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High-level outline

• Sparse matrices for computa/onal biology
• Sparse matrices for machine learning



Genome assembly pipeline



BELLA: Berkeley Long-read to Long-read 
Aligner and Overlapper

Guidi G, Ellis M, Rokhsar D, Yelick K, Buluç A. BELLA: Berkeley Efficient Long-Read to Long-Read Aligner 
and Overlapper. SIAM Conference on Applied and Computational Discrete Algorithms (ACDA), 2021
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Number of states:
Legend:

State: correct bases on readi and readj
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State: correct bases on 
readi and on readj 

For the sake of simplicity here k is equal to 5

Legend of transition probabilities:
States number:
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• How to choose the right set of k-
mers, otherwise there are too 
many of them?

• How to use alignment score to tell 
true alignments from false 
positives?

Seed-and-extend  
pairwise alignment

BELLA

Feasibility of
a k-mer seed based approach

Novel procedure for  
pruning k-mers

Overlap detection
via sparse matrix multiplication



SpGEMM use case #1: read overlapping

AAT(i,j) = # shared k-mers 
between reads i and j, plus 
their positions in the reads

Use any fast SpGEMM algorithm, as long as it runs on arbitrary semirings
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• Overlapping is the most computationally expensive step in the 
overwhelming majority of long read assemblers.

• Imagine each read is a sample, its k-mer profile is its feature set
• Create a reads-by-kmers (sparse) matrix



diBELLA.2D performance results 

diBELLA.2D: distributed-memory version of BELLA on 2D process grid
Performs overlap detection plus transitive reduction (overlap to string graph)
https://github.com/PASSIONLab/diBELLA.2D

Giulia Guidi, Oguz Selvitopi, Marquita Ellis, Leonid Oliker, Katherine Yelick, Aydin Buluç. Parallel 
String Graph Construction and Transitive Reduction for De Novo Genome Assembly. IPDPS 2021

https://github.com/PASSIONLab/diBELLA.2D


Is the sparse matrix approach better?

• Comparing the sparse matrix abstraction (diBELLA 2D [2], weeks of effort) 
with a direct implementation (diBELLA 1D [1], years of effort). Both use MPI

• Sparse matrices reduce communication via 2D sparse SpGEMM

[1] Marquita Ellis, Giulia Guidi, Aydin Buluç, Leonid Oliker, and Katherine Yelick. "diBELLA: Distributed long 
read to long read alignment." ICPP 2019
[2] Giulia Guidi, Oguz Selvitopi, Marquita Ellis, Leonid Oliker, Katherine Yelick, Aydin Buluç. Parallel String 
Graph Construction and Transitive Reduction for De Novo Genome Assembly. IPDPS 2021



Sparse matrix approach for assembly 
with long reads

reads

k-mers

read-read
alignments

scaffolds

1

2

4

3
read-read
alignments

2) Sparse matrix building
A: reads-by-kmers

1) K-mer Analysis
K-mer histogram

3) Overlapping via SpGEMM C 
= AAT : reads-by-reads

4) X-drop alignments
M = filter(C, alignment_score)

5) Transitive Reduction
Mi+1 = Prune(MiMi⊙Mi)

6) Contig generation [3]
o Remove forks
o Find connected components (CCs)
o Local traversal of CCs

[3] Giulia Guidi, Gabriel Raulet, Daniel Rokhsar, Leonid Oliker, Katherine Yelick, and Aydın Buluç. Distributed-
memory parallel conYg generaYon for de novo long-read genome assembly. In ICPP, 2022



Protein Family IdenHficaHon

• Problem: Given a large collec1on of proteins, iden1fy groups of 
proteins that are homologous (i.e. descended from a common 
ancestor). 

• Homologous proteins o?en have the same func1on (think of 
different variants of hemoglobin in many species)

• O?en, only sequences (and not structure) of the proteins are 
available, so we infer homology via sequence similarity

PASTIS HipMCL



Protein Family Identification

• Many one-step approaches are possible that trade accuracy for 
lower memory consump1on and faster execu1on (e.g., CD-HIT). 

• The approach that seems to lead to highest accuracy:
• Construct a similarity network over protein sequences using many-to-

many sequence search (PASTIS)
• Cluster this network to discover possible protein families (HipMCL)

PASTIS HipMCL



SpGEMM use case #2: many-to-many
protein alignment 

• Idea similar to BELLA, but removing 
the exact match restriction

• For homology detection, need to 
catch weaker signal (~30% ANI)

• K-mers with substitutes may be more 
valuable than exact matches!

1 substitute 2 substitutes



SpGEMM for many-to-many
protein alignment 

Introduce new sparse matrix S
Contains substitution information
Each entry has substitution cost

Exact k-mers à C=AAT

Substitute k-mers à C=ASAT

New semiring

Oguz Selvitopi, Saliya Ekanayake, Giulia Guidi, Georgios Pavlopoulos, Ariful Azad, and Aydın Buluç. 
Distributed Many-to-Many Protein Sequence Alignment Using Sparse Matrices. SC’20.

PASTIS (https://github.com/PASSIONLab/PASTIS) does distributed 
many-to-many protein sequence similarity search using sparse matrices

https://github.com/PASSIONLab/PASTIS


PASTIS performance and accuracy

• Protein similarity search is the first and most .me-consuming step in 
discovering protein families (proteins evolved from a common ancestor 
and who likely have the same func.on)

• Protein family iden2fica2on is a key step in protein func.on discovery and 
taxonomic assignment of newly sequenced organisms
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PASTIS in 2022

Extreme-scale many-against-many protein similarity
search

Oguz Selvitopi⇤, Saliya Ekanayake†, Giulia Guidi‡, Muaaz G. Awan§, Georgios A. Pavlopoulos¶, Ariful Azadk,
Nikos Kyrpides⇤⇤, Leonid Oliker⇤, Katherine Yelick‡⇤, Aydın Buluç⇤‡

⇤Applied Mathematics & Computational Research Division, Lawrence Berkeley National Laboratory, USA
†Microsoft Corporation, USA

‡University of California, Berkeley, USA
§NERSC, Lawrence Berkeley National Laboratory, USA

¶Institute for Fundamental Biomedical Research, BSRC “Alexander Fleming”, 34 Fleming Street, 16672, Vari, Greece
kIndiana University, USA

⇤⇤Joint Genome Institute, Lawrence Berkeley National Laboratory, USA
roselvitopi@lbl.gov

Abstract—Similarity search is one of the most fundamental

computations that are regularly performed on ever-increasing

protein datasets. Scalability is of paramount importance for

uncovering novel phenomena that occurs at very large scales.

We unleash the power of over 12,000 GPUs to perform all-vs-all

protein similarity search on one of the largest publicly available

datasets with 313 million proteins, in less than 4 hours, cutting the

time-to-solution for many use cases from weeks. The variability

of protein sequence lengths, as well as the sparsity of the space

of pairwise comparisons, make this a challenging problem in

distributed memory. Due to the need to construct and maintain

a data structure holding indices to all other sequences, this

application has a huge memory footprint that makes it hard to

scale the problem sizes. We overcome this memory limitation by

innovative matrix-based blocking techniques, without introducing

additional load imbalance.

I. JUSTIFICATION FOR ACM GORDON BELL PRIZE

We unleash the power of over 12,000 GPUs to perform
many-against-many protein similarity search on one of the
largest publicly available datasets with 313 million proteins
in 3.9 hours with an unprecedented rate of 320 million
alignments per second, cutting the time-to-solution for many
use cases from weeks.

II. PERFORMANCE ATTRIBUTES

Performance Attribute Value

Category of achievement Time to solution, alignments per seconds,
cell updates per second (CUPs)

Type of method used N/A

Results reported on the
basis of

Whole application for time to solution
and alignments per second.
Kernel time for cell updates per second

Precision reported Integer

System scale 2025 nodes
(85,050 CPU cores and 12,150 GPUs)

Measurement mechanism Timers

III. OVERVIEW OF THE PROBLEM

Comparative genomics studies the evolutionary and biolog-
ical relationships between different organisms by exploiting
similarities over the genome sequences. A common task, for
example, is to find out the functional or taxonomic contents
of the samples collected from an environment often by query-
ing the collected sequences against an established reference
database. The importance of enabling and building of fast com-
putational infrastructure for comparative genomics becomes
more critical as more and more genomes are sequenced.

Our work addresses the computational challenges posed
by searching similarities between two sets of proteins in the
sequence domain. The use cases of this task in computa-
tional biology are numerous and include functional annota-
tion [1], gene localization and studying protein evolution [2].
In metagenomics the DNA sequences collected from the
environment enable the study of a diverse microbial genome
pool that is often missed by the cultivation-based methods.
Such samples contain millions of protein sequences [3] and
a major component of many biological workflows is to find
out the existing genes by aligning them against a reference
database. With the sequencing costs dropping and the tech-
nology becoming more available, the bottlenecks in metage-
nomics research are gradually shifting towards computation
and storage [4], [5].

We focus on the problem of aligning a set of sequences
against another set of sequences. This problem often occurs
within the context of identifying sequences in one set (set of
query sequences) by using another set of sequences whose
functions are already known (set of reference sequences).
Another context is to find the similar sequences in a given
set by clustering them. In this variant, a many-against-many
search is performed over a set of sequences to find the
similar sequences in the set (often followed by clustering of
sequences). This variant can also be seen as aligning the given
set against itself where the query and the reference set is the

Abstract-- … We unleash the power of over 12,000 GPUs to perform all-vs-all protein similarity 
search on one of the largest publicly available datasets with 313 million proteins, in less than 4 
hours, cutting the time-to-solution for many use cases from weeks. The variability of protein 
sequence lengths, as well as the sparsity of the space of pairwise comparisons, make this a 
challenging problem in distributed memory. …

Hot off the press: Finalist for the 2022 ACM Gordon Bell Prize 
https://en.wikipedia.org/wiki/Gordon_Bell_Prize

https://en.wikipedia.org/wiki/Gordon_Bell_Prize


The ExaGraph and ExaBiome teams of ECP were selected as a Gordon 
Bell Award Finalist for their joint work entitled “Extreme-scale many-
against-many protein similarity search”. The paper describes significant 
improvements to the accuracy and scale of protein sequence similarity 
search capabilities developed under ECP. Thanks to memory-consumption 
optimizations, new parallel algorithms taking advantage of the symmetry in 
the sequence similarity matrix, GPU acceleration, and the ability to address 
load imbalance issues, they were able to perform many-against-many 
protein search on a dataset containing 405 million protein sequences with 
the PASTIS code on 3364 compute nodes of ORNL Summit 
Supercomputer in 3.4 hours, sustaining a rate of 691 million alignments per 
second and attaining ~176 TCUPs (Tera Cell Updates per second). The 
output, represented as a protein-protein sequence similarity graph, is an 
impressive 27 Terabytes. This is an improvement over the team's work 
from their SC'20 paper of nearly two orders of magnitude, and a significant 
advance over the rest of the field.

Extreme-scale many-against-many protein similarity search 

Extreme-scale many-against-many protein similarity search. O. 
Selvitopi, S. Ekanayake, G. Guidi, M. G. Awan, G. A. Pavlopoulos, 
A. Azad, N. Kyrpides, L. Oliker, K. Yelick, A. Buluc. SC 2022
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Iteration 1 Iteration 2 Iteration 3Ini-al network

Markov clustering is also multi-source (in fact, all sources) traversal:
It alternates between SpGEMM and element-wise or column-wise pruning

GrB_mxm(C, GrB_NULL, <semiring>, A, A, <desc>)
A: sparse normalized adjacency matrix
C: denser (but still sparse) pre-pruned matrix for next iteration

At each itera5on:
Step 1 (Expansion): Squaring the matrix while pruning (a) small entries, (b) denser columns
Naïve implementa5on: sparse matrix-matrix product (SpGEMM), followed by column-wise 
top-K selecQon and column-wise pruning
Step 2 (InflaQon) : taking powers entry-wise

SpGEMM use case #3: Markov Clustering



HipMCL: High-performance MCL

• HipMCL uses the most popular variant of Sparse SUMMA
• Both input matrices are broadcasted in stages and owners of 

output submatrices perform local sparse matrix multiplications
• When the number of phases increase (b decreases), A is re-

broadcasted for each phase, increasing communication

A. Azad, G. Pavlopoulos, C. Ouzounis, N. Kyrpides, A. Buluç; HipMCL: a high-performance parallel 
implementation of the Markov clustering algorithm for large-scale networks, Nucleic Acids Research, 2018
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Recap: Protein family idenTficaTon using
sparse matrices

19

2) Sparse matrix building
A: proteins-by-kmers

protein 
sequences

k-mers

protein-protein
alignments

1

2

1) K-mer Analysis
K-mer histogram

3) Overlapping via SpGEMM C 
= AAT (or ASAT)

4) Pairwise alignments
M = filter(C, alignment_score)

5) MCL iteration via SpGEMM
Mi+1 = Prune(MiMi)

3

4

protein
similarity 
network 5

PASTIS + HipMCL approach for protein family idenQficaQon

SpGEMM: Sparse matrix times sparse matrix



High-level outline

• Sparse matrices for computaDonal biology
• Sparse matrices for machine learning



Graph Neural Networks (GNNs) 

Electric Grid

Transportation

Proteomics

Power Grid

Materials Discovery

Particle Physics

GNNs are finding 
success in many 

challenging scientific 
problems that involve 
interconnected data. 

GNNs are computationally intensive to train. Distributed training need to 
scale to large GPU/node counts despite challenging sparsity.

• Graph classification
• Edge classification
• Node classification



What can I do with a GNN?
" ÅĎ· Ď»±{Ď�55±ï

Figure source: Petar Veličković



Full-graph vs. mini-batch SGD

Full-graph training: 
• Train on en<re training set
• Slower convergence per epoch
• Faster training per epoch
• Focus of this work
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Vertices Images

Mini-batch SGD:
• Train on mul.ple samples from 

training set
• Faster convergence per epoch
• Slower training per epoch
• Requires graph sampling, which 

effects accuracy and performance
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Input Graph GNN of Input Graph

• Recall that a CNN can have different *channel* dimension at each layer.
• GNNs also have different embedding dimension at each layer

Graph convolution illustrated



GNN Training

• Each node is initialized with a feature vector
– 𝐻! has initial feature vector per node (𝑛 𝑥 𝑓)

• Each node aggregates vectors of its neighbors, applies a weight
• Each layer computes gradients

𝐴 ∈ 𝑛 𝑥 𝑛

𝐻$ ∈ 𝑛 𝑥 𝑓$

𝐺$ ∈ 𝑛 𝑥 𝑓$

for i = 1 … E
for l = 1 … L

Zl = AT * Hl-1 * Wl
Hl = σ (Zl)

...
for l = L-1 … 1

Gl = A * Gl+1 * (Wl+1)T ⊙ σ’(Zl)
dH/dW = (Hl-1)T * A * Gl

𝑊$ ∈ 𝑓$ %! 𝑥 𝑓$

• A is sparse and f << n, so the main workhorse is SpMM (sparse 
matrix times tall-skinny dense matrix)



Communication avoidance (CA)
In GNN Training

Alok Tripathy, Katherine Yelick, Aydın Buluç. Reducing Communication in Graph Neural Network Training. SC’20

§ Scales with both P (GPUs – x axis) and c (replica.on layers in CA algorithms)
§ This is 1 GPU/node on Summit (all GPUs per node results in paper)
§ Expect to scale with all GPUs / node with future architectures (e.g. PerlmuOer)
§ More results (2D and 3D algorithm) and 6 GPUs/node in the paper



Feature aggregation from neighbors:
Used in Graph neural networks, graph embedding, etc.

GrB_mxm(W, GrB_NULL, <semiring>, A, H, <desc>)

A: sparse adjacency matrix, n-by-n
H: input dense matrix, n-by-f where f << n is the feature dimension
W: output dense matrix, new features

PaVern: Sparse matrix Tmes tall-skinny 
dense matrix (SpMM)

v1

v2

v5
v3

3.2  5.4  …   1.3

O(f) feature vector

v4v6

3.2  5.4  …   1.3
…

2.7  1.6  …   4.1
…

0.9  2.1  …   3.8
…

AT H

0.9  2.1  …   3.8
2.7  1.6  …   4.1



Graph aVenTon: making edge weights
learnable

SDDMM: Sampled dense-dense 
matrix multiplication

GrB_mxm(W, A, H, H, … );
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SpMM and SDDMM algorithmic duality

SDDMM and SpMM have identical data access patterns. 
Consider serial algorithms for both kernels:

for 𝑖, 𝑗 ∈ 𝑆
𝑅&' ≔ 𝑆&'(𝐴&: ⋅ 𝐵':))

R ≔ SDDMM 𝑆, 𝐴, 𝐵

for 𝑖, 𝑗 ∈ 𝑆
𝐴&: += 𝑆&'𝐵':

A ≔ SpMMA 𝑆, 𝐵

Every nonzero (i, j) requires an interac.on between row i of A and row j of B. 

As a result:

Every distributed algorithm for SpMM can be converted to an algorithm for 
SDDMM with iden<cal communica<on characteris<cs, and vice-versa.

V. Bharadwaj, A. Buluc, J. Demmel, "Distributed Memory Sparse Kernels for Machine Learning," 2022 IEEE 
International Parallel and Distributed Processing Symposium (IPDPS), 2022



CreaHng a parallel SDDMM algorithm 
from an SpMM algorithm
Consider any distributed algorithm for SpMMA that performs no 
replica1on. For all indices 𝑘 ∈ [1, 𝑟], the algorithm must (at some point)

• Co-locate 𝑆"#, 𝐴"$, 𝐵#$ on a single processor
• Perform the update 𝐴"$ += 𝑆"#𝐵#$

Transform this algorithm as follows:
1. Change the input sparse matrix 𝑆 to an output that is ini1alized to 0.
2. Change 𝐴 from an output to an input.
3. Have each processor execute the local update: 𝑆"# += 𝐴"$𝐵#$

The resul)ng algorithm performs SDDMM (up to mul)plica)on with 
the values ini)ally in 𝑺) with communica)on characteris)cs and data 

layout iden)cal to the original.



CommunicaEon Eliding Strategies for 
FusedMM: SDDMM+SpMM

Mutually 
exclusive 
optimizations



Distributed FusedMM performance
Ti
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𝜙 =
nnz 𝑆
𝑛𝑟

remains constant 

𝜙 =
nnz 𝑆
𝑛𝑟

doubles at each process 
count quadrupling 



Conclusions

• Sparse matrix techniques underlie computations from disparate 
fields: 

a. Scientific computing
b. Machine learning
c. Graph analysis
d. Bioinformatics

• GraphBLAS already seem to have the right abstraction with its 
flexible masks and semirings to be the default backend of many 
of these computations

• Extreme parallelism and data, and hence the need for distributed 
memory parallelism is here to stay and will get worse

• Communication-avoiding algorithms, and novel data 
structures for sparse matrices will be the key to overcome these 
adverse technological trends
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