
- There is an idle-free path \(\Phi \) from the entry task to the end
- Split the tasks of \(\Phi \) in two sets:
Theorem

ProportionalMapping is a \((1 + r)\)-approximation of the optimal makespan, with \(r = \max_i \left(\frac{\delta_i^2}{\Sigma_i} \right) \geq 1\).

Proof.

- Consider makespan with perfect speedup: \(M_\infty \leq M_{\text{opt}}\)
- There is an idle-free path \(\Phi\) from the entry task to the end
- Split the tasks of \(\Phi\) in two sets:
 - \(A\) = limited by their thresholds: \(\text{len}(A) \leq \text{critical path} \leq M_{\text{opt}}\)
Theorem

ProportionalMapping is a \((1 + r)\)-approximation of the optimal makespan, with \(r = \max_i \left(\frac{\delta_i^2}{\Sigma_i} \right) \geq 1\).

Proof.

- Consider makespan with perfect speedup: \(M_\infty \leq M_{\text{opt}}\)
- There is an idle-free path \(\Phi\) from the entry task to the end
- Split the tasks of \(\Phi\) in two sets:
 - \(A\) = limited by their thresholds: \(\text{len}(A) \leq \text{critical path} \leq M_{\text{opt}}\)
 - \(B\) = limited by the allocation:
 \[
 \text{len}(B) = \sum_{i \in B} \frac{w_i}{s_i(p_i)} \quad \text{and} \quad M_\infty \geq \sum_{i \in B} \frac{w_i}{p_i} \quad \text{so} \quad \text{len}(B) \leq rM_\infty
 \]
Analysis of Proportional Mapping schedules

Theorem

Proportional Mapping is a \((1 + r)\)-approximation of the optimal makespan, with \(r = \max_i \left(\frac{\delta_i^2}{\sum_i} \right) \geq 1\).

Proof.

- Consider makespan with perfect speedup: \(M_\infty \leq M_{\text{opt}}\)
- There is an idle-free path \(\Phi\) from the entry task to the end
- Split the tasks of \(\Phi\) in two sets:
 - \(A\) = limited by their thresholds: \(\text{len}(A) \leq \text{critical path} \leq M_{\text{opt}}\)
 - \(B\) = limited by the allocation:
 \[
 \text{len}(B) = \sum_{i \in B} \frac{w_i}{s_i(p_i)} \quad \text{and} \quad M_\infty \geq \sum_{i \in B} \frac{w_i}{p_i} \quad \text{so} \quad \text{len}(B) \leq rM_\infty
 \]
- Finally, \(M = \text{len}(\Phi) = \text{len}(A) + \text{len}(B) \leq (1 + r)M_{\text{opt}} \square\)
Optimization of **Proportional Mapping**

Issue

- Imperfect speedup: tasks do not finish simultaneously
- Idle processors: could reallocate them
Optimization of Proportional Mapping

Issue

- Imperfect speedup: tasks do not finish simultaneously
- Idle processors: could reallocate them

Design of PropMapExt from Proportional Mapping

- When a task terminates: reallocate its processors to the sibling tasks
- Reallocation is done proportionally to the remaining critical path
- PropMapExtThresh: idem but never exceeds δ^2
Optimization of **ProportionalMapping**

Issue
- Imperfect speedup: tasks do not finish simultaneously
- Idle processors: could reallocate them

Design of PropMapExt from ProportionalMapping
- When a task terminates: reallocate its processors to the *sibling* tasks
- Reallocation is done proportionally to the remaining critical path
- PropMapExtThresh: idem but never exceeds δ^2

PropMapping:	**Rebalancing:**	**PropMapExt:**

![Graphs showing the comparison between PropMapping, Rebalancing, and PropMapExt](image)
Optimization of Proportional Mapping

Issue
- Imperfect speedup: tasks do not finish simultaneously
- Idle processors: could reallocate them

Design of PropMapExt from Proportional Mapping
- When a task terminates: reallocate its processors to the *sibling* tasks
- Reallocation is done proportionally to the remaining critical path
- PropMapExtThresh: idem but never exceeds δ^2

PropMapping:

Rebalancing:

PropMapExt:
Optimization of **Proportional Mapping**

Issue
- Imperfect speedup: tasks do not finish simultaneously
- Idle processors: could reallocate them

Design of PropMapExt from Proportional Mapping
- When a task terminates: reallocate its processors to the *sibling* tasks
- Reallocation is done proportionally to the remaining critical path
- PropMapExtThresh: idem but never exceeds δ^2

PropMapping:

Rebalancing:

PropMapExt:
Optimization of \textbf{Proportional Mapping}

\section*{Issue}

- Imperfect speedup: tasks do not finish simultaneously
- Idle processors: could reallocate them

\section*{Design of PropMapExt from Proportional Mapping}

- When a task terminates: reallocate its processors to the \textit{Sibling} tasks
- Reallocation is done proportionally to the remaining critical path
- PropMapExtThresh: idem but never exceeds δ^2

\begin{itemize}
 \item PropMapping:
 \item Rebalancing:
 \item PropMapExt:
\end{itemize}
Outline

1. Analysis of PROPORTIONAL MAPPING [Pothen et al. 1993]

2. Design of a greedy strategy

3. Analysis of FLOWFLEX [Balmin et al. 2013]

4. Experimental comparison

5. Conclusion
Algorithm

- Assign priorities to tasks (usually by bottom-level)
- Maintain a set of available tasks
- Consider free tasks by decreasing priority:
 - allocate δ_i^1 procs to each task until the limit
 - if remaining procs, increase allocation to δ_i^2 procs
- Stop the allocation when the first task terminates, then repeat

Illustration

Initial profile:

Tasks allocation:

Next profile:
Design of a greedy strategy: **GREEDY-FILLING**

Algorithm

- Assign priorities to tasks (usually by bottom-level)
- Maintain a set of available tasks
- Consider free tasks by decreasing priority:
 - allocate δ_i^1 procs to each task until the limit
 - if remaining procs, increase allocation to δ_i^2 procs
- Stop the allocation when the first task terminates, then repeat

Illustration

- Initial profile:
- Tasks allocation:
- Next profile:
Design of a greedy strategy: **GREEDY-FILLING**

Algorithm

- Assign priorities to tasks (usually by bottom-level)
- Maintain a set of available tasks
- Consider free tasks by decreasing priority:
 - allocate δ_i^1 procs to each task until the limit
 - if remaining procs, increase allocation to δ_i^2 procs
- Stop the allocation when the first task terminates, then repeat

Illustration

Initial profile:

Tasks allocation:

Next profile:
Algorithm

- Assign priorities to tasks (usually by bottom-level)
- Maintain a set of available tasks
- Consider free tasks by decreasing priority:
 - allocate δ_i^1 procs to each task until the limit
 - if remaining procs, increase allocation to δ_i^2 procs
- Stop the allocation when the first task terminates, then repeat

Illustration

Initial profile:

<table>
<thead>
<tr>
<th>time</th>
<th>busy</th>
</tr>
</thead>
<tbody>
<tr>
<td>free tasks: ${w_1, w_2, w_3, w_4}$</td>
<td></td>
</tr>
</tbody>
</table>

Tasks allocation:

<table>
<thead>
<tr>
<th>time</th>
<th>busy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Next profile:

<table>
<thead>
<tr>
<th>time</th>
<th>busy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Design of a greedy strategy: **GREEDY-FILLING**

Algorithm

- Assign priorities to tasks (usually by bottom-level)
- Maintain a set of available tasks
- Consider free tasks by decreasing priority:
 - allocate δ^1_i procs to each task until the limit
 - if remaining procs, increase allocation to δ^2_i procs
- Stop the allocation when the first task terminates, then repeat

Illustration

Initial profile:

- Tasks allocation:

Next profile:

- Free tasks: $\{w_1, w_2, w_3, w_4\}$
- Tasks allocation:

Next profile:

- Free tasks: $\{w'_1, w'_2, w'_4\}$
Analysis of **GREEDY-FILLING** schedules

Theorem

GREEDY-FILLING is a $1 + r - \frac{\delta_{\min}^2}{p}$ approximation to the optimal makespan, with $r = \max_i \left(\frac{\delta_i^2}{\Sigma_i} \right) \geq 1$.

Proof.

Transposition of the classical $(2 - \frac{1}{p})$-approximation result by Graham

- Construct a path Φ in G: all idle times happen during tasks of Φ
Analysis of **GREEDY-FILLING** schedules

Theorem

GREEDY-FILLING *is a* $1 + r - \frac{\delta_{\text{min}}^2}{p}$ *approximation to the optimal makespan, with* $r = \max_i \left(\frac{\delta_i^2}{\Sigma_i} \right) \geq 1$.

Proof.

Transposition of the classical $(2 - \frac{1}{p})$-approximation result by Graham

- Construct a path Φ in G: all idle times happen *during* tasks of Φ
- Bound *Used* and *Idle* areas ($\text{Used} + \text{Idle} = p \ M$)
Analysis of **Greedy-Filling** schedules

Theorem

Greedy-Filling is a \(1 + r - \frac{\delta_{\text{min}}^2}{p}\) approximation to the optimal makespan, with \(r = \max_i \left(\frac{\delta_i^2}{\Sigma_i} \right) \geq 1\).

Proof.

Transposition of the classical \((2 - \frac{1}{p})\)-approximation result by Graham

- Construct a path \(\Phi\) in \(G\): all idle times happen during tasks of \(\Phi\)
- Bound \(\text{Used}\) and \(\text{Idle}\) areas (\(\text{Used} + \text{Idle} = pM\))
 - At least \(\delta_{\text{min}}\) processors busy during \(\Phi\) so \(\text{Idle} \leq (p - \delta_{\text{min}})M_{\text{opt}}\)
Analysis of **Greedy-Filling** schedules

Theorem

Greedy-Filling is a $1 + r - \frac{\delta_{\min}^2}{p}$ approximation to the optimal makespan, with $r = \max_i \left(\frac{\delta_i^2}{\Sigma_i} \right) \geq 1$.

Proof.

Transposition of the classical $(2 - \frac{1}{p})$-approximation result by Graham

- Construct a path Φ in G: all idle times happen during tasks of Φ
- Bound $Used$ and $Idle$ areas ($Used + Idle = pM$)
 - At least δ_{\min} processors busy during Φ so $Idle \leq (p - \delta_{\min}^2)M_{opt}$
 - s_i is concave so $Used \leq \sum_i \frac{\delta_i^2 w_i}{\Sigma_i} \leq rpM_{opt}$
Analysis of **Greedy-Filling** schedules

Theorem

Greedy-Filling is a $1 + r - \frac{\delta_{\min}^2}{p}$ approximation to the optimal makespan, with $r = \max_i \left(\frac{\delta_i^2}{\Sigma_i}\right) \geq 1$.

Proof.

Transposition of the classical $(2 - \frac{1}{p})$-approximation result by Graham

- Construct a path Φ in G: all idle times happen during tasks of Φ
- Bound *Used* and *Idle* areas ($\text{Used} + \text{Idle} = p \ M$)

 - At least δ_{\min} processors busy during Φ so $\text{Idle} \leq (p - \delta_{\min}^2) M_{opt}$

 - s_i is concave so $\text{Used} \leq \sum_i \frac{\delta_i^2 w_i}{\Sigma_i} \leq rp M_{opt}$

Note

- Theorem applies to every strategy without deliberate idle time
Outline

1. Analysis of ProportionalMapping [Pothen et al. 1993]
2. Design of a greedy strategy
3. Analysis of FlowFlex [Balmin et al. 2013]
4. Experimental comparison
5. Conclusion
FLOWFLEX [Balmin et al. 13]

Principle

- 2-approximation in the *single-threshold* model
- Solve the problem on an *infinite* number of processors
- On each interval with *constant allocations*: if the processor limit is exceeded, *downscale* the allocation proportionally

Adaptation to our model

- Similar to *PropMapExtThresh*: when a task terminates, *rebalance idling processors* proportionally to the threshold
- *Note*: *if the single-threshold model is available, downscale the allocation proportionally to this threshold*
Outline

1. Analysis of ProportionalMapping [Pothen et al. 1993]
2. Design of a greedy strategy
3. Analysis of FlowFlex [Balmin et al. 2013]
4. Experimental comparison
5. Conclusion
Experimental setup

Two datasets

- **SYNTH**: 30 synthetic SP-graphs of 200 nodes with $\delta_i^1 = \alpha \times w_i$ and δ_i^2 uniform in $[\delta_i^1, 2\delta_i^1]$
- **TREES**: Assembly trees of 24 sparse matrices from 40 to 6000 nodes (University of Florida Sparse Matrix Collection), speedup deduced from timings explained earlier

Heuristics

- **Greedy-Filling**, **PropMapNaive**, **PropMapExt**, **PropMapExtThresh**, **FlowFlex**

Note: we tested 8 variants but only present the main ones
Comparison method: performance profiles (left graph)

- Determine the makespan for each instance (heuristic, graph, #procs)
- Given a heuristic H and a value $\tau \geq 1$: compute how often H lies within a factor τ of the best heuristic

For $\tau = 1.05$, Greedy-Filling curve is at 0.98: in 98% of instances, it is within 5% of the best result
Results on **SYNTH**

- **Left:** performance profile *(best is top-left)*
 - **Greedy-Filling** is almost always optimal and gains > 5% in 50% of the cases against any other heuristic
- **Right:** makespan normalized by a LB *(best is 1.0, bottom)*
 - Sample random graph
 - Results on different graphs are quite similar
Results on TREES

- **Left**: performance profile (*best is top-left*)
 - Smaller discrepancies
 - PropMapExt and PropMapExtThresh perform better and are similar

- **Right**: makespan normalized by a LB (*best is 1.0, bottom*)
 - Exposes the results on a sample tree
 - Trees have different structures, so the heuristic hierarchy depends on the tree and the number of processors
Results on TREES

![Graphs showing the results for different algorithms on TREES.](image)

Algorithm
- **Greedy-Filling**
- **PropMapNaive**
- **PropMapExt**
- **PropMapExtThresh**
- **FlowFlex**
Outline

1. Analysis of \textsc{ProportionalMapping} [Pothen et al. 1993]
2. Design of a greedy strategy
3. Analysis of \textsc{FlowFlex} [Balmin et al. 2013]
4. Experimental comparison
5. Conclusion
Conclusion

On the model

- Far more accurate than the single-threshold one
- NP-complete, as the single-threshold one
- Theoretically guaranteed heuristics
Conclusion

On the model
- Far more accurate than the single-threshold one
- NP-complete, as the single-threshold one
- Theoretically guaranteed heuristics

On the heuristics
- **Greedy-Filling**
 - best when the tree can be scheduled without forced idle times
 - best heuristic on **Synth** and other well-balanced instances
- **ProportionalMapping**
 - naive version is not competitive
 - extensions are almost equivalent
 - give the best global results on **Trees**
 - best when large non-urgent tasks are available soon, or if several paths are critical