
Online Parallel Paging  
and Green Paging

Kunal Agrawal
Washington U

Michael Bender
Stony Brook

Rathish Das
Waterloo→Liverpool

William Kuszmaul
MIT

Enoch Peserico
U Padova

Michele Scquizzato
U Padova

Online Parallel Paging  
and Green Paging

Kunal Agrawal
Washington U

Michael Bender
Stony Brook

Rathish Das
Waterloo→Liverpool

William Kuszmaul
MIT

Enoch Peserico
U Padova

Michele Scquizzato
U Padova

That’s 6 words. That’s 5 words.

Classical Sequential Paging

External Memory
of infinite size

Cache of
size kProcr1, r2, r3, r4, r5, r6, r7, r8, …

Processor makes page/block requests:

[Beladi 66], [Mattson, Gecsei, Slutz, Traiger 70],

[Sleator, Tarjan 85], [Borodin, El-Yaniv 98]

Takes time s

Goal: Complete the request sequence as fast as possible.

• Up to k pages can be kept in cache at a time.

• Algorithmic decision: control which pages are moved in/out of cache.

Takes time 1

Classical (Offline) Sequential Paging

External Memory
of infinite size

Cache of
size kProcr1, r2, r3, r4, r5, r6, r7, r8, …

Processor makes page/block requests:

[Beladi 66], [Mattson, Gecsei, Slutz, Traiger 70],

[Sleator, Tarjan 85], [Borodin, El-Yaniv 98]

Offline Opt: Evict the page that will be used farthest in future. [Beladi 66],  
[Mattson, Gecsei, Slutz, Traiger 70]

Takes time sTakes time 1

Classical Online Sequential Paging

External Memory
of infinite size

Cache of
size kProcr1, r2, r3, r4, r5, r6, r7, r8, …

Processor makes page/block requests:

[Beladi 66], [Mattson, Gecsei, Slutz, Traiger 70],

[Sleator, Tarjan 85], [Borodin, El-Yaniv 98]

Natural online alg: Always evict the page that was least recently used (LRU).

Classical Theorem [Sleator, Tarjan 85]:

 With O(1) resource augmentation, LRU is O(1)-competitive,  
 i.e., LRUk ≤ 2 OPTk/2.

Takes time sTakes time 1

The Parallel Paging Problem

External Memory
of infinite size

Cache of
size k

Proc
1

 request sequences occur in parallel:p

[Fiat and Karlin, STOC 1995] [Hassidim ICS 2010]

[López-Ortiz & Salinger ITCS 2012, WAOA 2012]

• Different processors access disjoint sets of pages.

• Processors can access cache in parallel.

• Processors move pages between cache and external memory in parallel.

 But processors must share cache of size . k

r11, r12, r13, r14, r15, r16, ….

r21, r22, r23, r24, r25, r26, ….

rp1, rp2, rp3, rp4, rp5, rp6, ….

…
Proc

2

Proc
p

… … …

Takes time sTakes time 1

The Parallel Paging Problem

 request sequences occur in parallel:p

[Fiat and Karlin, STOC 1995] [Hassidim ICS 2010]

[López-Ortiz & Salinger ITCS 2012, WAOA 2012]

Algorithmic decision:

when a new block is brought into cache, which block should be evicted?

r11, r12, r13, r14, r15, r16, ….

r21, r22, r23, r24, r25, r26, ….

rp1, rp2, rp3, rp4, rp5, rp6, ….

…
External Memory

of infinite size
Cache of

size k

Proc
1

Proc
2

Proc
p

…

Takes time sTakes time 1

Let’

Performance objectives: 

• makespan

• ∑ completion times

• Etc.

Let’

Parallel paging is a
different animal
from sequential
paging.

Let’s talk about the
challenges with online
parallel paging.

Let’

Incongruity: using
the phrase “different
animal” in this
workshop.

Let’

Incongruity: using
the phrase “different
animal” in this
workshop.

Challenge 1: how to partition the cache among the threads?

RAM

 1 s

1r11, r12, r13, r14, r15, r16, ….

2r21, r22, r23, r24, r25, r26, ….

prp1, rp2, rp3, rp4, rp5, rp6, ….

p threads

threads access (disjoint) blocks

cache of

3r31, r32, r33, r34, r35, r36, ….

Dividing the cache evenly among the threads is bad: Ω(s • OPT).

k/p

k

Challenge 1: how to partition the cache among the threads?

RAM

 1 s

1r11, r12, r13, r14, r15, r16, ….

2r21, r22, r23, r24, r25, r26, ….

prp1, rp2, rp3, rp4, rp5, rp6, ….

p threads

threads access (disjoint) blocks

cache of

3r31, r32, r33, r34, r35, r36, ….

The fraction of cache for each processor needs to change over time.
Any fixed allocation is similarly bad.
Dividing the cache evenly among the threads is bad: Ω(s • OPT).

k
fixed

Challenge 1: how to partition the cache among the threads?

RAM

 1 s

1r11, r12, r13, r14, r15, r16, ….

2r21, r22, r23, r24, r25, r26, ….

prp1, rp2, rp3, rp4, rp5, rp6, ….

p threads

threads access (disjoint) blocks

cache of

3r31, r32, r33, r34, r35, r36, ….

Any fixed allocation is similarly bad.
Dividing the cache evenly among the threads is bad: Ω(s • OPT).

Challenge: how to dynamically partition the cache among the threads?

Challenge 1: how to partition the cache among the threads?

RAM

 1 s

1r11, r12, r13, r14, r15, r16, ….

2r21, r22, r23, r24, r25, r26, ….

prp1, rp2, rp3, rp4, rp5, rp6, ….

p threads

threads access (disjoint) blocks

cache of

3r31, r32, r33, r34, r35, r36, ….

Any fixed allocation is similarly bad.
Dividing the cache evenly among the threads is bad: Ω(s • OPT).

Challenge: how to dynamically partition the cache among the threads?

Challenge 1: how to partition the cache among the threads?

RAM

 1 s

1r11, r12, r13, r14, r15, r16, ….

2r21, r22, r23, r24, r25, r26, ….

prp1, rp2, rp3, rp4, rp5, rp6, ….

p threads

threads access (disjoint) blocks

cache of

3r31, r32, r33, r34, r35, r36, ….

Any fixed allocation is similarly bad.
Dividing the cache evenly among the threads is bad: Ω(s • OPT).

Challenge: how to dynamically partition the cache among the threads?

Challenge 1: how to partition the cache among the threads?

RAM

 1 s

1r11, r12, r13, r14, r15, r16, ….

2r21, r22, r23, r24, r25, r26, ….

prp1, rp2, rp3, rp4, rp5, rp6, ….

p threads

threads access (disjoint) blocks

cache of

3r31, r32, r33, r34, r35, r36, ….

Any fixed allocation is similarly bad.
Dividing the cache evenly among the threads is bad: Ω(s • OPT).

Challenge: how to dynamically partition the cache among the threads?

Challenge 1: how to partition the cache among the threads?

RAM

 1 s

1r11, r12, r13, r14, r15, r16, ….

2r21, r22, r23, r24, r25, r26, ….

prp1, rp2, rp3, rp4, rp5, rp6, ….

p threads

threads access (disjoint) blocks

cache of

3r31, r32, r33, r34, r35, r36, ….

Any fixed allocation is similarly bad.
Dividing the cache evenly among the threads is bad: Ω(s • OPT).

Challenge: how to dynamically partition the cache among the threads?

Challenge 1: how to partition the cache among the threads?

RAM

 1 s

1r11, r12, r13, r14, r15, r16, ….

2r21, r22, r23, r24, r25, r26, ….

prp1, rp2, rp3, rp4, rp5, rp6, ….

p threads

threads access (disjoint) blocks

cache of

3r31, r32, r33, r34, r35, r36, ….

Any fixed allocation is similarly bad.
Dividing the cache evenly among the threads is bad: Ω(s • OPT).

Challenge: how to dynamically partition the cache among the threads?

Challenge 1: how to partition the cache among the threads?

RAM

 1 s

1r11, r12, r13, r14, r15, r16, ….

2r21, r22, r23, r24, r25, r26, ….

prp1, rp2, rp3, rp4, rp5, rp6, ….

p threads

threads access (disjoint) blocks

cache of

3r31, r32, r33, r34, r35, r36, ….

Any fixed allocation is similarly bad.
Dividing the cache evenly among the threads is bad: Ω(s • OPT).

Challenge: how to dynamically partition the cache among the threads?

Challenge 1: how to partition the cache among the threads?

RAM

 1 s

1r11, r12, r13, r14, r15, r16, ….

2r21, r22, r23, r24, r25, r26, ….

prp1, rp2, rp3, rp4, rp5, rp6, ….

p threads

threads access (disjoint) blocks

cache of

3r31, r32, r33, r34, r35, r36, ….

Any fixed allocation is similarly bad.
Dividing the cache evenly among the threads is bad: Ω(s • OPT).

Challenge: how to dynamically partition the cache among the threads?

Challenge 1: how to partition the cache among the threads?

RAM

 1 s

1r11, r12, r13, r14, r15, r16, ….

2r21, r22, r23, r24, r25, r26, ….

prp1, rp2, rp3, rp4, rp5, rp6, ….

p threads

threads access (disjoint) blocks

cache of

3r31, r32, r33, r34, r35, r36, ….

Any fixed allocation is similarly bad.
Dividing the cache evenly among the threads is bad: Ω(s • OPT).

Challenge: how to dynamically partition the cache among the threads?

Challenge 1: how to partition the cache among the threads?

RAM

 1 s

1r11, r12, r13, r14, r15, r16, ….

2r21, r22, r23, r24, r25, r26, ….

prp1, rp2, rp3, rp4, rp5, rp6, ….

p threads

threads access (disjoint) blocks

cache of

3r31, r32, r33, r34, r35, r36, ….

Any fixed allocation is similarly bad.
Dividing the cache evenly among the threads is bad: Ω(s • OPT).

Challenge: how to dynamically partition the cache among the threads?

Challenge 1: how to partition the cache among the threads?

RAM

 1 s

1r11, r12, r13, r14, r15, r16, ….

2r21, r22, r23, r24, r25, r26, ….

prp1, rp2, rp3, rp4, rp5, rp6, ….

p threads

threads access (disjoint) blocks

cache of

3r31, r32, r33, r34, r35, r36, ….

Challenge: how to dynamically partition the cache among the threads?

Any fixed allocation is similarly bad.
Dividing the cache evenly among the threads is bad: Ω(s • OPT).

Challenge 2: how to interleave/schedule the individual threads?

RAMcache of
size k

 1 s

1r11, r12, r13, r14, r15, r16, ….

2r21, r22, r23, r24, r25, r26, ….

prp1, rp2, rp3, rp4, rp5, rp6, ….

p threads

threads access (disjoint) blocks

cache of

3r31, r32, r33, r34, r35, r36, ….

In general, threads cannot be scheduled in lock-step.

Our decisions cause processors to move at different speeds.

Challenge 2: how to interleave/schedule the individual threads?

Ex:
• p1 accesses pages (round robin) ∈ [0, k/2)

• p2 “ ∈ [k/2, k)

• p3 “ ∈ [k, 3k/2)

• p4 “ ∈ [3k/2, 2k)

RAMcache of
size k

 1 s

1r11, r12, r13, r14, r15, r16, ….

2r21, r22, r23, r24, r25, r26, ….

4r41, r42, r43, r44, r45, r46, ….

p threads

threads access (disjoint) blocks

3r31, r32, r33, r34, r35, r36, ….

In general, threads cannot be scheduled in lock-step.

Challenge 2: how to interleave/schedule the individual threads?

RAMcache of
size k

 1 s

1r11, r12, r13, r14, r15, r16, ….

2r21, r22, r23, r24, r25, r26, ….

4r41, r42, r43, r44, r45, r46, ….

p threads

threads access (disjoint) blocks

3r31, r32, r33, r34, r35, r36, ….

OPT: page accesses cost 1
• run p1 and p2 to completion

• run p3 and p4 to completion

Lock step: page accesses cost s≫1

working sets  
of 2 threads  
fit in cache,  
but not 3}

Ex:
• p1 accesses pages (round robin) ∈ [0, k/2)

• p2 “ ∈ [k/2, k)

• p3 “ ∈ [k, 3k/2)

• p4 “ ∈ [3k/2, 2k)

In general, threads cannot be scheduled in lock-step.

Challenge 2: how to interleave/schedule the individual threads?

RAMcache of
size k

 1 s

1r11, r12, r13, r14, r15, r16, ….

2r21, r22, r23, r24, r25, r26, ….

4r41, r42, r43, r44, r45, r46, ….

p threads

threads access (disjoint) blocks

3r31, r32, r33, r34, r35, r36, ….

OPT:
• Run p1 and p2 to completion.

• Then run p3 and p4 to completion.

Lock step:
• Makespan is Ω(s∙OPT).

working sets  
of 2 threads  
fit in cache,  
but not 3}

Ex:
• p1 accesses pages (round robin) ∈ [0, k/2)

• p2 “ ∈ [k/2, k)

• p3 “ ∈ [k, 3k/2)

• p4 “ ∈ [3k/2, 2k)

In general, threads cannot be scheduled in lock-step.

Non-Challenge: What Eviction Policy Should Each Processor Use?

RAMcache of
size k

 1 s

1r11, r12, r13, r14, r15, r16, ….

2r21, r22, r23, r24, r25, r26, ….

prp1, rp2, rp3, rp4, rp5, rp6, ….

p threads

threads access (disjoint) blocks

cache of

3r31, r32, r33, r34, r35, r36, ….

Question: What are the eviction policies of individual threads,  
 given that a thread’s allotment of cache changes over time?

Answer: Each processor should still just use LRU. [Bender, Ebrahimi, Fineman,  
Ghasemiesfeh, Johnson, McCauley  
SODA 2014]

Summary of parallel-paging challenges

Parallel paging

• How to partition the cache
among the threads?

• How to interleave/schedule the
individual threads?

• What are the eviction policies of
each individual threads?

Sequential paging

• The (single) thread gets all of cache.

• There is a total order in which all

page requests are serviced.

• There is a single eviction policy.

Online parallel paging was open for 25 years

Previous results are for the offline problem.
• NP-hardness

• Existing offline algs w/ run times exponential in # procs p and cache size k

The online problem has been open since 1995. [Fiat and Karlin, STOC 1995]

[Hassidim ICS 2010]  
[López-Ortiz & Salinger ITCS 2012 
& WAOA 2012]

This Talk: O(log p)-competitive algs for parallel paging

Deterministic online parallel paging algorithm that is

- O(log p) competitive for average completion time + makespan with

- O(1) resource augmentation.

No deterministic online algorithm can do better.

[Agrawal, Bender, Das, Kuszmaul, Peserico, Scquizzato SODA 2021]

[Agrawal, Bender, Das, Kuszmaul, Peserico, Scquizzato SPAA 2022]

Cache as a scarce resource

The cache is a scarce resource.
Each thread should use as little cache as it can.

Cache as a scarce resource

The cache is a scarce resource.
Each thread should use as little cache as it can.

This motivates the very different problem of green paging.

The Green Paging Problem

•Single processor.
•Slots in the cache can be powered off to save energy.
•Energy consumption in a timestep = Θ(cache slots that are turned on).

Objective: service a request sequence online with minimal energy.

RAMproc

 1 s

r1, r2, r3, r4, r5, r6, r7, r8, …

sequence of page requests

kmin

kmax

1 s

cache impact (“energy”) = Θ(∑time t # cache slots powered on)

RAMprocR = r1, r2, r3, r4, …

time

slots  
powered on

kmin

k

Green paging

Given a page request sequence R = r1, r2, r3, … design
• cache-space allocation over time, and
• page-replacement policy,
to minimize the cache impact to serve R.

cache impact

time

cache 
usage

1 s

RAMprocr1, r2, r3, r4, …

kmin

kmax

Green paging dilemma

time

slots  
on

time

slots  
on

versus ?cache impact

cache impact

1 s

RAMprocR = r1, r2, r3, r4, …

kmin

kmax

Online green paging ⟷ Online parallel paging

Solve the green-paging
problem independently
for each thread

RAMcache of
size k

1 s

1R1 = r11, r12, r13, r14, …

2R2 = r21, r22, r23, r24, …

pRp = rp1, rp2, rp3, rp4, …

3R3 = r31, r32, r33, r34, …

[Agrawal, Bender, Das, Kuszmaul, Peserico,  
Scquizzato SODA 2021, SPAA 2022]

Online green paging ⟷ Online parallel paging

Solve the green-paging
problem independently
for each thread

RAMcache of
size k

1 s

1R1 = r11, r12, r13, r14, …

2R2 = r21, r22, r23, r24, …

pRp = rp1, rp2, rp3, rp4, …

3R3 = r31, r32, r33, r34, …

Stitch/pack the
solutions together

⟹ ⟹

[Agrawal, Bender, Das, Kuszmaul, Peserico,  
Scquizzato SODA 2021, SPAA 2022]

Reductions Green Paging ⟷ Parallel Paging

Theorem [Green paging upper bound → Parallel paging upper bound]

Theorem [Green paging lower bound → Parallel paging lower bound]

online green-paging alg w/ comp ratio Θ(β) ⟺ online ||-paging alg w/ comp ratio Θ(β)

⟺

[Agrawal, Bender, Das, Kuszmaul, Peserico,  
Scquizzato SODA 2021, SPAA 2022]

 (with O(1) resource augmentation)

Theorem: No deterministic online green-paging algorithm (kmax=k and
kmin=k/p) can be o(log P)-competitive.

Bounds for Green Paging and Parallel Paging [Agrawal, Bender, Das, Kuszmaul, Peserico,  
Scquizzato SODA 2021, SPAA 2022]

Theorem: No deterministic online green-paging algorithm (kmax=k and
kmin=k/p) can be o(log P)-competitive.
⟹ no parallel-paging algorithm can be o(log P)-competitive.

Bounds for Green Paging and Parallel Paging [Agrawal, Bender, Das, Kuszmaul, Peserico,  
Scquizzato SODA 2021, SPAA 2022]

Theorem: No deterministic online green-paging algorithm (kmax=k and
kmin=k/p) can be o(log P)-competitive.
⟹ no parallel-paging algorithm can be o(log P)-competitive.

Theorem: ∃ a universal green-paging solution that is O(log P)-
competitive for all request sequences.

Bounds for Green Paging and Parallel Paging [Agrawal, Bender, Das, Kuszmaul, Peserico,  
Scquizzato SODA 2021, SPAA 2022]

Theorem: No deterministic online green-paging algorithm (kmax=k and
kmin=k/p) can be o(log P)-competitive.
⟹ no parallel-paging algorithm can be o(log P)-competitive.

Theorem: ∃ a universal green-paging solution that is O(log P)-
competitive for all request sequences.
⟹ ∃ universal O(log P)-competitive parallel-paging algorithm.

Bounds for Green Paging and Parallel Paging [Agrawal, Bender, Das, Kuszmaul, Peserico,  
Scquizzato SODA 2021, SPAA 2022]

Let’

Here’s where I skip
how to make the
universal solution.

Green-paging competitive ratio: O(log p)-competitive universal algorithm

Thm: one can approximate any green-paging solution with a box-profile
solution for the same asymptotic cost.

time

[Bender, Ebrahimi, Fineman, Ghasemiesfeh, Johnson, McCauley SODA 2014]

Green-paging competitive ratio: O(log p)-competitive universal algorithm

The universal green-paging  
memory profile is a repeated  
post-order traversal of this tree.

k2

… k2

16
k2

16
k2

16
k2

16

k2

4
k2

4
k2

4
k2

4

k2

16
k2

16
k2

16
k2

16

k2

16
k2

16
k2

16
k2

16

k2

4
k2

16
k2

16
k2

16
k2

16

k2

4
k2

16
k2

16
k2

16
k2

16

k2

4
k2

16
k2

16
k2

16
k2

16

k2

4

k2
k2

16
k2

16
k2

16
k2

16

k2

4
k2

16
k2

16
k2

16
k2

16

k2

4
k2

16
k2

16
k2

16
k2

16

k2

4
k2

16
k2

16
k2

16
k2

16

k2

4

log p

min box size k
p

×
k
p

max box size k × k

time

Green-paging competitive ratio: O(log p)-competitive universal algorithm
at least one box in root-to-leaf path is utilized by OPT.

k2

… k2

16
k2

16
k2

16
k2

16

k2

4
k2

4
k2

4
k2

4

k2

16
k2

16
k2

16
k2

16

k2

16
k2

16
k2

16
k2

16

k2

4
k2

16
k2

16
k2

16
k2

16

k2

4
k2

16
k2

16
k2

16
k2

16

k2

4
k2

16
k2

16
k2

16
k2

16

k2

4

k2
k2

16
k2

16
k2

16
k2

16

k2

4
k2

16
k2

16
k2

16
k2

16

k2

4
k2

16
k2

16
k2

16
k2

16

k2

4
k2

16
k2

16
k2

16
k2

16

k2

4

log p

k2

16
k2

16

k2

4
k2

16

k2

4

k2 k2

16OPT

Do we have positive results or negative ones?

Optimist versus pessimist.

No. We have an unexpected
negative result!

We have an exciting positive result!

Do we have positive results or negative ones?

True.

Our universal algorithm
has the optimal competitive

ratio for all inputs.

Optimist versus pessimist.

No. We have an unexpected
negative result!

We have an exciting positive result!

We have tight competitive
ratios for green paging and

parallel paging!

Do we have positive results or negative ones?

True.

Our universal algorithm
has the optimal competitive

ratio for all inputs. This is a negative result.  
This algorithm is not smart.

Optimist versus pessimist.

No. We have an unexpected
negative result!

We have an exciting positive result!

We have tight competitive
ratios for green paging and

parallel paging!

But universal solutions
are good.

Do we have positive results or negative ones?

True.

Our universal algorithm
has the optimal competitive

ratio for all inputs. This is a negative result.  
This algorithm is not smart.

Optimist versus pessimist.

No. We have an unexpected
negative result!

We have an exciting positive result!

We have tight competitive
ratios for green paging and

parallel paging!

Not all sequences have the same
requirements. A good solution should be

tailored to the problem instance.  
We provably cannot.

But universal solutions
are good.

Even so, we’re much
better than natural/naive

solutions.

Do we have positive results or negative ones?

True.

Our universal algorithm
has the optimal competitive

ratio for all inputs. This is a negative result.  
This algorithm is not smart.

Optimist versus pessimist.

No. We have an unexpected
negative result!

We have an exciting positive result!

We have tight competitive
ratios for green paging and

parallel paging!

Not all sequences have the same
requirements. A good solution should be

tailored to the problem instance.  
We provably cannot.

But universal solutions
are good.

Even so, we’re much
better than natural/naive

solutions.

Conclusion

We now finally have the tools for reasoning about parallel paging.
• eg., green paging and the notion of cache impact

We should use these tools for beyond-worst-case analysis and in
actual systems.

