
Memory Saving Strategies for Deep Neural Network Training

Workshop ACDA
Applied and Computational Discrete Algorithms

Olivier Beaumont

General Overview and Joint Works with

Alexis Joly, Lionel Eyraud-Dubois, Alena Shilova and Xunyi Zhao

September 8, 2022

Introduction

Context

• Collaboration between two teams:
• HiePACS (HPC team) in Bordeaux

• Zenith (Big Data/AI team, Pl@ntNet) in Montpellier

• is a platform that identify plants from pictures

• Pl@ntNet relies on Deep Neural Networks

• it plans to go larger (better model, more species, better accuracy)
• the training is thus more time and memory-consuming

• Time Consuming: increase parallelism

• Memory Saving: parallelism is not enough, need for dedicated strategies

1

Inference and training as task graphs

Forward F1

W (1)

F2

W (2)

· · · FL−1

W (L−1)

FL

W (L)

Loss

Backward B1 B2 B3 · · · BL BLoss

a0 a1 a2 aL−2 aL−1 aL

loss

δL+1 = 1δLδL−1δ3δ2δ1δ0

a0 a1 a2 aL−1 aLā1 ā2 ā3 āL−1 āL loss

• a0 is raw data, e.g. an image of a plant

• a0 could be composed of several samples, forming a batch

• aL is the neural network prediction, e.g. probability of iris

• Fi is the operation of layer i used for prediction (inference)

• W (i) is the parameter (weights) of layer i

• at first, weights are random, thus prediction is erroneous

• loss is the error of the model; the lower, the better

• Bi is the operation of layer i used for updating weights

• model is trained by iterating forward-backward propagation

2

Inference and training as task graphs

Forward F1

W (1)

F2

W (2)

· · · FL−1

W (L−1)

FL

W (L)

Loss

Backward B1 B2 B3 · · · BL BLoss

a0 a1 a2 aL−2 aL−1 aL

loss

δL+1 = 1δLδL−1δ3δ2δ1δ0

a0 a1 a2 aL−1 aLā1 ā2 ā3 āL−1 āL loss

• a0 is raw data, e.g. an image of a plant

• a0 could be composed of several samples, forming a batch

• aL is the neural network prediction, e.g. probability of iris

• Fi is the operation of layer i used for prediction (inference)

• W (i) is the parameter (weights) of layer i

• at first, weights are random, thus prediction is erroneous

• loss is the error of the model; the lower, the better

• Bi is the operation of layer i used for updating weights

• model is trained by iterating forward-backward propagation

2

Inference and training as task graphs

Forward F1

W (1)

F2

W (2)

· · · FL−1

W (L−1)

FL

W (L)

Loss

Backward B1 B2 B3 · · · BL BLoss

a0 a1 a2 aL−2 aL−1 aL loss

δL+1 = 1δLδL−1δ3δ2δ1δ0

a0 a1 a2 aL−1 aLā1 ā2 ā3 āL−1 āL loss

• a0 is raw data, e.g. an image of a plant

• a0 could be composed of several samples, forming a batch

• aL is the neural network prediction, e.g. probability of iris

• Fi is the operation of layer i used for prediction (inference)

• W (i) is the parameter (weights) of layer i

• at first, weights are random, thus prediction is erroneous

• loss is the error of the model; the lower, the better

• Bi is the operation of layer i used for updating weights

• model is trained by iterating forward-backward propagation

2

Inference and training as task graphs

Forward F1

W (1)

F2

W (2)

· · · FL−1

W (L−1)

FL

W (L)

Loss

Backward B1 B2 B3 · · · BL BLoss

a0 a1 a2 aL−2 aL−1 aL loss

δL+1 = 1δLδL−1δ3δ2δ1δ0

a0 a1 a2 aL−1 aLā1 ā2 ā3 āL−1 āL loss

• a0 is raw data, e.g. an image of a plant

• a0 could be composed of several samples, forming a batch

• aL is the neural network prediction, e.g. probability of iris

• Fi is the operation of layer i used for prediction (inference)

• W (i) is the parameter (weights) of layer i

• at first, weights are random, thus prediction is erroneous

• loss is the error of the model; the lower, the better

• Bi is the operation of layer i used for updating weights

• model is trained by iterating forward-backward propagation

2

Memory for training

Default settings

• Store weights W (i) + gradients of weights + optimizer states

• activations (ai and āi) are required for backward propagation

• some activations have a long lifetime

lifetime of ā1

F1 F2 · · · FL−1 FL Loss

B1 B2 B3 · · · BL BLoss

a0 a1 a2
aL−2 aL−1 aL loss

δL+1 = 1δLδL−1δ3δ2δ1δ0

a0 a1 a2 aL−1 aLā1 ā2 ā3 āL−1 āL loss

Memory is consumed by activations throughout the entire training!

3

About hardware

• GPUs and TPUs are used for training

• they become more performant and their memory increases

• e.g. Nvidia A100

• ∼ 250 times faster than one CPU, memory 80GB

• still not enough to process some DNNs

• buying a new GPU is not always an option

• very expensive

• negative Carbon Impact (CI)

4

Memory Saving Techniques –

Rematerialization on Chains

Memory saving techniques. Single GPU

Rematerialization (gradient checkpointing)

• delete some activations and recompute them during the backward

• less storage, more computations

Offloading

• move activations from memory of GPU to CPU

• can be applied to weights too

• bandwidth-bounded

• but when bandwidth is high, then zero overhead

Both methods produce the exact same results for training!

5

Rematerialization (linear chains)

F1 F2 · · · FL−1 FL Loss

B1 B2 B3 · · · BL BLoss

a0 a1 a2
aL−2 aL−1 aL loss

δL+1 = 1δLδL−1δ3δ2δ1δ0

a0 a1 a2 aL−1 aLā1 ā2 ā3 āL−1 āL

Main idea

To work more and store less: instead of keeping all activations, store some of

them, delete the others and recompute them when needed.

Analogy with Automatic Differentiation

This technique is very common in AD for homogeneous chains.

6

Homogeneous chain computation problem (Revolve)

Revolve: an implementation of checkpointing for the reverse or adjoint

mode of computational differentiation, A. Griewank et al., ACM TOMS’00

F1 · · · Fi−1 Fi Fi+1 · · · FL

B1 · · · Bi−1 Bi Bi+1 · · · BL BL+1

a0 a1 ai−2 ai−1 ai ai+1 aL−1

aL

δLδL−1δi+1δiδi−1δi−2δ1δ0

a0 a1 ai−2 ai−1 ai ai+1 aL−1

Input: forward step cost uF , backward step cost uB

activation/gradient size is 1

chain length ` = L, total memory size m.

Opt0(`, 1) =
`(`+ 1)

2
uF + (`+ 1)uB

Opt0(1,m) = uF + 2uB

Opt0(`,m) = min
1≤i≤`−1

{iuF + Opt0(`− i ,m − 1) + Opt0(i − 1,m)}

7

Homogeneous chain computation problem (Revolve)

Revolve: an implementation of checkpointing for the reverse or adjoint

mode of computational differentiation, A. Griewank et al., ACM TOMS’00

F1 · · · Fi−1 Fi Fi+1 · · · FL

B1 · · · Bi−1 Bi Bi+1 · · · BL BL+1

a0 a1 ai−2 ai−1 ai ai+1 aL−1

aL

δLδL−1δi+1δiδi−1δi−2δ1δ0

a0 a1 ai−2 ai−1 ai ai+1 aL−1

Input: forward step cost uF , backward step cost uB

activation/gradient size is 1

chain length ` = L, total memory size m.

Opt0(`, 1) =
`(`+ 1)

2
uF + (`+ 1)uB

Opt0(1,m) = uF + 2uB

Opt0(`,m) = min
1≤i≤`−1

{iuF + Opt0(`− i ,m − 1) + Opt0(i − 1,m)}

7

Rematerialization in DNN frameworks

Source: https://gitlab.inria.fr/hiepacs/rotor

F1 F2 · · · FL−1 FL Loss

B1 B2 B3 · · · BL BLoss

a0 a1 a2
aL−2 aL−1 aL loss

δL+1 = 1δLδL−1δ3δ2δ1δ0

a0 a1 a2 aL−1 aLā1 ā2 ā3 āL−1 āL

DNN characteristics

• Main differences with Automatic Differentiation

• Extra dependencies (↓-edges) + heterogeneous weights

• No closed form formula to find the checkpoints: NP-Completeness results

• different ways of saving: recording or saving only input (PyTorch)

8

https://gitlab.inria.fr/hiepacs/rotor

Rematerialization operations

• F n
i computes the output of Fi , and forgets the input.

with torch.no_grad ():

x = F[i](x)

• F c
i computes the output of Fi , and keeps the input.

with torch.no_grad ():

y = F[i](x)

• F e
i computes the output of Fi , enabling gradient computation.

with torch.enable_grad ():

y = F[i](x)

• Bi computes the backward of layer i .

y.backward(g)

g = x.grad

9

Persistent dynamic programming solution

F1 F2 · · · FL−1 FL Loss

B1 B2 B3 · · · BL BLoss

a0 a1 a2
aL−2 aL−1 aL loss

δL+1 = 1δLδL−1δ3δ2δ1δ0

a0 a1 a2 aL−1 aLā1 ā2 ā3 āL−1 āL

OptBP (i , `,m) = min

OptF c (i , `,m)

OptF e (i , `,m)

OptF c (i , `,m) = min
s=i,...,`−1

s∑
k=i

uFk + OptBP (s + 1, `,m − as) + OptBP (i , s,m)

OptF e (i , `,m) = uFi + OptBP (i + 1, `,m − āi) + uBi

If memory constraints are violated, then OptBP (i , `,m) =∞!

10

Rematerialization sequence. Toy example

Sequence

F c
1 ,F

n
2 ,F

n
3 ,F

e
4 ,F

e
5 ,F

e
6 ,Loss,BLoss,B6,B5,B4,F c

1 ,F
n
2 ,F

e
3 ,B3,F e

1 ,F
e
2 ,B2,B1

Toy network

1. Linear(2000, 2500)

2. Linear(2500, 2800)

3. Linear(2800, 2900)

4. Linear(2900, 2800)

5. Linear(2800, 2500)

6. Linear(2500, 2000)

Peak memory 107 MB

Memory limit 90 MB

Batch size 1000

Makespan 163.1 ms (1.33)

Memory 86.4 MB (0.81)

Not representative for other DNNs

11

Implementation in PyTorch

Parameter estimation

• measure memory and time costs of operations

• ↪→ do a test run with some samples

Compute optimal sequence

• discretize memory costs for dynamic programming

• find the schedule with dynamic programming

Execute training iteration

• apply the schedule to each iteration of the training

• done by a ”wrapper” over NN which controls the operation order

12

rotor: Rematerializing Optimally with pyTORch

import rotor

import torch

device = torch.device("cuda")

net = rotor.models.resnet18 ().to(device) #Build model

shape = (32 , 3, 224 , 224)

memory = 700*1024*1024 #700MB memory limit

#Wrap model in rotor:

Automatically measure and compute optimal sequence

net_check = rotor.Checkpointable(net , mem_limit=memory)

#Forward and Backward is unchanged , with rematerialization

data = torch.rand(*shape , device=device)

data.requires_grad = True

result = net_check(data).sum()

result.backward ()

grad = data.grad

13

Comparison of rotor with other approaches

densenet

Depth: 121

Image_Size: 224

Batch_Size: 64

inception

Depth: 200

Image_Size: 500

Batch_Size: 64

resnet

Depth: 101

Image_Size: 224

Batch_Size: 64

resnet

Depth: 152

Image_Size: 1000

Batch_Size: 4

2 4 6 8 5.0 7.5 10.0 12.5 2.5 5.0 7.5 10.0 5 10

3

4

5

6

7

80

120

160

200

60

65

70

75

80

150

200

250

300

Peak Memory Usage (GiB)

T
h
ro

u
g
h
p
u
t
(I

m
a
g
e
s

/
s)

Strategy Revolve Optimal PyTorch Sequential Checkmate

(i) Experimental results for several situations.

14

Memory Saving Techniques –

Rematerialization on General DAGs

ILP based solution: Checkmate

Checkmate: Breaking the Memory Wall with Optimal Tensor

Rematerialization, Proceedings of Machine Learning and Systems (MLSys

2020), Paras Jain et al.

• Checkmate assumes that there is a natural evaluation ordering of nodes

• Step t starts after the evaluation of node t − 1 and ends with evaluation

of node t

• St,i says if the result of i is kept at the end of step t − 1

• Rt,i says if the result of i is recomputed during step t

• + additional constraints to determine when memory can be released

• Issues: limited to small size networks + ordering

15

ILP based solution: Checkmate

Checkmate: Breaking the Memory Wall with Optimal Tensor

Rematerialization, Proceedings of Machine Learning and Systems (MLSys

2020), Paras Jain et al.

• Checkmate assumes that there is a natural evaluation ordering of nodes

• Step t starts after the evaluation of node t − 1 and ends with evaluation

of node t

• St,i says if the result of i is kept at the end of step t − 1

• Rt,i says if the result of i is recomputed during step t

• + additional constraints to determine when memory can be released

• Issues: limited to small size networks + ordering
15

Treewidth decomposition based rematerialization

Efficient Rematerialization for Deep Networks, NeurIPS’19, Ravi Kumar

et al.

• Targets general DAGs (not specifically forward-backward graphs)

• Assumes that treewidth decomposition of the graph is known (treewidth k)

• Assumes that all n output files have unit size

• With n nodes, it builds a schedule of length O(knlog k) with peak memory

usage O(k log n)

• Main result: it shows that treewidth helps to design optimal schedules.

• Issues: does not target a specific memory limit + assumes that the

decomposition is known

16

Rematerialization. Conclusion

Summary

• allows to save memory at the cost of recomputations

• schedules can be found with dynamic programming for chains (rotor tool)

• reduces memory twice for 15-20% more computations

Perspectives

• Solutions for more general DAGs are highly needed

• Checkmate: too expensive

• Treewidth decompositions: too many assumptions

• Partial solution:

• Hybridation of Rotor and Checkmate is possible

• consider DAGs as chains of complex sub-networks

• seems to work well on transformer-based graphs

• In terms of complexity

• weakly NP-hard for weighted chains (+ Dynamic Programming Solution)

• no strongly NP-hard result for general (homogeneous) chains

17

Offloading

Offloading

source: Optimal GPU-CPU Offloading Strategies for Deep Neural

Network Training, O Beaumont et al., EuroPar 2020

Main idea

By choosing

• which activations to send to CPU and

• when to offload and prefetch them,

execute training under memory limit MGPU in minimal time.

Time overhead

• If the next operation does not fit into memory, then introduce idle time to

wait some tensors to finish their offloading.

• If the next operation requires data not yet prefetched from CPU, then

introduce idle time to wait until its prefetching is completed.

18

Offloading operations

PyTorch mechanisms

• Asynchronous data transfers with a dedicated stream:

comm_stream = torch.cuda.Stream(torch.device(’cuda’))

• Capturing saved tensors in PyTorch:

saved_tensors_hooks(pack_hook , unpack_hook)

Operations

• Oi offloads activation ai . Equivalent to:

with torch.cuda.stream(comm_stream):

with torch.no_grad ():

x_cpu.copy_(x_gpu , non_blocking=True)

• Pi prefetches activation ai . Equivalent to:

with torch.cuda.stream(comm_stream):

with torch.no_grad ():

x_gpu.copy_(x_cpu , non_blocking=True)

19

Combination of Offloading and Rematerialization

source: Efficient Combination of Rematerialization and Offloading for

Training DNNs, O Beaumont et al., NeurIPS 2021

Problem statement

Find a sequence of operations F c
i , F n

i , F e
i , Bi , Oi and Pi that processes a

training iteration under a memory limit MGPU in minimal time.

Our contribution: POFO

Optimal combination of Offloading and Rematerialization under the

assumptions above, found with dynamic programming.

Sequence (high bandwidth)

F e
1 ,O1,F

e
2 ,O2,F

e
3 ,F

e
4 ,F

e
5 ,F

e
5 ,Loss,BLossB6,B5,B4,P2,B3,P1,B2,B1

Sequence (low bandwidth)

F c
1 ,F

n
2 ,O2,F

e
3 ,F

e
4 ,F

e
5 ,F

e
5 ,Loss,BLossB6,B5,B4,P2,B3,F

e
1 ,F

e
2 ,B2,B1

Peak memory 107 MB

Memory limit 90 MB

Batch size 1000

Makespan 124.3 ms (≈ 1)

Memory 87.3 MB (0.82)

High BW

Peak memory 107 MB

Memory limit 90 MB

Batch size 1000

Makespan 160.6 ms (1.31)

Memory 86.4 MB (0.81)

Low BW

20

Simulation results. Memory ratio = 1/5 of peak memory

resnet 101 resnet 152 resnet 200 resnet 50

densenet 121 densenet 161 densenet 169 inception 200

12 16 24 36 12 16 24 36 12 16 24 36 12 16 24 36

1.0

1.1

1.2

1.3

1.4

1.0

1.1

1.2

1.3

1.4

Bandwidth (GB/s)

O
ve

rh
e
a
d
 w

rt
 s

e
q
u
e
n
tia

l (
fo

r
m

e
m

o
ry

 r
a
tio

 α
=
0
.2

)

Algorithm

autocapper

offload

opportunist

POFO

rematerialization

Comparison of different methods based on different bandwidth.

21

Conclusion and perspectives

Conclusion

Memory Saving Techniques for Training

• Single GPU Strategies

• rematerialization, activation and weight offloading,...

• do not change the result

• combined, typically enable to save half the memory for 10% time overhead

• rotor software provides a transparent implementation (for chains)

• Use of Parallel Strategies

• In the Forward-Backward chain, Work = Critical Path

• but you can pipeline several images + tasks are parallel

• data, model, filter, kernel, *-parallelism,...

• at large scale, affect accuracy

F1 F2 · · · FL−1 FL Loss

B1 B2 B3 · · · BL BLoss

a0 a1 a2
aL−2 aL−1 aL loss

δL+1 = 1δLδL−1δ3δ2δ1δ0

a0 a1 a2 aL−1 aLā1 ā2 ā3 āL−1 āL

22

Perspectives

There are other orthogonal strategies to save memory

• DNNs are increasingly complex graphs

• Compression (Tensor Decomposition), use of mixed precision

• Pruning (zeroing small weights), Quantization (using very few bits)

• These techniques potentially change accuracy and convergence...

• There are many important related Combinatorial Optimization and Graph
problems to solve

• Combination of parallelism with offloading, rematerialization is completely

open

• But there are already solutions that combine everything like DeepSpeed

https://www.deepspeed.ai (not optimally at all!)

23

The end

Thank you for your attention!
olivier.beaumont@inria.fr

24

olivier.beaumont@inria.fr

	Introduction
	Memory Saving Techniques – Rematerialization on Chains
	Chain Networks: Rotor
	Rematerialization

	Memory Saving Techniques – Rematerialization on General DAGs
	Offloading
	Conclusion and perspectives

	anm0:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

