
Online List Labeling:

Breaking the Barrierlog2 n

Michael A. Bender
Stony Brook University

Alex Conway
VMWare Research

Martín Farach-Colton
Rutgers University

Hanna Komlós
Rutgers University

William Kuszmaul
MIT

Nicole Wein
DIMACS

To Appear in FOCS 2022

Maintain elements in sorted order in an array of size ,

Goal: minimize # elements moved per insertion/deletion (cost)

n m m ≥ n(1 + Θ(1))

The List Labeling Problem

List Labeling — Library Analogy
A librarian wants to store books alphabetically on a shelf

No gaps between books many books move after each insertion
⟹

Library with no gaps Library with gaps

Formulations and (Re)Discoveries
Priority queues 
[Itai, Konheim, Rodeh, ICALP’81]

File maintenance 
[Willard, STOC’82, SIGMOD’86]

Order maintenance 
[Dietz, STOC’82] [Dietz, Sleator, STOC’87]

Balanced binary trees & scapegoat trees 
[Andersson, WADS’89] [Andersson, Lai, SWAT’90] [Galperin, Rivest, SODA’93]

Locality preserving dictionaries  
[Raman, PODS’99]

Sample Applications
Cache-oblivious B-trees  
[Bender, Demaine, Farach-Colton, FOCS’00] [Bender, Demaine, Iacono, Wu, SODA’02] [Brodal, Fagerberg, Jacob, SODA’02]
[Bender, Fineman, Gilbert, Kuszmaul, SPAA’16]

Multi-dimensional searching  
[Nekrich, Algorithmica’07] [Nekrich, Comp Geom’09] [Mortensen, SODA’03] [Toss, Pahins, Raffin, Comba Computers &
Graphics’18]

Packed-memory arrays and density-control arrays 
[Hofri, Konheim, SICOMP’87] [Katriel, ’02] [Bender, Demaine, Farach-Colton, FOCS’00] [Bender, Hu, PODS’06] [Itai, Katriel, ’07]
[De Leo, Boncz, ICDE’19] [Bender, Fineman, Gilbert, Kopelowitz, Montes, SODA’17] [Bender, Berry, Johnson, Kroeger, McCauley,
Phillips, Simon, Singh, Zage, PODS’16]

Particle simulation 
[Durand, Raffin, Faure, RIPHYS’12]

Database join algorithms  
[Khayyat, Lucia, Singh, Ouzzani, Papotti, Quiané-Ruiz, Tang, Kalnis, VLDB’17]

Managing dynamic sparse graphs 
[Wheatman, Burns, IEEE BigData’21] [Wheatman, Xu, HPEC 2018, ALENEX’21] [Pandey, Wheatman, Xu, Buluc, SIGMOD’21] [De
Leo, Boncz, GRADES and NDA’19, VLDB’21]

Controller problem  
[Emek, Korman, Distributed Computing’11]

Step 1: Partition the array into nested intervals

The Classical Solution

τ5 = 1.0

τ1 = 0.5

OMKA B D HG SQ TC E LF R [IKR ’81]

τ4 = 0.84

τ3 = 0.71

τ2 = 0.59

[Itai, Konheim, Rodeh ’81]

Invariant: The density of an interval at level satisfies i di ≤ τi

The Classical Solution

τ5 = 1.0

τ1 = 0.5

OMKA B D HG SQ TC E LF R [IKR ’81]

τ4 = 0.84

τ3 = 0.71

τ2 = 0.59

[Itai, Konheim, Rodeh ’81]

Invariant: The density of an interval at level satisfies i di ≤ τi

The Classical Solution

τ5 = 1.0

τ1 = 0.5
d1 =

15 elements
32 slots

= 0.47

d2 =
9
16

= 0.56

d3 = 0.88

d4 = 1.0

d5 = 1.0

OMKA B D HG SQ TC E LF R [IKR ’81]

τ3 = 0.71

τ4 = 0.84

τ2 = 0.59

Invariant: The density of an interval at level satisfies

➡ When an interval is over density, go up until and rebalance smoothly

i di ≤ τi
dj ≤ τj

The Classical Solution

τ5 = 1.0

τ1 = 0.5

OMKA B D HG SQ TC E LF R [IKR ’81]

τ3 = 0.71

τ4 = 0.84

τ2 = 0.59

Invariant: The density of an interval at level satisfies

➡ When an interval is over density, go up until and rebalance smoothly

i di ≤ τi
dj ≤ τj

The Classical Solution

τ5 = 1.0

τ1 = 0.5

OMKA B D HG SQ TC E LF R [IKR ’81]

τ3 = 0.71

τ4 = 0.84

τ2 = 0.59

Invariant: The density of an interval at level satisfies

➡ When an interval is over density, go up until and rebalance smoothly

i di ≤ τi
dj ≤ τj

The Classical Solution

τ5 = 1.0

τ1 = 0.5

OMKA B D SQ TC E L R [IKR ’81]

τ3 = 0.71

τ4 = 0.84

τ2 = 0.59

HGF

Invariant: The density of an interval at level satisfies

➡ When an interval is over density, go up until and rebalance smoothly

i di ≤ τi
dj ≤ τj

The Classical Solution

τ5 = 1.0

τ1 = 0.5

d3 = 0.63

d4 = 0.50

d5 = 0.50

d2 = 0.56

d1 = 0.47

OMKA B D SQ TC E L R [IKR ’81]

τ3 = 0.71

τ4 = 0.84

τ2 = 0.59

HGF

Invariant: The density of an interval at level satisfies

➡ The density thresholds decrease for larger intervals

i di ≤ τi

The Classical Solution

τ5 = 1.0

τ1 = 0.5

d3 = 0.63

d2 = 0.56

d1 = 0.47

OMKA B D SQ TC E L R [IKR ’81]

τ3 = 0.71

τ4 = 0.84

τ2 = 0.59

HGF

d4 = 0.50

d5 = 0.50

Invariant: The density of an interval at level satisfies

➡ The density thresholds decrease for larger intervals

i di ≤ τi

The Classical Solution

τ5 = 1.0

τ1 = 0.5

d3 = 0.63

d2 = 0.56

d1 = 0.47

OMKA B D HG SQ TC E LF R [IKR ’81]

τ3 = 0.71

τ4 = 0.84

τ2 = 0.59

: factor of

for levels

Δ(τi)
(1 + 1/log n)

log n

d4 = 0.50

d5 = 0.50

The Classical Solution
Consider an interval at level of size

• Last time it was rebalanced, it had density at most

• On next rebalance, it has density at least

• So we’ve added elements

i s

τi−1

τi = (1 + 1/log n)τi−1

Ω(s/log n)

[IKR ’81]

The Classical Solution

[IKR ’81]

➡ The amortized cost of a rebalance at a specific level is O(log n)

Consider an interval at level of size

• Last time it was rebalanced, it had density at most

• On next rebalance, it has density at least

• So we’ve added elements

i s

τi−1

τi = (1 + 1/log n)τi−1

Ω(s/log n)

The Classical Solution

[IKR ’81]

➡ Each element can be rebalanced at each of its enclosing intervalslog n

➡ The amortized cost of a rebalance at a specific level is O(log n)

Consider an interval at level of size

• Last time it was rebalanced, it had density at most

• On next rebalance, it has density at least

• So we’ve added elements

i s

τi−1

τi = (1 + 1/log n)τi−1

Ω(s/log n)

The Classical Solution

[IKR ’81]

So the total cost is:

 amortized cost per level

 levels

 total cost

log n

× log n

= log2 n

➡ Each element can be rebalanced at each of its enclosing intervalslog n

➡ The amortized cost of a rebalance at a specific level is O(log n)

Consider an interval at level of size

• Last time it was rebalanced, it had density at most

• On next rebalance, it has density at least

• So we’ve added elements

i s

τi−1

τi = (1 + 1/log n)τi−1

Ω(s/log n)

Prior Work

O(log2 n) Upper Bound
[Itai, Konheim, Rodeh ’81]

Prior Work

O(log2 n)

Ω(log n) [Bulánek, Koucký, Saks ’13]

Upper Bound

Lower Bound

[Itai, Konheim, Rodeh ’81]

Open Problem

O(log2 n)

Ω(log n) [Bulánek, Koucký, Saks ’13]

Upper Bound

Lower Bound

Can we close
the gap?

[Itai, Konheim, Rodeh ’81]

Open Problem

O(log2 n)

Ω(log n) [Bulánek, Koucký, Saks ’13]

Upper Bound

Lower Bound

Can we close
the gap?

[Itai, Konheim, Rodeh ’81] Unimproved
Upper Bound

Formulations and (Re)Discoveries
Priority queues 
[Itai, Konheim, Rodeh, ICALP’81]

File maintenance 
[Willard, STOC’82, SIGMOD’86]

Order maintenance 
[Dietz, STOC’82] [Dietz, Sleator, STOC’87]

Balanced binary trees & scapegoat trees 
[Andersson, WADS’89] [Andersson, Lai, SWAT’90] [Galperin, Rivest, SODA’93]

Locality preserving dictionaries  
[Raman, PODS’99]

Rediscovered classical
algorithm

Rediscovered algorithm,
formulated as a tree

Rediscovered algorithm,
but on a larger array

Deamortization of the
classical algorithm

Classical
algorithm

O(log2 n)

Open Problem

O(log2 n)

Ω(log n) [Bulánek, Koucký, Saks ’13]

Upper Bound

Lower Bound

Can we close
the gap?

[Itai, Konheim, Rodeh ’81] Unimproved

Lower Bound

Upper Bound

Improved for specific cases

Prior Work

O(log2 n)

Ω(log n) [Bulánek, Koucký, Saks ’13]

Upper Bound

Lower Bound

[Dietz, Seiferas, Zhang ’04]
Lower Bound

DeterministicGeneral

TightCan we close
the gap?

[Itai, Konheim, Rodeh ’81]

Prior Work

O(log2 n)

Ω(log n) [Bulánek, Koucký, Saks ’13]

Upper Bound

Lower Bound

Lower Bound

Deterministic Smooth

[Dietz and Zhang ’90]
Lower Bound

General

Tight TightCan we close
the gap?

[Itai, Konheim, Rodeh ’81] [Dietz, Seiferas, Zhang ’04]

Prior Work

O(log2 n)

Ω(log n) [Bulánek, Koucký, Saks ’13]

Upper Bound

Lower Bound

Lower Bound

Deterministic Smooth

[Dietz and Zhang ’90]
Lower Bound

General

Tight TightCan we close
the gap?

[Itai, Konheim, Rodeh ’81]

Evenly spaced
rebalances only

[Dietz, Seiferas, Zhang ’04]

Prior Work

O(log2 n)

Ω(log n) [Bulánek, Koucký, Saks ’13]

Upper Bound

Lower Bound

Lower Bound

Deterministic Smooth

[Dietz and Zhang ’90]
Lower Bound

General

Tight TightCan we close
the gap?

[Itai, Konheim, Rodeh ’81]

The classical solution is both
deterministic and smooth

[Dietz, Seiferas, Zhang ’04]

Our Result:

Theorem: Algorithm for list labeling with

 expected cost per insertion/deletion O(log3/2 n)

Our Results

O(log2 n)

Ω(log n)

Upper Bound

Lower Bound

O(log3/2 n)

Our Results

Algorithm with
expected cost per update

O(log3/2 n)

Prior Work

Can we close
the gap?

[Bulánek, Koucký, Saks ’13]

[Itai, Konheim, Rodeh ’81]
Upper Bound

Our Results

O(log2 n)

Ω(log n)

Upper Bound

Lower Bound

O(log3/2 n)

Our Results

Algorithm with
expected cost per update

O(log3/2 n)

Prior Work

Can we close
the gap?

[Bulánek, Koucký, Saks ’13]

[Itai, Konheim, Rodeh ’81]

Matching lower bound for

History-Independent algorithms

Upper Bound

Lower Bound

Our Results

O(log2 n)

Ω(log n)

Upper Bound

Lower Bound

O(log3/2 n)

Our Results

Algorithm with
expected cost per update

O(log3/2 n)

Prior Work

Can we close
the gap?

[Bulánek, Koucký, Saks ’13]

[Itai, Konheim, Rodeh ’81]

Matching lower bound for

History-Independent algorithms

Upper Bound

Lower Bound

So what is history independence?

History Independence: For our problem, the distribution of occupied slots
depends only on number of elements currently present

History Independence — Definition

E LB F H J O QD

E LH J TI M SP

Surprising result:

• history-independent algorithm

 [Bender, Berry, Johnson, Kroeger, McCauley, Phillips, Simon, Singh, Zage, PODS’16]
O(log2 n)

History Independence — Prior Work

Surprising result:

• history-independent algorithm

 [Bender, Berry, Johnson, Kroeger, McCauley, Phillips, Simon, Singh, Zage, PODS’16]

➡ No increase in cost/runtime to achieve history independence

O(log2 n)

History Independence — Prior Work

Surprising result:

• history-independent algorithm

 [Bender, Berry, Johnson, Kroeger, McCauley, Phillips, Simon, Singh, Zage, PODS’16]

➡ No increase in cost/runtime to achieve history independence

O(log2 n)

History Independence — Prior Work

• Previously viewed as a desirable property to achieve in its own right

(e.g. for security guarantees)

• In contrast, we use history independence to achieve a faster algorithm

Surprising result:

• history-independent algorithm

 [Bender, Berry, Johnson, Kroeger, McCauley, Phillips, Simon, Singh, Zage, PODS’16]

➡ No increase in cost/runtime to achieve history independence

Their main idea: Use randomness to determine left/right split of elements

➡ Reformulate density constraint as an imbalance constraint between the left/right

subintervals

➡ Maintains uniform distribution of left/right imbalances satisfying the constraint

➡ In contrast, classical algorithm always splits evenly when rebuilding

O(log2 n)

History Independence — Prior Work

Our Main Idea: Rebalance Less Frequently
Looser balance thresholds Less frequent rebalancing Lower Cost
⟹ ⟹

Our Main Idea: Rebalance Less Frequently
Looser balance thresholds Less frequent rebalancing Lower Cost

Roughly speaking, densities differ by a factor instead of

⟹ ⟹

log−1/2 n log−1 n

Our Main Idea: Rebalance Less Frequently
Looser balance thresholds Less frequent rebalancing Lower Cost

Roughly speaking, densities differ by a factor instead of

Pro: Cost of maintaining our new invariant: at each level

 Final cost of

⟹ ⟹

log−1/2 n log−1 n

O(log n) O(log1/2 n)

⟹ O(log3/2 n) 😀

Our Main Idea: Rebalance Less Frequently
Looser balance thresholds Less frequent rebalancing Lower Cost

Roughly speaking, densities differ by a factor instead of

Pro: Cost of maintaining our new invariant: at each level

 Final cost of

Con: Some intervals may overflow

⟹ ⟹

log−1/2 n log−1 n

O(log n) O(log1/2 n)

⟹ O(log3/2 n) 😀

😟

Problem: Overflows Can Happen

d(1 + Θ(log−1/2 n))2

density
= d(1 + Θ(log−1/2 n))

density
= d(1 − Θ(log−1/2 n))

d(1 + Θ(log−1/2 n))4

density: d = O(1)

OMKA C G I NLB D H J R SQ T

d(1 + Θ(log−1/2 n))3

Con: Some intervals may overflow

• Density can increase by a factor of at each level: 1 + Θ(log−1/2 n)

Problem: Overflows Can Happen
Con: Some intervals may overflow

• Density can increase by a factor of at each level:

➡ Density at bottom level: can be

1 + Θ(log−1/2 n)

d(1 + Θ(log−1/2 n))log n = ω(1)

Next Idea: Rebalance Condition Depends on Density
Intuition: Revert to classical solution in regions that get “too” dense

Next Idea: Rebalance Condition Depends on Density
Intuition: Revert to classical solution in regions that get “too” dense

• Higher density More stringent balance condition Prevents overflow
⟹ ⟹

Next Idea: Rebalance Condition Depends on Density
Intuition: Revert to classical solution in regions that get “too” dense

• Higher density More stringent balance condition Prevents overflow
⟹ ⟹

• Lower density Less stringent balance condition Less work
⟹ ⟹

Next Idea: Rebalance Condition Depends on Density
Intuition: Revert to classical solution in regions that get “too” dense

• Higher density More stringent balance condition Prevents overflow
⟹ ⟹

• Lower density Less stringent balance condition Less work
⟹ ⟹

➡ costO(log2 n)

➡ cost
O(log3/2 n)

Next Idea: Rebalance Condition Depends on Density
Intuition: Revert to classical solution in regions that get “too” dense

• Higher density More stringent balance condition Prevents overflow
⟹ ⟹

• Lower density Less stringent balance condition Less work
⟹ ⟹

➡ costO(log2 n)

➡ cost
O(log3/2 n)

We show: Vast majority of the array is sparse expected total cost⟹ O(log3/2 n)

Hide the dense regions from the adversary

Last Idea: Eliminate Potential Vulnerabilities

Hide the dense regions from the adversary

• Our strategy may create some dense regions in the array

➡ An adversary could target and exploit them to drive up cost

Last Idea: Eliminate Potential Vulnerabilities

Hide the dense regions from the adversary

• Our strategy may create some dense regions in the array

➡ An adversary could target and exploit them to drive up cost

• Solution: History independence!

➡ The adversary can neither find nor create dense regions

➡ Additional idea: Apply a random shift — See the paper

Last Idea: Eliminate Potential Vulnerabilities

The Final AlgorithmO(log3/2 n)

The Final AlgorithmO(log3/2 n)

Prior History-Independent AlgorithmO(log2 n)
 [BBJKMPSSZ ’16]

The Final AlgorithmO(log3/2 n)

Prior History-Independent AlgorithmO(log2 n)

Loosen rebalancing rule

— Speeds up the algorithm

 [BBJKMPSSZ ’16]

The Final AlgorithmO(log3/2 n)

Prior History-Independent AlgorithmO(log2 n)

Loosen rebalancing rule

— Speeds up the algorithm

Stricter rebalancing rule in dense regions

— Prevents overflow

 [BBJKMPSSZ ’16]

The Final AlgorithmO(log3/2 n)

Prior History-Independent AlgorithmO(log2 n)

Loosen rebalancing rule

— Speeds up the algorithm

Stricter rebalancing rule in dense regions

— Prevents overflow

Smoothly vary between rebalance rules

— Reduces cost from to Õ(log3/2 n) O(log3/2 n)

 [BBJKMPSSZ ’16]

Summary of Results & New Open Problem

O(log3/2 n)

Ω(log n) [Bulánek, Koucký, Saks ’13]

Upper Bound

Lower Bound

[This Talk]
Lower Bound

History IndependentGeneral

TightCan we close
the gap?

[This Talk]

Thank you!

✦ Michael A. Bender, Stony Brook University — bender@cs.stonybrook.edu

✦ Alex Conway, VMWare Research — aconway@vmware.com

✦ Martín Farach-Colton, Rutgers University — martin@farach-colton.com

✦ Hanna Komlós, Rutgers University —hkomlos@gmail.com

✦ William Kuszmaul, MIT — william.kuszmaul@gmail.com

✦ Nicole Wein, DIMACS — nicole.wein@rutgers.edu

