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Maintain  elements in sorted order in an array of size ,   


Goal: minimize # elements moved per insertion/deletion (cost)


n m m ≥ n(1 + Θ(1))

The List Labeling Problem



List Labeling — Library Analogy
A librarian wants to store books alphabetically on a shelf


No gaps between books  many books move after each insertion
⟹

Library with no gaps Library with gaps



Formulations and (Re)Discoveries
Priority queues 
[Itai, Konheim, Rodeh, ICALP’81]


File maintenance 
[Willard, STOC’82, SIGMOD’86]


Order maintenance 
[Dietz, STOC’82] [Dietz, Sleator, STOC’87] 

Balanced binary trees & scapegoat trees 
[Andersson, WADS’89] [Andersson, Lai, SWAT’90] [Galperin, Rivest, SODA’93] 

Locality preserving dictionaries  
[Raman, PODS’99]



Sample Applications
Cache-oblivious B-trees  
[Bender, Demaine, Farach-Colton, FOCS’00] [Bender, Demaine, Iacono, Wu, SODA’02] [Brodal, Fagerberg, Jacob, SODA’02] 
[Bender, Fineman, Gilbert, Kuszmaul, SPAA’16]


Multi-dimensional searching  
[Nekrich, Algorithmica’07] [Nekrich, Comp Geom’09] [Mortensen, SODA’03] [Toss, Pahins, Raffin, Comba Computers & 
Graphics’18]


Packed-memory arrays and density-control arrays 
[Hofri, Konheim, SICOMP’87] [Katriel, ’02] [Bender, Demaine, Farach-Colton, FOCS’00] [Bender, Hu, PODS’06] [Itai, Katriel, ’07] 
[De Leo, Boncz, ICDE’19] [Bender, Fineman, Gilbert, Kopelowitz, Montes, SODA’17] [Bender, Berry, Johnson, Kroeger, McCauley, 
Phillips, Simon, Singh, Zage, PODS’16] 


Particle simulation 
[Durand, Raffin, Faure, RIPHYS’12]


Database join algorithms  
[Khayyat, Lucia, Singh, Ouzzani, Papotti, Quiané-Ruiz, Tang, Kalnis, VLDB’17]


Managing dynamic sparse graphs 
[Wheatman, Burns, IEEE BigData’21] [Wheatman, Xu, HPEC 2018, ALENEX’21] [Pandey, Wheatman, Xu, Buluc, SIGMOD’21] [De 
Leo, Boncz, GRADES and NDA’19, VLDB’21]


Controller problem  
[Emek, Korman, Distributed Computing’11]



Step 1: Partition the array into nested intervals

The Classical Solution

τ5 = 1.0

τ1 = 0.5

OMKA B D HG SQ TC E LF R [IKR ’81]

τ4 = 0.84

τ3 = 0.71

τ2 = 0.59

[Itai, Konheim, Rodeh ’81]



Invariant: The density of an interval at level  satisfies i di ≤ τi

The Classical Solution

τ5 = 1.0

τ1 = 0.5

OMKA B D HG SQ TC E LF R [IKR ’81]

τ4 = 0.84

τ3 = 0.71

τ2 = 0.59

[Itai, Konheim, Rodeh ’81]



Invariant: The density of an interval at level  satisfies i di ≤ τi

The Classical Solution

τ5 = 1.0

τ1 = 0.5
d1 =

15 elements
32 slots

= 0.47

d2 =
9
16

= 0.56

d3 = 0.88

d4 = 1.0

d5 = 1.0

OMKA B D HG SQ TC E LF R [IKR ’81]

τ3 = 0.71

τ4 = 0.84

τ2 = 0.59



Invariant: The density of an interval at level  satisfies 

➡ When an interval is over density, go up until  and rebalance smoothly
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Invariant: The density of an interval at level  satisfies 

➡ When an interval is over density, go up until  and rebalance smoothly

i di ≤ τi
dj ≤ τj

The Classical Solution
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Invariant: The density of an interval at level  satisfies 

➡ The density thresholds decrease for larger intervals

i di ≤ τi

The Classical Solution
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Invariant: The density of an interval at level  satisfies 

➡ The density thresholds decrease for larger intervals

i di ≤ τi

The Classical Solution

τ5 = 1.0

τ1 = 0.5

d3 = 0.63

d2 = 0.56

d1 = 0.47

OMKA B D HG SQ TC E LF R [IKR ’81]

τ3 = 0.71

τ4 = 0.84

τ2 = 0.59

: factor of 
 

for  levels

Δ(τi)
(1 + 1/log n)

log n

d4 = 0.50

d5 = 0.50



The Classical Solution
Consider an interval at level  of size 


• Last time it was rebalanced, it had density at most 


• On next rebalance, it has density at least  


• So we’ve added  elements


i s

τi−1

τi = (1 + 1/log n)τi−1

Ω(s/log n)

[IKR ’81]



The Classical Solution

[IKR ’81]

➡ The amortized cost of a rebalance at a specific level is O(log n)
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The Classical Solution

[IKR ’81]

➡ Each element can be rebalanced at each of its  enclosing intervalslog n
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The Classical Solution

[IKR ’81]

So the total cost is:


            amortized cost per level


       levels


     total cost

log n

× log n

= log2 n

➡ Each element can be rebalanced at each of its  enclosing intervalslog n

➡ The amortized cost of a rebalance at a specific level is O(log n)

Consider an interval at level  of size 


• Last time it was rebalanced, it had density at most 


• On next rebalance, it has density at least  


• So we’ve added  elements


i s

τi−1

τi = (1 + 1/log n)τi−1

Ω(s/log n)
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Formulations and (Re)Discoveries
Priority queues 
[Itai, Konheim, Rodeh, ICALP’81]


File maintenance 
[Willard, STOC’82, SIGMOD’86]


Order maintenance 
[Dietz, STOC’82] [Dietz, Sleator, STOC’87] 

Balanced binary trees & scapegoat trees 
[Andersson, WADS’89] [Andersson, Lai, SWAT’90] [Galperin, Rivest, SODA’93] 

Locality preserving dictionaries  
[Raman, PODS’99]

Rediscovered classical 
algorithm

Rediscovered algorithm, 
formulated as a tree

Rediscovered algorithm, 
but on a larger array

Deamortization of the 
classical algorithm

Classical  
algorithm

O(log2 n)



Open Problem

O(log2 n)

Ω(log n) [Bulánek, Koucký, Saks ’13]

Upper Bound

Lower Bound

Can we close 
the gap?

[Itai, Konheim, Rodeh ’81] Unimproved

Lower Bound

Upper Bound

Improved for specific cases



Prior Work

O(log2 n)

Ω(log n) [Bulánek, Koucký, Saks ’13]

Upper Bound

Lower Bound

[Dietz, Seiferas, Zhang ’04]
Lower Bound

DeterministicGeneral

TightCan we close 
the gap?

[Itai, Konheim, Rodeh ’81]
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Upper Bound

Lower Bound

Lower Bound

Deterministic Smooth

[Dietz and Zhang ’90]
Lower Bound

General

Tight TightCan we close 
the gap?
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Evenly spaced 
rebalances only

[Dietz, Seiferas, Zhang ’04]



Prior Work

O(log2 n)

Ω(log n) [Bulánek, Koucký, Saks ’13]

Upper Bound

Lower Bound

Lower Bound

Deterministic Smooth

[Dietz and Zhang ’90]
Lower Bound

General

Tight TightCan we close 
the gap?

[Itai, Konheim, Rodeh ’81]

The classical solution is both 
deterministic and smooth

[Dietz, Seiferas, Zhang ’04]



Our Result:

Theorem: Algorithm for list labeling with 


 expected cost per insertion/deletion O(log3/2 n)



Our Results

O(log2 n)
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Upper Bound

Lower Bound

O(log3/2 n)

Our Results

Algorithm with   
expected cost per update

O(log3/2 n)

Prior Work
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[Bulánek, Koucký, Saks ’13]

[Itai, Konheim, Rodeh ’81]
Upper Bound
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[Itai, Konheim, Rodeh ’81]

Matching lower bound for 

History-Independent algorithms


Upper Bound

Lower Bound

So what is history independence?



History Independence: For our problem, the distribution of occupied slots 
depends only on number of elements currently present

History Independence — Definition

E LB F H J O QD

E LH J TI M SP



Surprising result: 


•  history-independent algorithm

 [Bender, Berry, Johnson, Kroeger, McCauley, Phillips, Simon, Singh, Zage, PODS’16]
O(log2 n)

History Independence — Prior Work
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Surprising result: 


•  history-independent algorithm

 [Bender, Berry, Johnson, Kroeger, McCauley, Phillips, Simon, Singh, Zage, PODS’16]


➡ No increase in cost/runtime to achieve history independence

O(log2 n)

History Independence — Prior Work

• Previously viewed as a desirable property to achieve in its own right 

(e.g. for security guarantees)


• In contrast, we use history independence to achieve a faster algorithm



Surprising result: 


•  history-independent algorithm

 [Bender, Berry, Johnson, Kroeger, McCauley, Phillips, Simon, Singh, Zage, PODS’16]


➡ No increase in cost/runtime to achieve history independence 


Their main idea: Use randomness to determine left/right split of elements

➡ Reformulate density constraint as an imbalance constraint between the left/right 

subintervals


➡ Maintains uniform distribution of left/right imbalances satisfying the constraint


➡ In contrast, classical algorithm always splits evenly when rebuilding

O(log2 n)

History Independence — Prior Work
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Our Main Idea: Rebalance Less Frequently
Looser balance thresholds  Less frequent rebalancing  Lower Cost


Roughly speaking, densities differ by a  factor instead of 


Pro: Cost of maintaining our new invariant:   at each level


 Final cost of 


Con: Some intervals may overflow

⟹ ⟹

log−1/2 n log−1 n

O(log n) O(log1/2 n)

⟹ O(log3/2 n) 😀

😟



Problem: Overflows Can Happen

d(1 + Θ(log−1/2 n))2

density
= d(1 + Θ(log−1/2 n))

density
= d(1 − Θ(log−1/2 n))

d(1 + Θ(log−1/2 n))4

density: d = O(1)

OMKA C G I NLB D H J R SQ T

d(1 + Θ(log−1/2 n))3

Con: Some intervals may overflow


• Density can increase by a factor of  at each level: 1 + Θ(log−1/2 n)



Problem: Overflows Can Happen
Con: Some intervals may overflow


• Density can increase by a factor of  at each level: 

➡ Density at bottom level: can be  

1 + Θ(log−1/2 n)

d(1 + Θ(log−1/2 n))log n = ω(1)
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Next Idea: Rebalance Condition Depends on Density
Intuition: Revert to classical solution in regions that get “too” dense


•  Higher density  More stringent balance condition  Prevents overflow
⟹ ⟹

•  Lower density  Less stringent balance condition  Less work
⟹ ⟹

➡  costO(log2 n)

➡  cost
O(log3/2 n)

We show: Vast majority of the array is sparse   expected total cost⟹ O(log3/2 n)



Hide the dense regions from the adversary

Last Idea: Eliminate Potential Vulnerabilities
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Hide the dense regions from the adversary


•  Our strategy may create some dense regions in the array


➡ An adversary could target and exploit them to drive up cost


•  Solution: History independence!


➡ The adversary can neither find nor create dense regions


➡ Additional idea: Apply a random shift — See the paper

Last Idea: Eliminate Potential Vulnerabilities
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The Final  AlgorithmO(log3/2 n)

Prior  History-Independent AlgorithmO(log2 n)

Loosen rebalancing rule

— Speeds up the algorithm

Stricter rebalancing rule in dense regions

— Prevents overflow

Smoothly vary between rebalance rules                                                              

— Reduces cost from  to Õ(log3/2 n) O(log3/2 n)

 [BBJKMPSSZ ’16]



Summary of Results & New Open Problem

O(log3/2 n)

Ω(log n) [Bulánek, Koucký, Saks ’13]

Upper Bound

Lower Bound

[This Talk]
Lower Bound

History IndependentGeneral

TightCan we close 
the gap?

[This Talk]



Thank you!

✦ Michael A. Bender, Stony Brook University — bender@cs.stonybrook.edu

✦ Alex Conway, VMWare Research — aconway@vmware.com

✦ Martín Farach-Colton, Rutgers University — martin@farach-colton.com

✦ Hanna Komlós, Rutgers University —hkomlos@gmail.com 

✦ William Kuszmaul, MIT — william.kuszmaul@gmail.com

✦ Nicole Wein, DIMACS — nicole.wein@rutgers.edu


