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High-level outline

* Sparse matrices for computational biology
* Sparse matrices for machine learning



Genome assembly pipeline
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BELLA: Berkeley Long-read to Long-read

Aligner and Overlapper

Number of states: k + 1 hd HOW tO ChOOSG the I’Ight Set Of k'
Legend: 1 mers, otherwise there are too
@ State: correct bases on readi and read; p2 many Of them?

1-p?  How to use alignment score to tell

true alignments from false

— b
C@:__.\Q?;@_, . _,@_, positives?

Feasibility of Overlap detection
a k-mer seed based approach via sparse matrix multiplication
BELLA ‘ ? l ?
Novel procedure for Seed-and-extend
pruning k-mers pairwise alignment
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Guidi G, Ellis M, Rokhsar D, Yelick K, Bulug A. BELLA: Berkeley Efficient Long-Read to Long-Read Aligner
and Overlapper. SIAM Conference on Applied and Computational Discrete Algorithms (ACDA), 2021



SpGEMM use case #1: read overlapping

« Overlapping is the most computationally expensive step in the
overwhelming majority of long read assemblers.

« Imagine each read is a sample, its k-mer profile is its feature set
« Create a reads-by-kmers (sparse) matrix
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Use any fast SpGEMM algorithm, as long as it runs on arbitrary semirings



diBELLA.2D performance results

diBELLA .2D: distributed-memory version of BELLA on 2D process grid
Performs overlap detection plus transitive reduction (overlap to string graph)
https://github.com/PASSIONLab/diBELLA .2D
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Giulia Guidi, Oguz Selvitopi, Marquita Ellis, Leonid Oliker, Katherine Yelick, Aydin Bulug. Parallel
String Graph Construction and Transitive Reduction for De Novo Genome Assembly. /PDPS 2021



https://github.com/PASSIONLab/diBELLA.2D

Is the sparse matrix approach better?

* Comparing the sparse matrix abstraction (diBELLA 2D [2], weeks of effort)
with a direct implementation (diBELLA 1D [1], years of effort). Both use MPI
* Sparse matrices reduce communication via 2D sparse SpGEMM

Strong Scaling (C. elegans) Strong Scaling (H. sapiens)
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[1] Marquita Ellis, Giulia Guidi, Aydin Bulug, Leonid Oliker, and Katherine Yelick. "diBELLA: Distributed long
read to long read alignment." ICPP 2019

[2] Giulia Guidi, Oguz Selvitopi, Marquita Ellis, Leonid Oliker, Katherine Yelick, Aydin Bulug. Parallel String
Graph Construction and Transitive Reduction for De Novo Genome Assembly. /PDPS 2021




Sparse matrix approach for assembly

with long reads

1) K-mer Analysis
K-mer histogram

2) Sparse matrix building
S A: reads-by-kmers

e
—

reads —

—

R

3) Overlapping via SpGEMM C

k-mers ﬁ'ﬁ "%ﬁ = AAT : reads-by-reads

- 4) X-drop alignments
read-read N N S S M = fiIter(C, alignment_score)
alignments —— . N X I

5) Transitive Reduction

8- M*! = Prune(MIMIOM)

read-read - o e——
alignments TS S _ _
- 6) Contig generation [3]

= Em— ]

- o Remove forks
o Find connected components (CCs)
o Local traversal of CCs

scaffolds

[3] Giulia Guidi, Gabriel Raulet, Daniel Rokhsar, Leonid Oliker, Katherine Yelick, and Aydin Bulug. Distributed-
memory parallel contig generation for de novo long-read genome assembly. In ICPP, 2022




Protein Family Identification

* Problem: Given a large collection of proteins, identify groups of
proteins that are homologous (i.e. descended from a common

ancestor).

 Homologous proteins often have the same function (think of
different variants of hemoglobin in many species)

e Often, only sequences (and not structure) of the proteins are
available, so we infer homology via sequence similarity

PASTIS HipMCL
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Protein Family Identification

 Many one-step approaches are possible that trade accuracy for
lower memory consumption and faster execution (e.g., CD-HIT).

 The approach that seems to lead to highest accuracy:

« Construct a similarity network over protein sequences using many-to-
many sequence search (PASTIS)
 Cluster this network to discover possible protein families (HipMCL)

PASTIS HipMCL

PN
>APWor330. .
MCCIVSLHDSL. . Similarity Network —
>BioPla2. . Construction
NAAKIKERLR. . % g

Protein FASTA

Similarity Network Clusters in the Similarity Network




SPGEMM use case #2: many-to-many

orotein alignment

* |dea similar to BELLA, but removing
the exact match restriction

BLOSUM 62 scoring matrix

(positive values are shaded)

* For homology detection, need to

catch weaker signal (~30% ANI)

« K-mers with substitutes may be more

valuable than exact matches!
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SpGEMM for many-to-many

protein alighment

PASTIS (https://github.com/PASSIONLab/PASTIS) does distributed
many-to-many protein sequence similarity search using sparse matrices

Introduce new sparse matrix S

T 2 2 £
Contains substitution information " < < o >
. - \
Each entry has substitution cost T / I
Exact k-mers = C=AAT
YYY

Substitute k-mers > C=ASAT . 22 x 24"

New semiring

Oguz Selvitopi, Saliya Ekanayake, Giulia Guidi, Georgios Pavlopoulos, Ariful Azad, and Aydin Bulug.
Distributed Many-to-Many Protein Sequence Alignment Using Sparse Matrices. SC’20.



https://github.com/PASSIONLab/PASTIS

PASTIS performance and accuracy

Strong scaling
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* Protein similarity search is the first and most time-consuming step in
discovering protein families (proteins evolved from a common ancestor
and who likely have the same function)

* Protein family identification is a key step in protein function discovery and
taxonomic assignment of newly sequenced organisms



PASTIS in 2022

Hot off the press: Finalist for the 2022 ACM Gordon Bell Prize
https://en.wikipedia.org/wiki/Gordon Bell Prize

Extreme-scale many-against-many protein similarity
search

Oguz Selvitopi*, Saliya Ekanayake®, Giulia Guidi*, Muaaz G. Awan®, Georgios A. Pavlopoulos¥, Ariful Azadl,
Nikos Kyrpides**, Leonid Oliker*, Katherine Yelick**, Aydin Bulug*?

*Applied Mathematics & Computational Research Division, Lawrence Berkeley National Laboratory, USA
TMicrosoft Corporation, USA
iUniversiz‘y of California, Berkeley, USA
§NERSC, Lawrence Berkeley National Laboratory, USA
Yinstitute for Fundamental Biomedical Research, BSRC “Alexander Fleming”, 34 Fleming Street, 16672, Vari, Greece
I ndiana University, USA
**Joint Genome Institute, Lawrence Berkeley National Laboratory, USA
roselvitopi @1bl.gov

Abstract-- ... We unleash the power of over 12,000 GPUs to perform all-vs-all protein similarity
search on one of the largest publicly available datasets with 313 million proteins, in less than 4
hours, cutting the time-to-solution for many use cases from weeks. The variability of protein

sequence lengths, as well as the sparsity of the space of pairwise comparisons, make this a
challenging problem in distributed memory. ...



https://en.wikipedia.org/wiki/Gordon_Bell_Prize

Extreme-scale many-against-many protein similarity search
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The ExaGraph and ExaBiome teams of ECP were selected as a Gordon
Bell Award Finalist for their joint work entitled “Extreme-scale many- 10000 - index-based ’ |
against-many protein similarity search”. The paper describes significant 8000 m\ --- index-based (ideal)
improvements to the accuracy and scale of protein sequence similarity 6000 N e e eal) |
search capabilities developed under ECP. Thanks to memory-consumption __
optimizations, new parallel algorithms taking advantage of the symmetry in 8 4000
the sequence similarity matrix, GPU acceleration, and the ability to address §
load imbalance issues, they were able to perform many-against-many i
protein search on a dataset containing 405 million protein sequences with ¢
the PASTIS code on 3364 compute nodes of ORNL Summit E 20
Supercomputer in 3.4 hours, sustaining a rate of 691 million alignments per °
second and attaining ~176 TCUPs (Tera Cell Updates per second). The 76
output, represented as a protein-protein sequence similarity graph, is an *
impressive 27 Terabytes. This is an improvement over the team's work
from their SC'20 paper of nearly two orders of magnitude, and a significant 36 64 128 26 >12

advance over the rest of the field. number of nodes
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A. Azad, N. Kyrpides, L. Oliker, K. Yelick, A. Buluc. SC 2022 SE—




SpGEMM use case #3: Markov Clustering

Markov clustering is also multi-source (in fact, all sources) traversal:
It alternates between SpGEMM and element-wise or column-wise pruning

GrB_mxm(C, GrB_NULL, <semiring>, A, A, <desc>)

A: sparse normalized adjacency matrix
C: denser (but still sparse) pre-pruned matrix for next iteration

Initial network Iteration 1 Iteration 2 Iteration 3

At each iteration:

Step 1 (Expansion): Squaring the matrix while pruning (a) small entries, (b) denser columns
Naive implementation: sparse matrix-matrix product (SpGEMM), followed by column-wise
top-K selection and column-wise pruning

Step 2 (Inflation) : taking powers entry-wise



HipMCL: High-performance MCL

* HipMCL uses the most popular variant of Sparse SUMMA

* Both input matrices are broadcasted in stages and owners of
output submatrices perform local sparse matrix multiplications

 When the number of phases increase (b decreases), A is re-
broadcasted for each phase, increasing communication

A0\

Process column

Process row

\/;x\/; Process Grid
12 2 ]

———————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

| A.Azad, G. Pavlopoulos, C. Ouzounis, N. Kyrpides, A. Bulug; HipMCL: a high-performance parallel
. implementation of the Markov clustering algorithm for large-scale networks, Nucleic Acids Research, 2018



Recap: Protein family identification using

sparse matrices

PASTIS + HipMCL approach for protein family identification

protein e e B E—
sequences

S

protein-protein - — —— E—§
alignments e == =

protein
similarity
network

SpGEMM: Sparse matrix times sparse matrix

1) K-mer Analysis
K-mer histogram

2) Sparse matrix building
A: proteins-by-kmers

3) Overlapping via SpGEMM C
= AAT (or ASAT)

4) Pairwise alignments
M = filter(C, alignment_score)

5) MCL iteration via SpGEMM
Mi*1 = Prune(M'M)



High-level outline

e Sparse matrices for computational biology
e Sparse matrices for machine learning



Graph Neural Networks (GNNs)

_ Materials Discovery
Proteomics

GNNs are finding
success in many
challenging scientific
problems that involve
"/ Power Grid interconnected data.

Graph classification
Edge classification
Node classification

Particle Physics

GNNs are computationally intensive to train. Distributed training need to
scale to large GPU/node counts despite challenging sparsity.



What can | do with a GNN?

Node classification

Z; = f(hi)

. Graph classification

20 = F (@i i)

Wt ) B e N i o ) i it B i i it R N Pl ) ] B St M e

Latents

(X,A) (H, A)

.| Link prediction
zi; = f(hi, hy, e;)

Figure source: Petar Velickovic¢



Full-graph vs. mini-batch SGD

Vertices

Full-graph training:

Train on entire training set
Slower convergence per epoch
Faster training per epoch
Focus of this work

samples

/

Vertices

Mini-batch SGD:

e Train on multiple samples from
training set

» Faster convergence per epoch

e Slower training per epoch
* Requires graph sampling, which

effects accuracy and performance




Graph convolution illustrated

—

Input Graph GNN of Input Graph

* Recall that a CNN can have different *channel* dimension at each layer.
* GNNs also have different embedding dimension at each layer



GNN Training

« Each node is initialized with a feature vector
— HY has initial feature vector per node (nx f)
Each node aggregates vectors of its neighbors, applies a weight

« Each layer computes gradients

for 1 =1 .. E AEnxn
for 1 =1 ..L
Zl = AT * Hi-1 *x |yl
M = o (7)) H'enx f!
for 1 =L1L-1 ..1 l l
Gl = A ¥ Gl+1 % (W1+1)T @01(21) G ETle
dH/dW = (H!1)T * A * @Gl
( ) Wl Efl—lel

A is sparse and f << n, so the main workhorse is SpMM (sparse
matrix times tall-skinny dense matrix)



Communication avoidance (CA)

In GNN Training

I reduce [ dbcast B local
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= Scales with both P (GPUs — x axis) and c (replication layers in CA algorithms)

= Thisis 1 GPU/node on Summit (all GPUs per node results in paper)

= Expect to scale with all GPUs / node with future architectures (e.g. Perimutter)
= More results (2D and 3D algorithm) and 6 GPUs/node in the paper

Alok Tripathy, Katherine Yelick, Aydin Bulug. Reducing Communication in Graph Neural Network Training. SC’20




Pattern: Sparse matrix times tall-skinny

dense matrix (SpMM)

Feature aggregation from neighbors:
Used in Graph neural networks, graph embedding, etc.

GrB_mxm(W, GrB_NULL, <semiring>, A, H, <desc>)

A: sparse adjacency matrix, n-by-n
H: input dense matrix, n-by-f where f << n is the feature dimension
W: output dense matrix, new features

O(f) feature vector
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Graph attention: making edge weights

learnable

Wi W3 Wy Wey

Sparse

same structure
with A

W

h,

W, = _I_! ® i‘ h1

SDDMM: Sampled dense-dense
matrix multiplication

GrB_mxm(W, A, H, H, ... );

O




SpMM and SDDMM algorithmic duality

SDDMM and SpMM have identical data access patterns.
Consider serial algorithms for both kernels:

R := SDDMM(S, 4, B) A = SpMMA(S, B)
for (i,j) €S for (i,j) €S
Rij = Sij(Ai; - B}.) Ay += S5i;B;.

Every nonzero (i, j) requires an interaction between row i of A and row j of B.
As a result:

Every distributed algorithm for SpMM can be converted to an algorithm for
SDDMM with identical communication characteristics, and vice-versa.

V. Bharadwaj, A. Buluc, J. Demmel, "Distributed Memory Sparse Kernels for Machine Learning," 2022 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), 2022




Creating a parallel SDDMM algorithm

from an SpMM algorit

Consider any distributed algorithm for SpMMA that performs no
replication. For all indices k € [1, 7], the algorithm must (at some point)

* Co-locate S;j, Ajk, Bji on a single processor

*  Perform the update Ay, += S;;Bjy

Transform this algorithm as follows:

1. Change the input sparse matrix S to an output that is initialized to O.
2. Change A from an output to an input.

3. Have each processor execute the local update: S;; += A;; B

The resulting algorithm performs SDDMM (up to multiplication with
the values initially in ) with communication characteristics and data
layout identical to the original.



Communication Eliding Strategies for

FusedMM: SDDMM+Sp

SpMM Loop Finished?

SDMM Loop Finished?

=

»
> Ll

Yes

No
Unoptimized Back-to-back Calls
SDDMM Loop Finished? SpMM Loop Finished?

) )

Local Local

Move Move

Data Data
— No — No

Replication Reuse \
Mutually

exclusive

Local SDDMM . . .
+ SpMM optimizations

Combined Loop Finished?

Local Kernel Fusion



Distributed FusedMM performance

Weak Scaling Setup 1 Time Breakdown
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Sparse matrix techniques underlie computations from disparate
fields:

a. Scientific computing

b. Machine learning

c. Graph analysis

d. Bioinformatics

GraphBLAS already seem to have the right abstraction with its
flexible masks and semirings to be the default backend of many

of these computations

Extreme parallelism and data, and hence the need for distributed
memory parallelism is here to stay and will get worse

Communication-avoiding algorithms, and novel data
structures for sparse matrices will be the key to overcome these
adverse technological trends
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