Online List Labeling: Breaking the $\log^2 n$ Barrier

To Appear in FOCS 2022

Michael A. Bender

Stony Brook University

Alex Conway

Martín Farach-Colton

Rutgers University

Hanna Komlós

Rutgers University

William Kuszmaul

Nicole Wein DIMACS

The List Labeling Problem

Maintain *n* elements in sorted order in an array of size *m*, $m \ge n(1 + \Theta(1))$

Goal: minimize # elements moved per insertion/deletion (cost)

List Labeling — Library Analogy

A librarian wants to store books alphabetically on a shelf

No gaps between books \implies many books move after each insertion

Library with no gaps

Library with gaps

Formulations and (Re)Discoveries

Priority queues [Itai, Konheim, Rodeh, ICALP'81]

File maintenance [Willard, STOC'82, SIGMOD'86]

Order maintenance [Dietz, STOC'82] [Dietz, Sleator, STOC'87]

Balanced binary trees & scapegoat trees [Andersson, WADS'89] [Andersson, Lai, SWAT'90] [Galperin, Rivest, SODA'93]

Locality preserving dictionaries [Raman, PODS'99]

Sample Applications

Cache-oblivious B-trees

[Bender, Demaine, Farach-Colton, FOCS'00] [Bender, Demaine, Iacono, Wu, SODA'02] [Brodal, Fagerberg, Jacob, SODA'02] [Bender, Fineman, Gilbert, Kuszmaul, SPAA'16]

Multi-dimensional searching

[Nekrich, Algorithmica'07] [Nekrich, Comp Geom'09] [Mortensen, SODA'03] [Toss, Pahins, Raffin, Comba Computers & Graphics'18]

Packed-memory arrays and density-control arrays

[Hofri, Konheim, SICOMP'87] [Katriel, '02] [Bender, Demaine, Farach-Colton, FOCS'00] [Bender, Hu, PODS'06] [Itai, Katriel, '07] [De Leo, Boncz, ICDE'19] [Bender, Fineman, Gilbert, Kopelowitz, Montes, SODA'17] [Bender, Berry, Johnson, Kroeger, McCauley, Phillips, Simon, Singh, Zage, PODS'16]

Particle simulation

[Durand, Raffin, Faure, RIPHYS'12]

Database join algorithms

[Khayyat, Lucia, Singh, Ouzzani, Papotti, Quiané-Ruiz, Tang, Kalnis, VLDB'17]

Managing dynamic sparse graphs

[Wheatman, Burns, IEEE BigData'21] [Wheatman, Xu, HPEC 2018, ALENEX'21] [Pandey, Wheatman, Xu, Buluc, SIGMOD'21] [De Leo, Boncz, GRADES and NDA'19, VLDB'21]

Controller problem

[Emek, Korman, Distributed Computing'11]

The Classical Solution [Itai, Konheim, Rodeh '81]

Step 1: Partition the array into nested intervals

The Classical Solution [Itai, Konheim, Rodeh '81]

Invariant: The density of an interval at level *i* satisfies $d_i \leq \tau_i$

Invariant: The density of an interval at level *i* satisfies $d_i \leq \tau_i$

Invariant: The density of an interval at level *i* satisfies $d_i \leq \tau_i$

→ When an interval is over density, go up until $d_j \leq \tau_j$ and rebalance smoothly

Invariant: The density of an interval at level *i* satisfies $d_i \leq \tau_i$

→ When an interval is over density, go up until $d_j \leq \tau_j$ and rebalance smoothly

Invariant: The density of an interval at level *i* satisfies $d_i \leq \tau_i$

→ When an interval is over density, go up until $d_j \leq \tau_j$ and rebalance smoothly

Invariant: The density of an interval at level *i* satisfies $d_i \leq \tau_i$

→ When an interval is over density, go up until $d_j \leq \tau_j$ and rebalance smoothly

 $d_2 = 0.56$ $- \tau_2 = 0.59$ $d_3 = 0.63$ -1 $\tau_3 = 0.71$ $d_4 = 0.50$ $- \tau_4 = 0.84$ $d_5 = 0.50$ $- \tau_5 = 1.0$ Ε F Μ В С D G H Κ 0 Q R S T [IKR '81]

 $d_1 = 0.47$

-1 $\tau_1 = 0.5$

Invariant: The density of an interval at level *i* satisfies $d_i \leq \tau_i$

The density thresholds decrease for larger intervals

 $\tau_1 = 0.5$ $d_2 = 0.56$ $- \tau_2 = 0.59$ $d_3 = 0.63$ -1 $\tau_3 = 0.71$ $d_4 = 0.50$ $- \tau_4 = 0.84$ $d_5 = 0.50$ $--- \tau_5 = 1.0$ D Ε F Μ В С G Η Κ 0 Q R S T [IKR '81]

 $d_1 = 0.47$

Consider an interval at level *i* of size *s*

- Last time it was rebalanced, it had density at most τ_{i-1}
- On next rebalance, it has density at least $\tau_i = (1 + 1/\log n)\tau_{i-1}$
- So we've added $\Omega(s/\log n)$ elements

Consider an interval at level *i* of size *s*

- Last time it was rebalanced, it had density at most τ_{i-1}
- On next rebalance, it has density at least $\tau_i = (1 + 1/\log n)\tau_{i-1}$
- So we've added $\Omega(s/\log n)$ elements
- The amortized cost of a rebalance at a specific level is $O(\log n)$

Consider an interval at level *i* of size *s*

- Last time it was rebalanced, it had density at most τ_{i-1}
- On next rebalance, it has density at least $\tau_i = (1 + 1/\log n)\tau_{i-1}$
- So we've added $\Omega(s/\log n)$ elements
- The amortized cost of a rebalance at a specific level is $O(\log n)$
- \rightarrow Each element can be rebalanced at each of its $\log n$ enclosing intervals

Consider an interval at level *i* of size *s*

- Last time it was rebalanced, it had density at most τ_{i-1}
- On next rebalance, it has density at least $\tau_i = (1 + 1/\log n)\tau_{i-1}$
- So we've added $\Omega(s/\log n)$ elements
- The amortized cost of a rebalance at a specific level is $O(\log n)$
- → Each element can be rebalanced at each of its $\log n$ enclosing intervals So the total cost is:

So the total cost is:

$\log n$	amortized cost per level
$\times \log n$	levels
$= \log^2 n$	total cost

[IKR '81]

 $O(\log^2 n)$

Upper Bound

[Itai, Konheim, Rodeh '81]

Open Problem

Open Problem

Upper Bound

Unimproved

Formulations and (Re)Discoveries

Open Problem

Evenly spaced

Our Result:

Theorem: Algorithm for list labeling with $O(\log^{3/2} n)$ expected cost per insertion/deletion

Our Results

Our Results

Upper Bound

Algorithm with $O(\log^{3/2} n)$ expected cost per update

Matching lower bound for History-Independent algorithms

Lower Bound

Our Results

Our Results

Upper Bound

Algorithm with $O(\log^{3/2} n)$ expected cost per update

Matching lower bound for History-Independent algorithms

Lower Bound

So what is history independence?

History Independence — Definition

History Independence: For our problem, the distribution of occupied slots depends only on number of elements currently present

Surprising result:

• $O(\log^2 n)$ history-independent algorithm

[Bender, Berry, Johnson, Kroeger, McCauley, Phillips, Simon, Singh, Zage, PODS'16]

Surprising result:

- O(log² n) history-independent algorithm
 [Bender, Berry, Johnson, Kroeger, McCauley, Phillips, Simon, Singh, Zage, PODS'16]
- No increase in cost/runtime to achieve history independence

Surprising result:

- O(log² n) history-independent algorithm
 [Bender, Berry, Johnson, Kroeger, McCauley, Phillips, Simon, Singh, Zage, PODS'16]
- No increase in cost/runtime to achieve history independence

- Previously viewed as a desirable property to achieve in its own right (e.g. for security guarantees)
- In contrast, we use history independence to achieve a faster algorithm

Surprising result:

- O(log² n) history-independent algorithm
 [Bender, Berry, Johnson, Kroeger, McCauley, Phillips, Simon, Singh, Zage, PODS'16]
- No increase in cost/runtime to achieve history independence

Their main idea: Use randomness to determine left/right split of elements

- Reformulate density constraint as an imbalance constraint between the left/right subintervals
- Maintains uniform distribution of left/right imbalances satisfying the constraint
- In contrast, classical algorithm always splits evenly when rebuilding

Looser balance thresholds \implies Less frequent rebalancing \implies Lower Cost

Looser balance thresholds \implies Less frequent rebalancing \implies Lower Cost

Roughly speaking, densities differ by a $\log^{-1/2} n$ factor instead of $\log^{-1} n$

Looser balance thresholds \implies Less frequent rebalancing \implies Lower Cost

Roughly speaking, densities differ by a $\log^{-1/2} n$ factor instead of $\log^{-1} n$

Pro: Cost of maintaining our new invariant: $O(\log n) O(\log^{1/2} n)$ at each level

 \implies Final cost of $O(\log^{3/2} n)$

Looser balance thresholds \implies Less frequent rebalancing \implies Lower Cost

Roughly speaking, densities differ by a $\log^{-1/2} n$ factor instead of $\log^{-1} n$

Pro: Cost of maintaining our new invariant: $O(\log n) O(\log^{1/2} n)$ at each level

 \implies Final cost of $O(\log^{3/2} n)$

Con: Some intervals may overflow

Problem: Overflows Can Happen

Con: Some intervals may overflow

• Density can increase by a factor of $1 + \Theta(\log^{-1/2} n)$ at each level:

Problem: Overflows Can Happen

Con: Some intervals may overflow

• Density can increase by a factor of $1 + \Theta(\log^{-1/2} n)$ at each level:

→ Density at bottom level: can be $d(1 + \Theta(\log^{-1/2} n))^{\log n} = \omega(1)$

Intuition: Revert to classical solution in regions that get "too" dense

Intuition: Revert to classical solution in regions that get "too" dense

• Higher density \implies More stringent balance condition \implies Prevents overflow

Intuition: Revert to classical solution in regions that get "too" dense

- Higher density
 —> More stringent balance condition
 —> Prevents overflow
- Lower density \implies Less stringent balance condition \implies Less work

Intuition: Revert to classical solution in regions that get "too" dense

- Higher density \implies More stringent balance condition \implies Prevents overflow
 - $O(\log^2 n) \cos t$
- Lower density \implies Less stringent balance condition \implies Less work
 - → $O(\log^{3/2} n) \cos t$

Intuition: Revert to classical solution in regions that get "too" dense

- Higher density \implies More stringent balance condition \implies Prevents overflow
 - $O(\log^2 n) \cos t$
- Lower density \Longrightarrow Less stringent balance condition \Longrightarrow Less work

→ $O(\log^{3/2} n) \cos t$

We show: Vast majority of the array is sparse $\implies O(\log^{3/2} n)$ expected total cost

Last Idea: Eliminate Potential Vulnerabilities

Hide the dense regions from the adversary

Last Idea: Eliminate Potential Vulnerabilities

Hide the dense regions from the adversary

- Our strategy may create some dense regions in the array
 - An adversary could target and exploit them to drive up cost

Last Idea: Eliminate Potential Vulnerabilities

Hide the dense regions from the adversary

- Our strategy may create some dense regions in the array
 - An adversary could target and exploit them to drive up cost

• **Solution:** History independence!

- The adversary can neither find nor create dense regions
- Additional idea: Apply a random shift See the paper

Prior $O(\log^2 n)$ History-Independent Algorithm

[BBJKMPSSZ '16]

Prior $O(\log^2 n)$ History-Independent Algorithm

[BBJKMPSSZ '16]

Loosen rebalancing rule

Speeds up the algorithm

Prior $O(\log^2 n)$ History-Independent Algorithm

[BBJKMPSSZ '16]

Loosen rebalancing rule

Speeds up the algorithm

Stricter rebalancing rule in dense regions — Prevents overflow

Prior $O(\log^2 n)$ History-Independent Algorithm

[BBJKMPSSZ '16]

Loosen rebalancing rule

Speeds up the algorithm

Stricter rebalancing rule in dense regions — Prevents overflow

Smoothly vary between rebalance rules – Reduces cost from $\tilde{O}(\log^{3/2} n)$ to $O(\log^{3/2} n)$

Summary of Results & New Open Problem

Thank you!

- Michael A. Bender, Stony Brook University <u>bender@cs.stonybrook.edu</u>
- Alex Conway, VMWare Research <u>aconway@vmware.com</u>
- Martín Farach-Colton, Rutgers University <u>martin@farach-colton.com</u>
- Hanna Komlós, Rutgers University <u>hkomlos@gmail.com</u>
- William Kuszmaul, MIT <u>william.kuszmaul@gmail.com</u>
- Nicole Wein, DIMACS <u>nicole.wein@rutgers.edu</u>