TD n° 1 - Standard laws

Exercice 1.
Bernoulli law

Let \(p \in [0, 1] \). A random variable \(X \) follows a Bernoulli law \(\mathcal{B}(p) \) if \(X \) takes its values \(\{0, 1\} \) with \(\mathbb{P}(X = 1) = p \) and \(\mathbb{P}(X = 0) = 1 - p \).

Compute the mean, the variance and the moment-generating series of \(X \).

Exercice 2.
Binomial law

Let \(p \in [0, 1] \) and \(n \in \mathbb{N}^* \). A random variable \(X \) follows a binomial law \(\mathcal{B}(n, p) \) if \(X \) takes its values in \(\{0, \ldots, n\} \) and \(\mathbb{P}(X = k) = \binom{n}{k} p^k (1 - p)^{n-k} \).

1. Give an example of a phenomenon following a binomial distribution \(\mathcal{B}(n, p) \).

2. Compute the mean, the variance and the moment-generating series of \(X \).

Exercice 3.
Poisson law

Let \(\lambda > 0 \). A random variable \(X \) follows a Poisson law \(\mathcal{P}(\lambda) \) if \(X \) takes its values in \(\mathbb{N} \) and \(\mathbb{P}(X = k) = e^{-\lambda} \frac{\lambda^k}{k!} \).

1. Give an example of a phenomenon following a Poisson distribution \(\mathcal{P}(\lambda) \).

2. Compute the mean, the variance and the moment-generating series of \(X \).

3. Show that if \(X \) and \(Y \) are two independent random variables following Poisson laws of parameters \(\lambda \) and \(\mu \), then \(X + Y \) follows the Poisson law of parameter \(\lambda + \mu \).

The Poisson approximation principle states that the sum \(S_n \) of many independent Bernoulli random variables with small parameters almost follows a Poisson law of parameter \(\mathbb{E}(S_n) \).

4. Illustrate this principle by proving that for \(\lambda > 0 \), any sequence of random variables \((X_n)_{n \in \mathbb{N}} \) respectively following a binomial law \(\mathcal{B}(n, \lambda/n) \) converges in distribution (Fr : convergence en loi) to a Poisson law \(\mathcal{P}(\lambda) \).

5. 1000 competitors attend a fishing competition, each one having independently a probability 0.001 to hook a fish and win a victory medal. The organizing committee thinks that with two medals, they have a probability larger than 80% to award all the winners. Are they right?

Exercice 4.
Geometric law

Let \(p \in [0, 1] \). A random variable \(X \) follows a geometric law \(\mathcal{G}(p) \) if \(X \) takes its values in \(\mathbb{N}^* \) and \(\mathbb{P}(X = k) = (1 - p)^k - 1 p \).

1. Give an example of a phenomenon following a geometric law \(\mathcal{G}(p) \).

2. Compute the mean, the variance and the moment formal series for \(X \).

3. Show that geometric laws are memoryless : for all \(n, k \in \mathbb{N} \), \(\mathbb{P}(X = k + n \mid X > n) = \mathbb{P}(X = k) \).

Exercice 5.
Exponential law

Let \(\lambda > 0 \), a random variable \(X \) follows an exponential law \(\text{Exp}(\lambda) \) if \(X \) takes its values in \(\mathbb{R}_+ \) with density \(f(x) = \lambda e^{-\lambda x} \).

1. Give an example of a phenomenon following an exponential law \(\text{Exp}(\lambda) \).

2. Compute the mean and the variance of \(X \).

3. Show that exponential laws are memoryless : for all \(a, b \in \mathbb{R}_+ \), \(\mathbb{P}(X \geq a + b \mid X \geq b) = \mathbb{P}(X \geq a) \).
4. Show the converse: any memoryless continuous law is exponential.

5. Let X_1, \ldots, X_n be independent exponential random variables of parameters $\lambda_1, \ldots, \lambda_n$. Show that the random variable $\min(X_1, \ldots, X_n)$ also follows an exponential law and find its parameter. Then, compute $P(\min(X_1, \ldots, X_n) = X_i)$ for $1 \leq i \leq n$. Suggestion: start with $n = 2$.

Exercice 6.

Let $m, \sigma^2 \in \mathbb{R}_+$, a random variable X follows a normal law $\mathcal{N}(m, \sigma^2)$ if X takes its values in \mathbb{R} and has density $f(x) = \frac{1}{\sqrt{2\pi}\sigma^2} e^{-\frac{(x-m)^2}{2\sigma^2}}$.

1. Give an example of a phenomenon following a normal law.

2. Compute the mean and variance of X.

3. Let X, Y be independent normal random variables of laws $\mathcal{N}(m_1, \sigma_1^2)$ and $\mathcal{N}(m_2, \sigma_2^2)$, show that $X + Y$ follows the law $\mathcal{N}(m_1 + m_2, \sigma_1^2 + \sigma_2^2)$.

Exercice 7.

Homework question (from P. Brémaud)

A long time ago, a number p was chosen at random uniformly between 0 and 1, but this value was never revealed to mankind. Since this time, the sun rises every day with probability p (still unknown). What happened during the preceding days is independent of what happens today. You know that the sun has risen every day from the beginning, that is n times (and you know this number), what is the probability that it will rise tomorrow?