Bertrand Simon

part of a joint work with:
Bender, Berry, Johnson, Kroeger, McCauley, Phillips, Singh, Zage

ENS Lyon

Jan. 2018
Cache-efficient skip lists

Bertrand Simon

part of a joint work with:
Bender, Berry, Johnson, Kroeger, McCauley, Phillips, Singh, Zage

ENS Lyon

Jan. 2018
Outline

1. Skip lists
2. External Memory
3. External-memory skip list
The problem we want to solve

Dictionary problem on \mathbb{N}

- Insert i
- Delete i
- Search i
- Range Query (i, k elements)

Example

Insert 26; Insert 8; Insert 4;
Insert 17; Insert 42; Insert 1664;
Delete 4; Search 26; Delete 26;
Insert 58; Insert 2; Search 26;
$RQ(8, 4) \rightarrow [8; 17; 42; 58]$;

Performance we seek (n elements in the set)

- Insert, Delete, Search:
- Range Query:
The problem we want to solve

Dictionary problem on \(\mathbb{N} \)

- Insert \(i \)
- Delete \(i \)
- Search \(i \)
- Range Query (\(i, k \) elements)

Example

- Insert 26; Insert 8; Insert 4;
- Insert 17; Insert 42; Insert 1664;
- Delete 4; Search 26; Delete 26;
- Insert 58; Insert 2; Search 26;
- \(RQ(8, 4) \to [8; 17; 42; 58]; \)

Performance we seek (\(n \) elements in the set)

- Insert, Delete, Search: \(O(\log n) \)
- Range Query: \(O(k + \log n) \)
The problem we want to solve

Dictionary problem on \mathbb{N}
- Insert i
- Delete i
- Search i
- Range Query (i, k elements)

Performance we seek (n elements in the set)
- Insert, Delete, Search: $O(\log n)$
- Range Query: $O(k + \log n)$

Famous data structures solve this
- Self-balancing binary search trees (AVL, Red-black tree...)

Example
- Insert 26; Insert 8; Insert 4;
- Insert 17; Insert 42; Insert 1664;
- Delete 4; Search 26; Delete 26;
- Insert 58; Insert 2; Search 26;
- $RQ(8, 4) \rightarrow [8; 17; 42; 58]$;
What’s the use of skip lists?

Red-black trees also solve this problem but...
- Red-Black tree invented in 1972 [Bayer]
- Who can implement right now a red-black tree?
What’s the use of skip lists?

Red-black trees also solve this problem but...

- Red-Black tree invented in 1972 [Bayer]
- Who can implement right now a red-black tree?

“Skip lists are simpler, faster and use less space”

What’s the use of skip lists?

Red-black trees also solve this problem but...

- Red-Black tree invented in 1972 [Bayer]
- Who can implement right now a red-black tree?

“Skip lists are simpler, faster and use less space”

Advantage: history independence

- Reveals nothing on the past: deletes, searches, order of operations...
What’s the use of skip lists?

Red-black trees also solve this problem but...

▶ Red-Black tree invented in 1972 [Bayer]
▶ Who can implement right now a red-black tree?

“Skip lists are simpler, faster and use less space”

Advantage: history independence

▶ Reveals nothing on the past: deletes, searches, order of operations...

More

▶ Easy concurrency
▶ fun, elegant, teaches probabilities...
From a simple list to skip lists

Properties

- Maintain a sorted list of the elements
- Support operations in $O(\log n)$ in expectation and with high probability (\approx worst-case analysis)
From a simple list to skip lists

Properties

- Maintain a sorted list of the elements
- Support operations in \(O(\log n) \) in expectation and with high probability (\(\approx \) worst-case analysis)

Definition of \(O(\log n) \) with high probability

- \(\forall c \) large, with proba \(1 - n^{-\Omega(c)} \), all operations cost \(< c \log n \)
- Ex: \(n = 1000, \quad 1 - 10^{-9} < 3 \log n \)
From a simple list to skip lists

Properties

- Maintain a sorted list of the elements
- Support operations in $\mathcal{O}(\log n)$ in expectation and with high probability (\approx worst-case analysis)

Definition of $\mathcal{O}(\log n)$ with high probability

- $\forall c$ large, with proba $1 - n^{-\Omega(c)}$, all operations cost $< c \log n$
- Ex: $n = 1000$, $1 - 10^{-9} < 3 \log n$

Description of ideal skip lists without updates

On the board
Searching in $\lg n$ linked lists

Example: Search(72)
Updating a skip list

Updating ideal skip lists: **expensive**

Now rely on probabilities...
Updating a skip list

Updating ideal skip lists: expensive
Now rely on probabilities...

Delete i

- Search i, delete i from all lists
Updating a skip list

Updating ideal skip lists: **expensive**

Now rely on probabilities...

Delete \(i \)

- Search \(i \), delete \(i \) from all lists

Insert \(i \)

- Search \(i \), insert \(i \) at the bottom list
- Toss a coin: Head \rightarrow `Return()` — Tail \rightarrow insert \(i \) one level higher
Updating a skip list

Updating ideal skip lists: **expensive**

Now rely on probabilities...

Delete \(i\)
- Search \(i\), delete \(i\) from all lists

Insert \(i\)
- Search \(i\), insert \(i\) at the bottom list
- Toss a coin: Head \rightarrow Return() \rightarrow Tail \rightarrow insert \(i\) one level higher
- Toss a coin: Head \rightarrow Return() \rightarrow Tail \rightarrow insert \(i\) one level higher
Updating a skip list

Updating ideal skip lists: **expensive**

Now rely on probabilities...

Delete \(i \)

- Search \(i \), delete \(i \) from all lists

Insert \(i \)

- Search \(i \), insert \(i \) at the bottom list
- Toss a coin: Head \(\rightarrow \) Return() — Tail \(\rightarrow \) insert \(i \) one level higher
- Toss a coin: Head \(\rightarrow \) Return() — Tail \(\rightarrow \) insert \(i \) one level higher
- Toss a coin: Head \(\rightarrow \) Return() — Tail \(\rightarrow \) insert \(i \) one level higher
- ...
Updating a skip list

Updating ideal skip lists: expensive

Now rely on probabilities...

Delete i

- Search i, delete i from all lists

Insert i

- Search i, insert i at the bottom list
- Toss a coin: Head \rightarrow Return() \rightarrow Tail \rightarrow insert i one level higher
- Toss a coin: Head \rightarrow Return() \rightarrow Tail \rightarrow insert i one level higher
- Toss a coin: Head \rightarrow Return() \rightarrow Tail \rightarrow insert i one level higher
- ...

Do you see something missing?
Theorem

A skip list has $O(\log n)$ levels whp.

Proof.

$$P(\text{> } c \log n \text{ levels}) \leq n \cdot P(\text{Insert gets } \text{> } c \log n \text{ promotions})$$

$$\leq n \cdot \left(\frac{1}{2}\right)^{c \log n}$$

$$\leq n^{1-c}$$
Some probabilities

Theorem

A search costs $\mathcal{O}(\log n)$ whp.
Some probabilities

Theorem

A search costs $\mathcal{O}(\log n)$ whp.

Proof.
Analyze it backwards (from bottom to top-left)

- if the node was promoted: go up (proba. 1/2)
- otherwise: go left (proba. 1/2)
- we stop after $< c \log n$ “up” moves

Whp, after how many moves do we stop?

Answer:
Some probabilities

Theorem

A search costs $\mathcal{O}(\log n)$ whp.

Lemma

To obtain $c \log n$ Heads, we need $\Theta(\log n)$ coin flips whp.

Proof.

Analyze it backwards (from bottom to top-left)

- if the node was promoted: go up (proba. 1/2)
- otherwise: go left (proba. 1/2)
- we stop after $< c \log n$ “up” moves

Whp, after how many moves do we stop?

Answer:
Some probabilities

Theorem

A search costs $\mathcal{O}(\log n)$ whp.

Lemma

To obtain $c \log n$ Heads, we need $\Theta(\log n)$ coin flips whp.

Proof.

Analyze it backwards (from bottom to top-left)

- if the node was promoted: go up (proba. 1/2)
- otherwise: go left (proba. 1/2)
- we stop after $< c \log n$ “up” moves

Whp, after how many moves do we stop?

Answer: $\Theta(\log n)$
Outline

1. Skip lists
2. External Memory
3. External-memory skip list
Forget everything you know

Classic RAM model used to evaluate algorithm

- Memory access (read, write)
- Computation (compare, add, multiply...) \(\quad\) cost 1
Forget everything you know

Classic RAM model used to evaluate algorithm

- Memory access (read, write)
- Computation (compare, add, multiply...)

Problem when dealing with large data
A new model

Change of view

- *Classic* complexity (RAM model): focus on computations
- Disk-Access Model [Aggarwal’88]: focus on communications
A new model

Change of view

- *Classic* complexity (RAM model): focus on computations
- Disk-Access Model \([\text{Aggarwal’88}]\) : focus on communications

Model

- Two layers of memory: a main **RAM** of size \(M\) and an infinite disk
- Data needs to be on RAM to be processed
- Can exchange contiguous blocks of size \(B\) for 1 I/O
A new model

Change of view

- *Classic* complexity (RAM model): focus on computations
- Disk-Access Model [Aggarwal’88]: focus on communications

Model

- Two layers of memory: a main RAM of size M and an infinite disk
- Data needs to be on RAM to be processed
- Can exchange contiguous blocks of size B for 1 I/O
- Complexity of an algorithm: worst-case I/O number

![Diagram of two layers of memory with RAM and Disk]
Why are I/Os so important?

Large data: classic algorithms access frequently to disk

Access time

- RAM: 100 ns
- Disk: 10 ms = 10 000 000 ns
Why are I/Os so important?

Large data: classic algorithms access frequently to disk

Access time

- RAM: 100 ns
- Disk: 10 ms = 10 000 000 ns
- Analogy: \(\frac{\text{Ram speed}}{\text{Disk speed}} \approx \frac{\text{escape velocity from Earth}}{\text{speed of a turtle}} \)

DAM model: totally forget computations
New bounds

Classic bounds

<table>
<thead>
<tr>
<th>Operation</th>
<th>RAM</th>
<th>DAM (I/Os)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Search</td>
<td>$\log N$</td>
<td></td>
</tr>
<tr>
<td>Merge-Sort</td>
<td>$N \log N$</td>
<td></td>
</tr>
</tbody>
</table>
New bounds

Classic bounds

<table>
<thead>
<tr>
<th></th>
<th>RAM</th>
<th>DAM (I/Os)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan</td>
<td>N</td>
<td>$\frac{N}{B}$</td>
</tr>
<tr>
<td>Search</td>
<td>$\log N$</td>
<td>N</td>
</tr>
<tr>
<td>Merge-Sort</td>
<td>$N \log N$</td>
<td>N</td>
</tr>
</tbody>
</table>
New bounds

Classic bounds

<table>
<thead>
<tr>
<th></th>
<th>RAM</th>
<th>DAM (I/Os)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan</td>
<td>N</td>
<td>$\frac{N}{B}$</td>
</tr>
<tr>
<td>Search</td>
<td>$\log N$</td>
<td>$\log_B N$</td>
</tr>
<tr>
<td>Merge-Sort</td>
<td>$N \log N$</td>
<td></td>
</tr>
</tbody>
</table>

External memory Search tree: B-tree

![B-tree diagram]

[Image: External-Memory-Skip-List.png]
New bounds

Classic bounds

<table>
<thead>
<tr>
<th></th>
<th>RAM</th>
<th>DAM (I/Os)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan</td>
<td>N</td>
<td>$\frac{N}{B}$</td>
</tr>
<tr>
<td>Search</td>
<td>$\log N$</td>
<td>$\log_B N$</td>
</tr>
<tr>
<td>Merge-Sort</td>
<td>$N \log N$</td>
<td>$\frac{N}{B} \log_{M/B} \frac{N}{B}$</td>
</tr>
</tbody>
</table>

External memory Search tree: B-tree

![Diagram of a B-tree structure showing levels and data blocks](image-url)
Outline

1. Skip lists
2. External Memory
3. External-memory skip list
Skip lists and external memory

Why it does not work straight away

- RAM Insert: any memory slot
- Each operation requires $\Theta(\log N)$ I/Os
Skip lists and external memory

Why it does not work straight away

- RAM Insert: any memory slot
- Each operation requires $\Theta(\log N)$ I/Os
- We want the same as B-tree:
 $O(\log_B N)$ I/Os — RQ: $O(\log_B N + k/B)$ I/Os

Any idea to improve locality? (& keep history-independence)
Skip lists and external memory

Why it does not work straight away

- RAM Insert: any memory slot
- Each operation requires $\Theta(\log N)$ I/Os
- We want the same as B-tree:
 $$O(\log_B N) \text{ I/Os} \quad \text{—} \quad \text{RQ: } O(\log_B N + k/B) \text{ I/Os}$$

Any idea to improve locality? (\& keep history-independence)

- Block together elements between 2 promoted ones
- Change the promotion probability
What should be the promotion probability?

If $p > 1/B$

- Range queries are not efficient
What should be the promotion probability?

If $p > 1/B$

- Range queries are not efficient

If $p < 1/B$

- Searches have to span several blocks
What should be the promotion probability?

If $p > 1/B$
- Range queries are not efficient

If $p < 1/B$
- Searches have to span several blocks

If $p = 1/B$ \([\text{Golovin}'2010]\)
- OK on average
What should be the promotion probability?

If \(p > 1/B \)

- Range queries are not efficient

If \(p < 1/B \)

- Searches have to span several blocks

If \(p = 1/B \) [Golovin’2010]

- OK on average
- Whp: \(\sqrt{N} \) series of \(B \log N \) non-promoted elements
- For \(> \sqrt{N} \) elements, a search costs \(\Omega(\log N) \) I/Os
Towards our skip list

Promotion probability

- $\frac{\log B}{B} < p < B^{-0.5}$ (ex: $p = B^{-0.7}$) \rightarrow searches OK on average
- largest series: $< B \log_B N$ whp \rightarrow $O(\log_B N)$ I/Os for searches

Blocking strategy

- Block between doubly-promoted elements \rightarrow Range Queries
- Reserve buffers between promoted elements \rightarrow Updates

More

- Some tricks to ensure all bounds whp & history independence
Example of our skip list for $B = 3$ and $p = 1/2$