

Memory Saving Strategies for Deep Neural Network Training

Workshop ACDA Applied and Computational Discrete Algorithms

Olivier Beaumont

General Overview and Joint Works with Alexis Joly, Lionel Eyraud-Dubois, Alena Shilova and Xunyi Zhao

September 8, 2022

Introduction

- Collaboration between two teams:
 - HiePACS (HPC team) in Bordeaux
 - Zenith (Big Data/AI team, PI@ntNet) in Montpellier
- **V** Pl@ntNet is a platform that identify plants from pictures
- Pl@ntNet relies on Deep Neural Networks
- it plans to go larger (better model, more species, better accuracy)
- the training is thus more time and memory-consuming
 - Time Consuming: increase parallelism
 - Memory Saving: parallelism is not enough, need for dedicated strategies

• *a*₀ is raw data, *e.g.* an image of a plant

- a₀ could be composed of several samples, forming a **batch**
- a_L is the neural network prediction, e.g. probability of iris
- *F_i* is the operation of layer *i* used for prediction (inference)
- $W^{(i)}$ is the parameter (weights) of layer *i*

• *a*₀ is raw data, *e.g.* an image of a plant

- a₀ could be composed of several samples, forming a **batch**
- a_L is the neural network prediction, e.g. probability of iris
- *F_i* is the operation of layer *i* used for prediction (inference)
- $W^{(i)}$ is the parameter (weights) of layer *i*
- at first, weights are random, thus prediction is erroneous

• *a*⁰ is raw data, *e.g.* an image of a plant

- a₀ could be composed of several samples, forming a **batch**
- a_L is the neural network prediction, e.g. probability of iris
- *F_i* is the operation of layer *i* used for prediction (inference)
- $W^{(i)}$ is the parameter (weights) of layer *i*
- at first, weights are random, thus prediction is erroneous
- loss is the error of the model; the lower, the better
- B_i is the operation of layer i used for updating weights

• *a*⁰ is raw data, *e.g.* an image of a plant

- a₀ could be composed of several samples, forming a **batch**
- a_L is the neural network prediction, e.g. probability of iris
- *F_i* is the operation of layer *i* used for prediction (inference)
- $W^{(i)}$ is the parameter (weights) of layer *i*
- at first, weights are random, thus prediction is erroneous
- loss is the error of the model; the lower, the better
- B_i is the operation of layer i used for updating weights
- model is trained by iterating forward-backward propagation

Default settings

- Store weights $W^{(i)}$ + gradients of weights + optimizer states
- activations $(a_i \text{ and } \bar{a}_i)$ are required for backward propagation
- some activations have a long lifetime

Memory is consumed by activations throughout the entire training!

- GPUs and TPUs are used for training
- they become more performant and their memory increases
 - e.g. Nvidia A100

- ~ 250 times faster than one CPU, memory 80 GB
- still not enough to process some DNNs
- buying a new GPU is not always an option
 - very expensive
 - negative Carbon Impact (CI)

Memory Saving Techniques – Rematerialization on Chains

Rematerialization (gradient checkpointing)

- delete some activations and recompute them during the backward
- less storage, more computations

Offloading

- move activations from memory of GPU to CPU
- can be applied to weights too
- bandwidth-bounded
- but when bandwidth is high, then zero overhead

Both methods produce the exact same results for training!

Rematerialization (linear chains)

Main idea

To work more and store less: instead of keeping all activations, store some of them, delete the others and recompute them when needed.

Analogy with Automatic Differentiation

This technique is very common in AD for homogeneous chains.

Homogeneous chain computation problem (Revolve)

Revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation, A. Griewank et al., ACM TOMS'00

Input: forward step cost u_F , backward step cost u_B activation/gradient size is 1 chain length $\ell = L$, total memory size m.

$$\begin{aligned} \mathsf{Opt}_0(\ell, 1) &= \frac{\ell(\ell+1)}{2} u_F + (\ell+1) u_B \\ \mathsf{Opt}_0(1, m) &= u_F + 2u_B \\ \mathsf{Opt}_0(\ell, m) &= \min_{1 \le i \le \ell-1} \{ i u_F + \mathsf{Opt}_0(\ell-i, m-1) + \mathsf{Opt}_0(i-1, m) \} \end{aligned}$$

Homogeneous chain computation problem (Revolve)

Revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation, A. Griewank et al., ACM TOMS'00

Input: forward step cost u_F , backward step cost u_B activation/gradient size is 1 chain length $\ell = L$, total memory size m.

$$\begin{aligned} \mathsf{Opt}_0(\ell, 1) &= \frac{\ell(\ell+1)}{2} u_F + (\ell+1) u_B \\ \mathsf{Opt}_0(1, m) &= u_F + 2u_B \\ \mathsf{Opt}_0(\ell, m) &= \min_{1 \le i \le \ell-1} \{ i u_F + \mathsf{Opt}_0(\ell-i, m-1) + \mathsf{Opt}_0(i-1, m) \} \end{aligned}$$

Source: https://gitlab.inria.fr/hiepacs/rotor

DNN characteristics

- Main differences with Automatic Differentiation
 - Extra dependencies (\downarrow -edges) + heterogeneous weights
 - No closed form formula to find the checkpoints: NP-Completeness results
- different ways of saving: recording or saving only input (PyTorch)

• F_i^n computes the output of F_i , and forgets the input.

```
with torch.no_grad():
    x = F[i](x)
```

• F_i^c computes the output of F_i , and keeps the input.

```
with torch.no_grad():
    y = F[i](x)
```

• F_i^e computes the output of F_i , enabling gradient computation.

• *B_i* computes the backward of layer *i*.

```
y.backward(g)
g = x.grad
```


$$Opt_{BP}(i, \ell, m) = \min \begin{cases} Opt_{F^c}(i, \ell, m) \\ Opt_{F^c}(i, \ell, m) \end{cases}$$
$$Opt_{F^c}(i, \ell, m) = \min_{s=i,...,\ell-1} \sum_{k=i}^{s} u_{F_k} + Opt_{BP}(s+1, \ell, m-a_s) + Opt_{BP}(i, s, m)$$
$$Opt_{F^c}(i, \ell, m) = u_{F_i} + Opt_{BP}(i+1, \ell, m-\bar{a}_i) + u_{B_i}$$

If memory constraints are violated, then $Opt_{BP}(i, \ell, m) = \infty!$

Sequence

 $F_1^c, F_2^n, F_3^n, F_4^e, F_5^e, F_6^e, \text{Loss}, B_{\text{Loss}}, B_6, B_5, B_4, F_1^c, F_2^n, F_3^e, B_3, F_1^e, F_2^e, B_2, B_1$

Toy network

- 1. Linear(2000, 2500)
- 2. Linear(2500, 2800)
- 3. Linear(2800, 2900)
- 4. Linear(2900, 2800)
- 5. Linear(2800, 2500)
- 6. Linear(2500, 2000)

Peak memory	107 MB	
Memory limit	90 MB	
Batch size	1000	
Makespan	163.1 ms (1.33)	
Memory	86.4 MB (0.81)	

Not representative for other DNNs

Parameter estimation

- measure memory and time costs of operations
- \hookrightarrow do a test run with some samples

Compute optimal sequence

- discretize memory costs for dynamic programming
- find the schedule with dynamic programming

Execute training iteration

- apply the schedule to each iteration of the training
- done by a "wrapper" over NN which controls the operation order

```
import rotor
import torch
device = torch.device("cuda")
net = rotor.models.resnet18().to(device) #Build model
shape = (32, 3, 224, 224)
memory = 700 * 1024 * 1024
                                         #700MB memorv limit
#Wrap model in rotor:
#Automatically measure and compute optimal sequence
net check = rotor.Checkpointable(net. mem limit=memory)
#Forward and Backward is unchanged, with rematerialization
data = torch.rand(*shape, device=device)
data.requires grad = True
result = net check(data).sum()
result.backward()
grad = data.grad
```

Comparison of rotor with other approaches

(i) Experimental results for several situations.

Memory Saving Techniques – Rematerialization on General DAGs Checkmate: Breaking the Memory Wall with Optimal Tensor Rematerialization, Proceedings of Machine Learning and Systems (MLSys 2020), Paras Jain et al.

- Checkmate assumes that there is a natural evaluation ordering of nodes
- Step t starts after the evaluation of node t 1 and ends with evaluation of node t
- $S_{t,i}$ says if the result of i is kept at the end of step t-1
- $R_{t,i}$ says if the result of *i* is recomputed during step *t*

$$\underset{R,S}{\operatorname{arg\,min}} \qquad \sum_{t=1}^{n} \sum_{i=1}^{t} C_i R_{t,i} \tag{1a}$$

subject to

$R_{t,j} \le R_{t,i} + S_{t,i}$	$\forall t \; \forall (v_i, v_j) \in E,$	(1b)
$S_{t,i} \leq R_{t-1,i} + S_{t-1,i}$	$\forall t \geq 2 \; \forall i,$	(1c)
$\sum_i S_{1,i} = 0,$		(1d)
$\sum_{t} R_{t,n} \ge 1,$		(1e)
$R_{t,i}, S_{t,i} \in \{0,1\}$	$\forall t \; \forall i$	(1f)

 \bullet + additional constraints to determine when memory can be released

Checkmate: Breaking the Memory Wall with Optimal Tensor Rematerialization, Proceedings of Machine Learning and Systems (MLSys 2020), Paras Jain et al.

- Checkmate assumes that there is a natural evaluation ordering of nodes
- Step t starts after the evaluation of node t 1 and ends with evaluation of node t
- $S_{t,i}$ says if the result of i is kept at the end of step t-1
- $R_{t,i}$ says if the result of *i* is recomputed during step *t*

$$\underset{R,S}{\operatorname{arg\,min}} \qquad \sum_{t=1}^{n} \sum_{i=1}^{t} C_i R_{t,i} \tag{1a}$$

subject to

$R_{t,j} \le R_{t,i} + S_{t,i}$	$\forall t \; \forall (v_i, v_j) \in E,$	(1b)
$S_{t,i} \le R_{t-1,i} + S_{t-1,i}$	$\forall t \geq 2 \; \forall i,$	(1c)
$\sum_i S_{1,i} = 0,$		(1d)
$\sum_{t} R_{t,n} \ge 1,$		(1e)
$R_{t,i}, S_{t,i} \in \{0,1\}$	$\forall t \; \forall i$	(1f)

- $\bullet\ +$ additional constraints to determine when memory can be released
- Issues: limited to small size networks + ordering

Efficient Rematerialization for Deep Networks, NeurIPS'19, Ravi Kumar et al.

- Targets general DAGs (not specifically forward-backward graphs)
- Assumes that treewidth decomposition of the graph is known (treewidth k)
- Assumes that all *n* output files have unit size
- With *n* nodes, it builds a schedule of length $O(kn^{\log k})$ with peak memory usage $O(k \log n)$
- Main result: it shows that treewidth helps to design optimal schedules.
- Issues: does not target a specific memory limit + assumes that the decomposition is known

Rematerialization. Conclusion

Summary

- allows to save memory at the cost of recomputations
- schedules can be found with dynamic programming for chains (rotor tool)
- reduces memory twice for 15-20% more computations

Perspectives

- Solutions for more general DAGs are highly needed
 - Checkmate: too expensive
 - Treewidth decompositions: too many assumptions
- Partial solution:
 - Hybridation of Rotor and Checkmate is possible
 - consider DAGs as chains of complex sub-networks
 - seems to work well on transformer-based graphs
- In terms of complexity
 - weakly NP-hard for weighted chains (+ Dynamic Programming Solution)
 - no strongly NP-hard result for general (homogeneous) chains

Offloading

source: Optimal GPU-CPU Offloading Strategies for Deep Neural Network Training, O Beaumont et al., EuroPar 2020

Main idea

By choosing

- which activations to send to CPU and
- when to offload and prefetch them,

execute training under memory limit $M_{\rm GPU}$ in minimal time.

Time overhead

- If the next operation does not fit into memory, then introduce idle time to wait some tensors to finish their offloading.
- If the next operation requires data not yet prefetched from CPU, then introduce idle time to wait until its prefetching is completed.

Offloading operations

PyTorch mechanisms

• Asynchronous data transfers with a dedicated stream:

```
comm_stream = torch.cuda.Stream(torch.device('cuda'))
```

• Capturing saved tensors in PyTorch:

```
saved_tensors_hooks(pack_hook, unpack_hook)
```

Operations

• O_i offloads activation a_i. Equivalent to:

```
with torch.cuda.stream(comm_stream):
    with torch.no_grad():
        x_cpu.copy_(x_gpu, non_blocking=True)
```

• P_i prefetches activation a_i . Equivalent to:

```
with torch.cuda.stream(comm_stream):
    with torch.no_grad():
        x_gpu.copy_(x_cpu, non_blocking=True)
```

Combination of Offloading and Rematerialization

source: Efficient Combination of Rematerialization and Offloading for Training DNNs, O Beaumont et al., NeurIPS 2021

Problem statement

Find a sequence of operations F_i^c , F_i^n , F_i^e , B_i , O_i and P_i that processes a training iteration under a memory limit M_{GPU} in minimal time.

Our contribution: POFO

Optimal combination of Offloading and Rematerialization under the assumptions above, found with **dynamic programming**.

Sequence (high bandwidth)

 $F_1^e, O_1, F_2^e, O_2, F_3^e, F_4^e, F_5^e, F_5^e, Loss, B_{Loss}B_6, B_5, B_4, P_2, B_3, P_1, B_2, B_1$

Sequence (low bandwidth)							
$F_1^c, F_2^n, O_2, F_3^e, F_4^e, F_5^e, F_5^e, \text{Loss}, B_{\text{Loss}}B_6, B_5, B_4, P_2, B_3, F_1^e, F_2^e, B_2, B_1$							
Peak memory	107 MB	Pea	ak memory	107 MB			
Memory limit	90 MB	Me	emory limit	90 MB			
Batch size	1000	В	atch size	1000			
Makespan	124.3 ms ($pprox$ 1)	N	/lakespan	160.6 ms (1.31)			
Memory	87.3 MB (0.82)		Memory	86.4 MB (0.81)			

20

Simulation results. Memory ratio = 1/5 of peak memory

Comparison of different methods based on different bandwidth.

Conclusion and perspectives

Conclusion

Memory Saving Techniques for Training

- Single GPU Strategies
 - rematerialization, activation and weight offloading,...
 - do not change the result
 - combined, typically enable to save half the memory for 10% time overhead
 - rotor software provides a transparent implementation (for chains)
- Use of Parallel Strategies
 - In the Forward-Backward chain, Work = Critical Path
 - but you can pipeline several images + tasks are parallel
 - data, model, filter, kernel, *-parallelism,...
 - at large scale, affect accuracy

There are other orthogonal strategies to save memory

- DNNs are increasingly complex graphs
- Compression (Tensor Decomposition), use of mixed precision
- Pruning (zeroing small weights), Quantization (using very few bits)
- These techniques potentially change accuracy and convergence...
- There are many important related Combinatorial Optimization and Graph problems to solve
 - Combination of parallelism with offloading, rematerialization is completely open
 - But there are already solutions that combine everything like DeepSpeed https://www.deepspeed.ai (not optimally at all!)

Thank you for your attention!

olivier.beaumont@inria.fr