
Seth Gilbert

To Catch a Thief

Accountability in distributed systems

Why do we

care about

accountability?

What is

accountability?

How do we

implement

accountability?

What should we

be working on?

How do we make trust scale?

Goal:
To build large distributed services that allow users to
cooperate and collaborate productively.

How do we make trust scale?

How do we make trust scale?

How do we make trust scale?

A recipe for a robust distributed service…

1. Replicate your data.

B CA

A recipe for a robust distributed service…

1. Replicate your data.
2. Each replicate executes an identical “operation log.”

B CA

X ç 7

X++

X = X + Y

Y++

X ç 7

X++

X = X + Y

Y++

X ç 7

X++

X = X + Y

Y++

A recipe for a robust distributed service…

1. Replicate your data.
2. Each replicate executes an identical “operation log.”
3. Use consensus protocols to agree on the logs.

B C

X ç 7

X++

X = X + Y

Y++

X ç 7

X++

X = X + Y

Y++

A recipe for a robust distributed service…

1. Replicate your data.
2. Each replicate executes an identical “operation log.”
3. Use consensus protocols to agree on the logs.
4. Make it Byzantine fault-tolerant…

A recipe for a robust distributed service…

Distributed databases

Distributed filesystems

Distributed lock servers

Blockchains

Is Byzantine Fault Tolerance enough?

What are the problems?

Efficiency / Scalability / Bandwidth Usage

Byzantine-fault tolerance is expensive:
• At least Ω(𝑛!) communication per

“agreement,” if the network is well behaved.
• Even worse when the network is not well

behaved.

Dolev, Reischuk: "Bound on information exchange for Byzantine agreement”, JACM 1985

The real bottleneck is bandwidth!

What are the problems?

Efficiency / Scalability / Bandwidth Usage

Byzantine-fault tolerance is expensive:
• At least Ω(𝑛!) communication per

“agreement,” if the network is well behaved.
• Even worse when the network is not well

behaved.

Preview:
First deterministic protocol

for partially synchronous networks
that achieves 𝑂(𝑛!) will

appear at DISC 2022.

Dolev, Reischuk: "Bound on information exchange for Byzantine agreement”, JACM 1985

The real bottleneck is bandwidth!

What are the problems?

Strong analytic assumptions, weak reality

Theory vs. practice:
• Network is well

connected and timely

• Most users follow the
protocol perfectly

Example: Eclipse Attack
Bitcoin communication is via an overlay
network, where malicious users can
hijack all the communication of an
honest node.

Example: Selfish Mining Blocs
Greedy users may work together to
violate the protocol and make more
money for everyone.

Can we improve “common case” efficiency?

Can we cope with extraordinary situations?

Can we disincentivize attacks on the system?

Big research questions today:

A little accountability goes a long way….

Accountability

If users attack the system / violate the protocol,
we can (provably and reliably) identify them.

Accountability

If users attack the system / violate the protocol,
we can (provably and reliably) identify them.

Key pioneering work in distributed computing:

PeerReview: Practical accountability for distributed systems (SOSP 2007)
by Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel

è General transformation to make any distributed system accountable!

…but there are some limitations.

Accountability

If users attack the system / violate the protocol,
we can (provably and reliably) identify them.

Real-world motivation (starting next week?):

Ethereum Proof-of-Stake depends on accountability to incentivize stakers.

• Casper implements a version of “accountable” agreement
(with “plausible liveness”).

• Stakers (i.e., processes that perform agreement) deposit a large stake.
• If they violate the protocol, their stake is “slashed”

Accountability

If users attack the system / violate the protocol,
we can (provably and reliably) identify them.

Unfortunate reality:

• In non-synchronous systems, impossible to guarantee that we will
identify malicious users.

• How do we differentiate “slow network” from “protocol violation
where message is not sent”??

Accountability

If users violate the protocol
in a way that (visibly) causes trouble
then we can (provably and reliably) identify them.

Example: Consensus (Byzantine Agreement)

• Key safety property: every process outputs the same decision.

• Accountability property: if there is disagreement, then any honest process
can produce irrefutable (cryptographic) evidence of the identities of the
attackers.

Some algorithms…

System Model

n processes

t processes are
faulty/malicious / Byzantine

Network: partially synchronous
è From some (unknown) point on,
all messages between honest
processes are delivered in a timely
and reliable fashion.

Consensus is only
achievable if t < n/3

Accountable Consensus
Input: Propose Output: Decide Output: Detect

Every process
receives a
proposal as input.

Every (honest)
process outputs a
decision.

Every (honest)
process outputs
accountability
violations.

Accountable Consensus
Input: Propose Output: Decide Output: Detect

Guarantees:
1. Conditional Agreement: If t < n/3, then all honest processes outputs the same value.
2. Conditional Validity: If t < n/3 and all honest processes start with v, then v is the only decision.
3. Conditional Termination: If t < n/3, then all honest processes terminate.
4. Accountability: If 2 honest nodes output different values, then every honest process outputs n/3

ids that provably cheated. (No honest processes are every suspected.)

Are there any accountable consensus protocols?

The Polygraph Protocol

Polygraph: Accountable Byzantine Agreement
by Pierre Civit, Seth Gilbert, and Vincent Gramoli
ICDCS 2021

Of note:
• First (provably) accountable consensus protocol.
• 𝑂 𝑛! message complexity.

• Implemented in Red Belly Blockchain

The Polygraph Protocol

Polygraph: Accountable Byzantine Agreement
by Pierre Civit, Seth Gilbert, and Vincent Gramoli
ICDCS 2021

Key ideas:
• Only decide when you have signatures proving that enough other

processes have committed to that value.
• However, attaching n signatures for every possible decision to every

message significantly increases the communication complexity.
• Main challenge: carefully limiting which signatures are sent at which

times to maintain reasonable communication complexity.

Can we make any agreement protocol accountable?

Polygraph is a good proof of concept…

But it is too expensive.

As easy as ABC…

Of note:
• Makes any agreement protocol accountable.

• When no accountability violation, minimal overhead: 𝑂 𝑛"

• When accountability violate: 𝑂 𝑛# extra communication
Every agreement protocol
must have communication

Complexity Ω(𝑛!).

(IPDPS 2022)

As easy as ABC…

* P. Sheng, G. Wang, K. Nayak, S. Kannan, P. Viswanath, BFT Protocol Forensics, in CCS 2021

*
*

(IPDPS 2022)

Base Consensus

Protocol

Communication Complexity

of the Base Consensus Protocol

Communication Complexity

of the Accountable Counterpart

in the Good Case

Accountability

Threshold
Paper

PBFT O(n
4
) O(n

4
) 2n/3 Sheng et al. [?]

HotStu↵ O(n
3
) O(n

3
) 2n/3 Sheng et al. [?]

DBFT/Polygraph O(n
4
) O(n

4
) n Civit et al. [?]

ABC X O(X) n this paper

<latexit sha1_base64="dIYqeM3XqjiTsoAm8MJIQ/BZ8S4=">AAAF+nicvVTLbhMxFJ1CAiW8UliysWiLyibNpEU0Eou2QbQSAgJ9ok6oPB5PxqrHHtmetpExf8KGBQix5UvY8Td4JpOSRyvYwJWsub4+vuf4zrX9hBKp6vWfU5cul8pXrk5fq1y/cfPW7erMnV3JU4HwDuKUi30fSkwJwzuKKIr3E4Fh7FO85x+1svW9Yywk4Wxb9RLciWGXkZAgqGzocKZU9QRm+ATxOIYs0B4UAvakElihyGi31jAVz8ddwrSCfkqhMBplZoAXZaQVYG0csaoNssOsW2WgxZnETKYSeB5oC664le1hSzbAgwcXZmhZXSkr5NpUcULxKVG9LBcPgYowGCP5BwxrCPGU2Z00I7IeFgkUKkMQliM2OA9Aywr5W9azlIQWXNuRwDLiNBhPodswwdazmH7JhwrfXn+2Pf/BQ0RhjaD9bdxtNpuJgEjZE1GTg2yKuVcL7N3ywzkzOWkwsAiW8slWhFkXeDhOIo0VgLRmitzPX27t7jXcfr55XQAVPrUtdwHUANDvDS//bHK1pdIwHKh9++KN2xxgBqKWhhUu/QeFIxL1U1vNxTanva6ASWTOCisgYY26uxL4oTLn1HSyqKwfbZFjos6V29rYaNQHYv8EM6Myvfzaa4EDs7beKuj3M8ZCyP6wDPvNy+CHWkVEgiTvJgN+91NlpOMOq7P1Wj03MOm4hTPrFNY+rP7wAo7SGDOFKJTywK0nqqPtBSGIYvt8pBInEB3BLj6wLoMxlh2dn8GAeRsJQMiFHUyBPDq8Q8NYyl7sW2QMVSTH17LgeWsHqQpXOpqwJFWYoT5RmFKgOMjeQRAQgZGiPetAJIjVClAEs4tjX8uKLYI7fuRJZ7dRc5drj143ZlefFOWYdu45950Fx3UeO6vOptN2dhxUOil9LH0ufSm/L38qfy1/60MvTRV77jojVv7+C+Lb7ZU=</latexit>

ABC Architecture

Accountable Confirmer:
• Terminating convergence: if t < n/3 and all honest processes submit the same tentative

decision, then that value is output by all honest processes.
• Validity: honest processes only output a decision submitted by honest processes.
• Accountability: if 2 correct processes output different decisions, every process outputs

proof of culpability for at least n/3 processes.

black box
Byzantine
agreement
protocol

Accountable
Confirmer

proposal
tentative
decision

decision

detection

Note: if > n/3 malicious, or if agreement protocol fails,
then confirmer can output almost anything, or not terminate at all!

ABC Architecture

Accountable Agreement Analysis:
• Conditional Agreemeent: if t < n/3, black box returns same tentative decision to all, so

confirmer outputs that decision.

• Conditional Validity: follows from validity of black box + validity confirmer.
• Conditional Termination: if t < n/3, black box terminates and returns same tentative

decision to all, so confirmer terminates.

• Accountability: if two decisions differ, confirmer guarantees evidence of n/3 cheaters.

black box
Byzantine
agreement
protocol

Accountable
Confirmer

proposal
tentative
decision

decision

detection

ABC Architecture

Simple Accountable Confirmer Implementation:
• Broadcast (signed) tentative decision to all.

• If 2n/3 + 1 broadcast same decision, output that decision.

• Broadcast decision and 2n/3 + 1 signed broadcast messages to all.

• If disagreement, then find intersection between (2n/3+1) and (2n/3+1) signed sets of
size at least n/3.

black box
Byzantine
agreement
protocol

Accountable
Confirmer

proposal
tentative
decision

decision

detection

Ignoring floors and ceilings…

ABC Architecture

Simple Accountable Confirmer Implementation:
• Broadcast (signed) tentative decision to all.

• If 2n/3 + 1 broadcast same decision, output that decision.

• Broadcast decision and 2n/3 + 1 signed broadcast messages to all.

• If disagreement, then find intersection between (2n/3+1) and (2n/3+1) signed sets of
size at least n/3.

black box
Byzantine
agreement
protocol

Accountable
Confirmer

proposal
tentative
decision

decision

detection

Ignoring floors and ceilings…

Use threshold signatures
to reduce

communication complexity

ABC Architecture

FAQ:
• How does the confirmer know who cheated inside the black box? It doesn’t.

• What if everyone was honest during the confirmer, but not during the black box?
Then the confirmer will output nothing!

• Can an honest process be accused because of a bad decision by the black box protocol
(that was caused by cheating from others)?
No, only processes that cheat (during the confirmer) are accused.

black box
Byzantine
agreement
protocol

Accountable
Confirmer

proposal
tentative
decision

decision

detection

As easy as ABC…

Of note:
• Makes any agreement protocol accountable.

• When no accountability violation, minimal overhead: 𝑂 𝑛"

• When accountability violate: 𝑂 𝑛# extra communication
Every agreement protocol
must have communication

Complexity Ω(𝑛!).

(IPDPS 2022)

Can other distributed algorithms be
accountable?

What type of attacks can we detect?

How can we design protocols that are easily
made accountable?

A few more questions:

Crime and Punishment…

Of note:
• Necessary and sufficient conditions for accountability.

• Classification of failure types.

• Identification of key aspects for making a protocol accountable.

(ICDCS 2022)

Types of failures (i.e., attacks)…

Omission
Faults:

process does
not send

message that
it was

supposed to

Commission
Faults:
process

sends illegal
message

undetectable detectable

Types of failures (i.e., attacks)…

Omission
Faults:

process does
not send

message that
it was

supposed to

Evasion Faults:
Send a message without justification

Evasion
Faults

Equivocation
Faults

Equivocation Faults:
Send two conflicting messages

Equivocation:Evasion faults are (provably)
expensive to detect.

Equivocation faults are easy to
detect.

Crime and Punishment…

Implications:
• Design a protocol where the only way to violate protocol safety is via

malicious equivocation.

• Or: we can transform protocol into one where only equivocation faults

cause problems, which can be detected.

Detecting commission faults is necessary and sufficient.

Evasion faults are expensive to detect, while equivocation faults are cheap to
detect.

What now?

Goal: Disincentivize Attacks

Better disincentives:
• Can we detect attempted attacks instead of only successful attacks?

• Attack success may depend on network conditions (and random luck);

the attacker may need to try many times before succeeding.

• Each attack exposes them to risk of detection…

By detecting attacks, we can slash accounts, sue in court, or kick users
out of the system.

Goal: Communication Efficiency

Can we reduce the communication for accountability?
• No, not for deterministic protocols.

• And not under certain assumptions about what crypto can do.

• Maybe using randomization and new crypto (accountable signatures!).

Accountability transformations add little overhead (especially in the
good case where there is no attack).

Goal: Communication Efficiency

Can we trade fault-tolerance for robustness?
• What if protocol tolerates fewer failures…

• …but also uses accountability to catch the thiefs.

• Rely on disincentives rather than high levels of fault-tolerance.

• Less fault-tolerance è more efficient protocol?

Byzantine agreement remains expensive

Accountability is a useful and important property for
distributed algorithms.

Accountable protocols can disincentivize attacks and (perhaps) improve
efficiency.

Accountable agreement is easy!

Our simple ABC transformation is efficient and low overhead.

Many exciting directions…

Detect more attacks, game theoretic analysis, trade robustness for
performance, reduce communication complexity, …

To Catch a Thief

