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Current Trend in Computer Architecture: ML-specific Hardware

Graphcore GC200 
Intelligence Processing Unit

Cerebras WSE-2 
Wafer Scale Engine

etc…

The golden age of computer architecture is here 
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Why Should we look at ML-specific Hardware ?
(outside of the core ML/AI computations)

?
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What are the Potential Benefits ?

• Graphcore IPU and Cerebras WSE are tile-based.
• A Tile is a core + SRAM functional unit
• Large SRAM is used as memory
• No memory hierarchy  
• Very high bandwidth, low latency data access 
• Larger problem ? More devices! 

Graphcore GC200 
Intelligence Processing Unit

Cerebras WSE-2 
Wafer Scale Engine
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The GC200 IPU: Distributed Memory on a Chip

written for a single GC2 IPU. In this paper we present a code
that is capable of scaling to multiple IPUs, as well as using
the newer GC200 IPU. The main challenges to overcome are
grounded in the fact that the IPU was not originally designed
for running graph algorithms. First, the data structures are not
well-suited for maximizing data locality in BFS. In order to
obtain high performance, we have to design a manual data
distribution. The optimum distribution also changes between
the two IPU versions. Second, IPU communication follows
static patterns, and has to be planned at compile time. To get
around this limitation, a 2-competitive solution was designed
for iPUG [7]. However, when moving to the multi-IPU scenario,
communication becomes much more costly since the device-
to-device links are considerably slower than the core-to-core
communication inside the IPU.

We present our solutions to these problems in the following
sections. While the new multi-IPU code is capable of running
BFS on larger graphs, the primary goal of this paper is to outline
techniques that can serve as a model for the implementation
of advanced graph algorithms in the future, many of which
use BFS as a subroutine. These include graph centralities and
other algorithms used in the analysis of social networks, such
as triangle counting, clustering, and matching. Thus, our paper
makes the following contributions:

1) We present the first implementation of a graph algorithm
on the new GC200 IPU, which also scales to multiple
IPUs.

2) We present an optimization that enables sparse commu-
nication in a dense framework, allowing us to implement
the sparse communication required for graph algorithms
in the communication model of the IPU.

3) We investigate the performance of our implementation on
a cluster of 8 IPUs and compare it to state-of-the-art GPU
codes. The results show that our iPUG code is highly
competitive, delivering more than twice the performance
of a cluster of 8 V100 GPUs in the Graph500 benchmark.

The remainder of the paper is organized as follows: we
introduce the IPU in Section II and discuss related BFS
work on other architectures in Section V. We present our
IPU implementation in Section III and our experiments in
Section IV. In Sections V and VI we survey related work,
discuss the results, and present our conclusions.

II. IPU HARDWARE

The Graphcore IPU consists of a large number of indepen-
dent units called tiles. Each tile consists of a core and a small
amount of SRAM memory. Each core runs six concurrent
threads in a fine-grained temporal multithreading scheme.
Unlike simultaneous multithreading, which is commonly used
in modern CPU and GPU designs, IPU threads are scheduled
consecutively in a fixed order. For that reason, the design is also
referred to as a barrel processor. In general, IPU instructions,
including loads and stores from the local tile memory, take
exactly 6 cycles. Thus, individual threads do not experience
latency since they execute one instruction per cycle in which
they are scheduled.

TABLE I
KEY ARCHITECTURAL FEATURES OF GC2 AND GC200 IPU.

Chip GC2 GC200

Number of tiles 1216 1472
Number of threads 7296 8832
Memory per tile 256KB 624KB

Total SRAM memory 311MB 918MB

Memory bandwidth 46.6TB/s 46.9TB/s

Aggregate tile-to-tile bandwidth 7.78TB/s 7.83TB/s

Total chip-to-chip bandwidth 320GB/s 320GB/s

Clock frequency 1.6GHz 1.33GHz

FP32 compute 31.1 TFLOPS/s 62.5 TFLOPS/s
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Fig. 1. Tile layout on the GC200 IPU processor.

The tiles are organized into islands which themselves are
grouped into columns. Together, the columns form the IPU,
as illustrated in Figure 1. The number of cores depends
on the IPU model. Table I gives an overview of the most
important features of the GC2 and GC200 IPUs. In previous
work, architectural details of the GC2 IPU were studied and
benchmarked exhaustively [8]. Since all cores can read from
memory concurrently, the aggregate memory bandwidth is
much higher than that of CPUs or GPUs. However, data that
is not local to a core must be moved between the tiles. A
tile is capable of sending 4 bytes and receiving 4 bytes per
cycle, which amounts to amounts to 5.3GB/s or 7.83TB/s for
all 1472 cores of the GC200. The network that connects the
cores inside the IPU is called the IPU exchange. The GC200
IPU can also access DRAM memory at a speed of about 20
GB/s. However, in this paper we only study problems that are
placed entirely in the SRAM memory.

Between the IPUs, data is transferred via the IPU-Link,
which performs both intra-node and inter-node communication.
It thus corresponds to both PCIe and Infiniband in CPU/GPU
systems (or alternatives such as NVIDIA NVLink and CRAY
Shasta). Each IPU has 10 IPU-links with a total bandwidth of
320 GB/s. Pairs of IPUs are connected with 12 links, among
themselves, which amount to a bandwidth of 192 GB/s. This
leaves 8 links to connect to other IPUs. These connections use
double-link cables. Thus they operate at 64GB/s. Up to 32
such pairs can be connected in a ladder configuration with a
bisection bandwidth of 128 GB/s. See Figure 2 for an example.

• 1472 cores per chip / 6 Threads per core
• Temporal multithreading (a.k.a. barrel processor)
• Scheduling order fixed, 6 cycles SRAM access
• Threads do not experience memory/cache latency
• True MIMD
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Dataflow-Based Programming Abstraction

• Data is arranged in immutable tensors
• Code is organized in codelets (compute vertices)
• Bipartite graph of data dependency
• Independent compute vertices are scheduled concurrently
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Bulk-Synchronous Parallel (BSP) Communication on the IPU

Co
st

 [t
im

e]

Compute

Exchange

Global 
Sync

...

Processor
Superstep

• Data exchange between concurrent phases
• Communication planned at compile time
• No communication/computation overlap
• No need for buffers
• High risk of load imbalance
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Bulk-Synchronous Parallel (BSP) Communication on the IPU
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• Poplar framework offers PGAS-style data exchange 
(programmer sees shared memory, system handles data exchange)

• Communication can be optimized by controlling data placement
• Communication codes exist at compile time, but we can chose 

between calling different codes at runtime
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IPU Programing

Computation optimization is straightforward:
minimize number of instructions 

No performance modeling required here

.LBB2_2: # =>This Inner Loop Header: 
Depth=1

ld32 $a1, $m5, $m15, $m7
{

ld32 $a2, $m6, $m15, $m4
f32mul $a1, $a2, $a1

}
{

ld32 $a3, $m5, $m15, $m4
f32add $a0, $a0, $a1

}
. . . # More of this stuff
{

add $m7, $m4, 16
f32mul $a1, $a2, $a3

}
f32add $a0, $a0, $a1
st32 $a0, $m0, $m15, $m4
sort4x16lo $m4, $m7, $m15
cmpslt $m7, $m4, $m1
brnz $m7, .LBB2_2
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Cerebras WSE-2 Wafer Scale Engine

© 2022 Cerebras Systems Inc. All Rights Reserved

«

«

«

«

«

« « « « « «

Efficient high performance

� 2D mesh topology with low overheads

� 5-port router to 4 neighbors and core

� 32b/cycle bidirectional data transfer
� Individual packages are 32b
� Payload carries data (16b) and index (16b)

� Single cycle latency between cores
� Flow controlled with low buffering

� 24 configurable static routing (colors)
� Each color has dedicated buffering, is non-blocking
� All colors are time-multiplexed onto same physical link

� Hardware broadcast/multicast

High Bandwidth Low Latency Fabric

Fabric Router

MemoryCompute

32b

32b

32b

32b

32b

Buffers Routes

● 50% SRAM, 50% compute
● 2D grid-based communication
● Very fast neighbor to neighbor communication
● Fully user controlled 
● Dynamic communication, fully overlapped
● High programing complexity, high potential reward
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Comparison of radically different Devices is Challenging

Some confusion on what
should be compared…

Important to clarify
what memory means

Better distinguish
SRAM and DRAM
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Comparison of radically different Devices is Challenging

1 IPU ≈ 1 GPU (Silicon)
2 IPU ≈ 1 GPU (Power)

GPU has more FLOPS
via SIMD

1 WSE ≈ 64 IPU

64 IPU = 94K tiles
1 WSE = 850K tiles

WSE has less memory,
more FLOPS

Tim Rogers and Mahmoud Khairy, An Academic’s Attempt to Clear the Fog of the Machine Learning Accelerator War, ACM SIGARCH blog
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LYNX: Cardiac Electrophysiology Monodomain Simulation on the IPU

• We want to study electrical 
activity in the heart

• LYNX code: finite volume 
monodomain simulation

• Dissolve heart into mesh cells

• Simulate diffusion of 
voltage over time

• Discretize time and space
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LYNX: Cardiac Electrophysiology Monodomain Simulation

Y

Z

X

U

• ODE: Ut’ = f (Ut)
• PDE: Ut+1 = g (Ut’, Xt’, Yt’, Zt’)
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PDE step: Repeated Sparse Matrix Dense Vector

x =

• Data access pattern irregular but static
• Sparsity pattern defines a graph
• Typically memory bandwidth bound on CPUs and GPUs
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LYNX: 1D Partitioning

• Use Metis, PaToH, KaHIP, etc…
• Partition and reorder to minimize communication
• Amortize cost over a large number of repetitions 
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LYNX: 1D Partitioning

written for a single GC2 IPU. In this paper we present a code
that is capable of scaling to multiple IPUs, as well as using
the newer GC200 IPU. The main challenges to overcome are
grounded in the fact that the IPU was not originally designed
for running graph algorithms. First, the data structures are not
well-suited for maximizing data locality in BFS. In order to
obtain high performance, we have to design a manual data
distribution. The optimum distribution also changes between
the two IPU versions. Second, IPU communication follows
static patterns, and has to be planned at compile time. To get
around this limitation, a 2-competitive solution was designed
for iPUG [7]. However, when moving to the multi-IPU scenario,
communication becomes much more costly since the device-
to-device links are considerably slower than the core-to-core
communication inside the IPU.

We present our solutions to these problems in the following
sections. While the new multi-IPU code is capable of running
BFS on larger graphs, the primary goal of this paper is to outline
techniques that can serve as a model for the implementation
of advanced graph algorithms in the future, many of which
use BFS as a subroutine. These include graph centralities and
other algorithms used in the analysis of social networks, such
as triangle counting, clustering, and matching. Thus, our paper
makes the following contributions:

1) We present the first implementation of a graph algorithm
on the new GC200 IPU, which also scales to multiple
IPUs.

2) We present an optimization that enables sparse commu-
nication in a dense framework, allowing us to implement
the sparse communication required for graph algorithms
in the communication model of the IPU.

3) We investigate the performance of our implementation on
a cluster of 8 IPUs and compare it to state-of-the-art GPU
codes. The results show that our iPUG code is highly
competitive, delivering more than twice the performance
of a cluster of 8 V100 GPUs in the Graph500 benchmark.

The remainder of the paper is organized as follows: we
introduce the IPU in Section II and discuss related BFS
work on other architectures in Section V. We present our
IPU implementation in Section III and our experiments in
Section IV. In Sections V and VI we survey related work,
discuss the results, and present our conclusions.

II. IPU HARDWARE

The Graphcore IPU consists of a large number of indepen-
dent units called tiles. Each tile consists of a core and a small
amount of SRAM memory. Each core runs six concurrent
threads in a fine-grained temporal multithreading scheme.
Unlike simultaneous multithreading, which is commonly used
in modern CPU and GPU designs, IPU threads are scheduled
consecutively in a fixed order. For that reason, the design is also
referred to as a barrel processor. In general, IPU instructions,
including loads and stores from the local tile memory, take
exactly 6 cycles. Thus, individual threads do not experience
latency since they execute one instruction per cycle in which
they are scheduled.

TABLE I
KEY ARCHITECTURAL FEATURES OF GC2 AND GC200 IPU.

Chip GC2 GC200

Number of tiles 1216 1472
Number of threads 7296 8832
Memory per tile 256KB 624KB

Total SRAM memory 311MB 918MB

Memory bandwidth 46.6TB/s 46.9TB/s

Aggregate tile-to-tile bandwidth 7.78TB/s 7.83TB/s

Total chip-to-chip bandwidth 320GB/s 320GB/s

Clock frequency 1.6GHz 1.33GHz

FP32 compute 31.1 TFLOPS/s 62.5 TFLOPS/s
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Fig. 1. Tile layout on the GC200 IPU processor.

The tiles are organized into islands which themselves are
grouped into columns. Together, the columns form the IPU,
as illustrated in Figure 1. The number of cores depends
on the IPU model. Table I gives an overview of the most
important features of the GC2 and GC200 IPUs. In previous
work, architectural details of the GC2 IPU were studied and
benchmarked exhaustively [8]. Since all cores can read from
memory concurrently, the aggregate memory bandwidth is
much higher than that of CPUs or GPUs. However, data that
is not local to a core must be moved between the tiles. A
tile is capable of sending 4 bytes and receiving 4 bytes per
cycle, which amounts to amounts to 5.3GB/s or 7.83TB/s for
all 1472 cores of the GC200. The network that connects the
cores inside the IPU is called the IPU exchange. The GC200
IPU can also access DRAM memory at a speed of about 20
GB/s. However, in this paper we only study problems that are
placed entirely in the SRAM memory.

Between the IPUs, data is transferred via the IPU-Link,
which performs both intra-node and inter-node communication.
It thus corresponds to both PCIe and Infiniband in CPU/GPU
systems (or alternatives such as NVIDIA NVLink and CRAY
Shasta). Each IPU has 10 IPU-links with a total bandwidth of
320 GB/s. Pairs of IPUs are connected with 12 links, among
themselves, which amount to a bandwidth of 192 GB/s. This
leaves 8 links to connect to other IPUs. These connections use
double-link cables. Thus they operate at 64GB/s. Up to 32
such pairs can be connected in a ladder configuration with a
bisection bandwidth of 128 GB/s. See Figure 2 for an example.

• 1D assignment of matrix rows to IPU tiles
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Performance  Comparison IPU vs GPU

• Devices are comparable at
2 IPU : 1 GPU 

• PDE (SpMV) is much faster on IPU.
• ODE faster on the GPU 

(more FLOPS)
• FP32 is a severe limitation for 

scientific computing

Burchard et al. Graphcore IPUs for Unstructured-Mesh Computations

partitioner only needs to divide the unstructured meshes into sub-meshes equaling the number of GPUs547

used. (The intra-GPU parallelism utilized the device-level memory accessible for all the CUDA threads.)548

All the experiments used a METIS load imbalance constraint of 3%.549

Figure 6. Strong scaling experiments using the meshes of heart04 and heart05. (The heart05
mesh is too large for a single IPU.)

Figure 6 shows the results of the strong scaling experiment. We can observe that both IPU and GPU550

implementations scale almost linearly. The A100 has almost twice the performance and is always matched551

by twice the number of IPUs. However, when approaching eight GPUs the scaling efficiency drops. This is552

not the case for the IPUs, which are able to scale up to 16 IPUs. We were not able to run this experiment553

on more than 16 IPUs, as the popc compilation ran out of memory when trying to compile for 32 IPUs.554

7.2 Partitioning Analysis555

When increasing the number of IPUs from 1 to 16 for the heart04 mesh, we observe that the time556

decreases almost linearly with added hardware. From the perspective of computation alone, this scaling557

trend is expected, because each tile is responsible for less work. However, due to the increasing number of558

tiles used, the amount of halo cells increases. When using a single IPU for the heart04 mesh, we see a559

median of 2058 interior and separator cells per tile and a median of 2226 halo cells per tile. That is, the560

This is a provisional file, not the final typeset article 18
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Figure 7. Breakdown of the strong scaling experiments using the heart04 mesh. Blue denotes the total
ODE step time composed of no exchanges and compute, yellow is the compute phase of the PDE step and
red denotes the cycles used for the PDE exchanges.

The design of algorithms must be reconsidered for this new hardware. While the research community599

already has experience in using technologies like distributed memory and BSP, the scale at which they600

are used in the IPU has not been explored previously, and current projects and their underlying design601

considerations are not adjusted to the tradeoffs of this new class of accelerators. New ways to think of602

communication and load balance are necessary.603

Furthermore, the IPU requires us to implicitly define communication at compile time. This makes it604

impossible to have fast predefined kernels like CPUs and GPUs do. One could argue that the compilation605

of regular-mesh kernels for IPUs only needs to happen once for all inputs. However, compiling for irregular606

meshes is required for the communication programs unless a regular representation can be found. This607

unavoidable compilation requires us to be aware of the expensive compile time. We also found that the608

compile time and mesh preprocessing time substantially increase with multiple IPU devices.609

We were able to show a fast PDE step despite having to exchange a substantial amount of data, because the610

interconnect provides high bandwidth. Furthermore, despite only supporting single-precision floating-point611

operations, the IPU can compute simulation results that are sufficiently accurate at least for the cases we612

have studied in this paper.613

In future work, we will investigate further optimizations to the communication pattern and extend our614

work to other more general unstructured-mesh computations.615
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Second Example: BFS

L1

L2

L3

StartLet Q be the frontier
Let Q’ be the next frontier
Let G(V,E) be the Graph
Let B be visited nodes

• Basic measure of graph processing performance
• Single O(n+m) execution, no time for expensive partitioning
• Need 2D block partitioning for power-law graphs 
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Linear Algebra View: Sparse Matrix Sparse Vector

x =

• Common in “true” graph algorithms
• Data dependent computation paths
• Data access pattern irregular and dynamic
• Often memory latency bound
Ø Great potential due to SRAM use
Ø BFS maps directly onto repeated SpMspV

Buluç and Gilbert: The Combinatorial BLAS: Design, implementation, and applications, 2011
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Mapping to the IPU

• 2D block partitioning based on nonzero position
• No partitioning cost
• Memory efficient, no need to store partition boundaries
• Partitioning can be improved via suitable reordering

written for a single GC2 IPU. In this paper we present a code
that is capable of scaling to multiple IPUs, as well as using
the newer GC200 IPU. The main challenges to overcome are
grounded in the fact that the IPU was not originally designed
for running graph algorithms. First, the data structures are not
well-suited for maximizing data locality in BFS. In order to
obtain high performance, we have to design a manual data
distribution. The optimum distribution also changes between
the two IPU versions. Second, IPU communication follows
static patterns, and has to be planned at compile time. To get
around this limitation, a 2-competitive solution was designed
for iPUG [7]. However, when moving to the multi-IPU scenario,
communication becomes much more costly since the device-
to-device links are considerably slower than the core-to-core
communication inside the IPU.

We present our solutions to these problems in the following
sections. While the new multi-IPU code is capable of running
BFS on larger graphs, the primary goal of this paper is to outline
techniques that can serve as a model for the implementation
of advanced graph algorithms in the future, many of which
use BFS as a subroutine. These include graph centralities and
other algorithms used in the analysis of social networks, such
as triangle counting, clustering, and matching. Thus, our paper
makes the following contributions:

1) We present the first implementation of a graph algorithm
on the new GC200 IPU, which also scales to multiple
IPUs.

2) We present an optimization that enables sparse commu-
nication in a dense framework, allowing us to implement
the sparse communication required for graph algorithms
in the communication model of the IPU.

3) We investigate the performance of our implementation on
a cluster of 8 IPUs and compare it to state-of-the-art GPU
codes. The results show that our iPUG code is highly
competitive, delivering more than twice the performance
of a cluster of 8 V100 GPUs in the Graph500 benchmark.

The remainder of the paper is organized as follows: we
introduce the IPU in Section II and discuss related BFS
work on other architectures in Section V. We present our
IPU implementation in Section III and our experiments in
Section IV. In Sections V and VI we survey related work,
discuss the results, and present our conclusions.

II. IPU HARDWARE

The Graphcore IPU consists of a large number of indepen-
dent units called tiles. Each tile consists of a core and a small
amount of SRAM memory. Each core runs six concurrent
threads in a fine-grained temporal multithreading scheme.
Unlike simultaneous multithreading, which is commonly used
in modern CPU and GPU designs, IPU threads are scheduled
consecutively in a fixed order. For that reason, the design is also
referred to as a barrel processor. In general, IPU instructions,
including loads and stores from the local tile memory, take
exactly 6 cycles. Thus, individual threads do not experience
latency since they execute one instruction per cycle in which
they are scheduled.

TABLE I
KEY ARCHITECTURAL FEATURES OF GC2 AND GC200 IPU.

Chip GC2 GC200

Number of tiles 1216 1472
Number of threads 7296 8832
Memory per tile 256KB 624KB

Total SRAM memory 311MB 918MB

Memory bandwidth 46.6TB/s 46.9TB/s

Aggregate tile-to-tile bandwidth 7.78TB/s 7.83TB/s

Total chip-to-chip bandwidth 320GB/s 320GB/s

Clock frequency 1.6GHz 1.33GHz

FP32 compute 31.1 TFLOPS/s 62.5 TFLOPS/s
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Fig. 1. Tile layout on the GC200 IPU processor.

The tiles are organized into islands which themselves are
grouped into columns. Together, the columns form the IPU,
as illustrated in Figure 1. The number of cores depends
on the IPU model. Table I gives an overview of the most
important features of the GC2 and GC200 IPUs. In previous
work, architectural details of the GC2 IPU were studied and
benchmarked exhaustively [8]. Since all cores can read from
memory concurrently, the aggregate memory bandwidth is
much higher than that of CPUs or GPUs. However, data that
is not local to a core must be moved between the tiles. A
tile is capable of sending 4 bytes and receiving 4 bytes per
cycle, which amounts to amounts to 5.3GB/s or 7.83TB/s for
all 1472 cores of the GC200. The network that connects the
cores inside the IPU is called the IPU exchange. The GC200
IPU can also access DRAM memory at a speed of about 20
GB/s. However, in this paper we only study problems that are
placed entirely in the SRAM memory.

Between the IPUs, data is transferred via the IPU-Link,
which performs both intra-node and inter-node communication.
It thus corresponds to both PCIe and Infiniband in CPU/GPU
systems (or alternatives such as NVIDIA NVLink and CRAY
Shasta). Each IPU has 10 IPU-links with a total bandwidth of
320 GB/s. Pairs of IPUs are connected with 12 links, among
themselves, which amount to a bandwidth of 192 GB/s. This
leaves 8 links to connect to other IPUs. These connections use
double-link cables. Thus they operate at 64GB/s. Up to 32
such pairs can be connected in a ladder configuration with a
bisection bandwidth of 128 GB/s. See Figure 2 for an example.
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Mapping to the IPU: Need Quadratic Tile Array

1 2 ...

... 115
5

115
6

Unused
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Single Device BFS – IPU vs GPU vs CPU

14 Anonymous Authors

ternative here. An exception are the larger and thus higher diameter delaunay
graphs which exhibit little parallelism. On average there are far fewer vertices
in the frontier each round than the IPU has threads, thus making the wide par-
allelism ine�cient. As a result, the CPU performs better than both IPU and
GPU, although the di↵erence between CPU and IPU is small. The only instance
where the GPU exceeds IPU performance is the very small and dense Journals,
and even there the di↵erence is very small.
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Fig. 4: Performace of iPUG compared to CPU and GPU for the Suiteparse in-
stances.

6.2 Graph 500 Scaling Experiment

In an additional experiment, we show the performance of the IPU in context
of the scaling behaviour of other BFS implementations. Results are shown in
Figure 5. We observe that the CPU type has little influence for all three codes.
On the other hand, the TiTech code is almost an order of magnitude faster than
GAP and the reference code, reaching almost 10 GTEPS. The CPU codes seem
to reach maximum performance at Scale 22.

The GPU implementations are consistently faster, with Gunrock reaching
almost 100 GTEPS at Scale 24. It also maintains a consistent and substantial
lead over Enterprise. Furthermore, while iPUG starts with a large advantage at
Scale 15, the gap closes to 1.5⇥ at Scale 19. Thus, due to the limitation in GPU
memory, it is not possible to say at which scale maximum IPU performance will
be attained, and whether it would be faster than Gunrock on the V100. Since
the larger instances have a higher fraction of isolated vertices, and removing such

• GC2 IPU (1st generation) beats V100 GPU by about 2x
• Cannot beat CPU on high-diameter graphs
• Good performance/watt, but very limited scope
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Scaling Out: Multi-IPU BFS

IPU-POD64 | datasheet 

 8 
 

2.3 Communication for scale-out: 3D IPU-Fabric with GCL 

The IPU-POD64 reference design builds on the innovative IPU-M2000 IPU-Fabric, designed to 
support massive scale out. The figure below shows, on the left, an abstracted view of the IPU-
M2000 with the IPU-Fabric interconnects comprising IPU-LinksTM, GW-Links (for jitter-free IPU-
to-IPU connectivity), and the Host-Link dual 100Gbps RDMA connection between the host 
server and each IPU-M2000. The small insert on the right shows how these interconnects are 
used as part of the scale-out of IPU-M2000 and the IPU-POD64: IPU-Links join IPU processors 
together both within IPU-M2000s as well as between IPU-M2000s. The IPU-Link connections 
in the IPU-POD64 form a 2D torus since the loops are closed top and bottom.  

 

 

 

 

 

 

 

 
  

● Computation can scale to multiple IPUs
● BFS is extremely communication-heavy
● Large-scale problems are mostly network dependent
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Multiple Device BFS – IPU vs GPU
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Fig. 5. Performance of the SuiteSparse instances (top) for the IPU M2000 and the V100 DGX-2 using iPUG and Gunrock, respectively. The lower plot shows
performance numbers of our synthetic Kronecker graphs, combined with Kronecker graphs from the SuiteSparse collection.

C. Runime Analysis

We aim to give an in-depth overview of the inner workings
of our algorithm and show the execution and inner timings of
our implementation. Each iteration of our algorithm contains
two major phases: (1) the expansion phase, in which the current
frontier is distributed to discover the future nodes to be visited,
and (2) the fold phase, which merges all discoveries from the
expansion phase and reduces them into a single vertex. Finally,
the fold phase generates the frontier for the next expansion
phase.

We compare the inner phase timings from weak and strong
scaling runs on Kronecker graphs. For the strong scaling results,
we used a kron21 16. We started with a kron20 16 using a
single IPU for the weak scaling experiment and scaled up to
a kron23 16 on eight IPUs. The results were generated with
the PopVision™ graph analyzer suite of tools used to extract
profiling information generated by the Poplar framework during
the compilation and execution phase. All results make use of
all of our optimizations, such as (sub)-queue packing.

Results: Figure 6 shows that the compute time to solve the
kron21 16 instance decreases by adding IPUs. The communi-

cation and execution time of the fold phase decreases as the
communication and computation only take place within one
IPU. The computing time in the expansion phase decreases
every round by 36% to 24%. The communication increases by
8⇥ going from one to two IPUs. However, this trend does not
continue linearly, as the communication time reduces when
going to 4 IPUs, only to increase by 2⇥ going from 4 to 8 IPUs.
In addition to the expand and fold phase, the program also
requires further overhead, such as globally switching the BSP-
supersteps, the reduction determining if the algorithm should
continue, and the reductions from our optimizations. We can
observe that the additional compute and communication time
within this overhead category increases to up to 28% of the
global runtime. We can explain the overhead increase through
the need for five additional global communication steps between
the IPUs.

For the weak edge-scaling experiments, we can observe that
the cycle overhead does not increase much when scaling from
1 to 8 IPUs. Like in the strong scaling experiment, both fold
communication and exchange decrease. The communication
phase of the expansion phase constantly increases from 2%
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Fig. 5. Performance of the SuiteSparse instances (top) for the IPU M2000 and the V100 DGX-2 using iPUG and Gunrock, respectively. The lower plot shows
performance numbers of our synthetic Kronecker graphs, combined with Kronecker graphs from the SuiteSparse collection.

C. Runime Analysis

We aim to give an in-depth overview of the inner workings
of our algorithm and show the execution and inner timings of
our implementation. Each iteration of our algorithm contains
two major phases: (1) the expansion phase, in which the current
frontier is distributed to discover the future nodes to be visited,
and (2) the fold phase, which merges all discoveries from the
expansion phase and reduces them into a single vertex. Finally,
the fold phase generates the frontier for the next expansion
phase.

We compare the inner phase timings from weak and strong
scaling runs on Kronecker graphs. For the strong scaling results,
we used a kron21 16. We started with a kron20 16 using a
single IPU for the weak scaling experiment and scaled up to
a kron23 16 on eight IPUs. The results were generated with
the PopVision™ graph analyzer suite of tools used to extract
profiling information generated by the Poplar framework during
the compilation and execution phase. All results make use of
all of our optimizations, such as (sub)-queue packing.

Results: Figure 6 shows that the compute time to solve the
kron21 16 instance decreases by adding IPUs. The communi-

cation and execution time of the fold phase decreases as the
communication and computation only take place within one
IPU. The computing time in the expansion phase decreases
every round by 36% to 24%. The communication increases by
8⇥ going from one to two IPUs. However, this trend does not
continue linearly, as the communication time reduces when
going to 4 IPUs, only to increase by 2⇥ going from 4 to 8 IPUs.
In addition to the expand and fold phase, the program also
requires further overhead, such as globally switching the BSP-
supersteps, the reduction determining if the algorithm should
continue, and the reductions from our optimizations. We can
observe that the additional compute and communication time
within this overhead category increases to up to 28% of the
global runtime. We can explain the overhead increase through
the need for five additional global communication steps between
the IPUs.

For the weak edge-scaling experiments, we can observe that
the cycle overhead does not increase much when scaling from
1 to 8 IPUs. Like in the strong scaling experiment, both fold
communication and exchange decrease. The communication
phase of the expansion phase constantly increases from 2%
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Fig. 5. Performance of the SuiteSparse instances (top) for the IPU M2000 and the V100 DGX-2 using iPUG and Gunrock, respectively. The lower plot shows
performance numbers of our synthetic Kronecker graphs, combined with Kronecker graphs from the SuiteSparse collection.

C. Runime Analysis

We aim to give an in-depth overview of the inner workings
of our algorithm and show the execution and inner timings of
our implementation. Each iteration of our algorithm contains
two major phases: (1) the expansion phase, in which the current
frontier is distributed to discover the future nodes to be visited,
and (2) the fold phase, which merges all discoveries from the
expansion phase and reduces them into a single vertex. Finally,
the fold phase generates the frontier for the next expansion
phase.

We compare the inner phase timings from weak and strong
scaling runs on Kronecker graphs. For the strong scaling results,
we used a kron21 16. We started with a kron20 16 using a
single IPU for the weak scaling experiment and scaled up to
a kron23 16 on eight IPUs. The results were generated with
the PopVision™ graph analyzer suite of tools used to extract
profiling information generated by the Poplar framework during
the compilation and execution phase. All results make use of
all of our optimizations, such as (sub)-queue packing.

Results: Figure 6 shows that the compute time to solve the
kron21 16 instance decreases by adding IPUs. The communi-

cation and execution time of the fold phase decreases as the
communication and computation only take place within one
IPU. The computing time in the expansion phase decreases
every round by 36% to 24%. The communication increases by
8⇥ going from one to two IPUs. However, this trend does not
continue linearly, as the communication time reduces when
going to 4 IPUs, only to increase by 2⇥ going from 4 to 8 IPUs.
In addition to the expand and fold phase, the program also
requires further overhead, such as globally switching the BSP-
supersteps, the reduction determining if the algorithm should
continue, and the reductions from our optimizations. We can
observe that the additional compute and communication time
within this overhead category increases to up to 28% of the
global runtime. We can explain the overhead increase through
the need for five additional global communication steps between
the IPUs.

For the weak edge-scaling experiments, we can observe that
the cycle overhead does not increase much when scaling from
1 to 8 IPUs. Like in the strong scaling experiment, both fold
communication and exchange decrease. The communication
phase of the expansion phase constantly increases from 2%
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performance numbers of our synthetic Kronecker graphs, combined with Kronecker graphs from the SuiteSparse collection.

C. Runime Analysis

We aim to give an in-depth overview of the inner workings
of our algorithm and show the execution and inner timings of
our implementation. Each iteration of our algorithm contains
two major phases: (1) the expansion phase, in which the current
frontier is distributed to discover the future nodes to be visited,
and (2) the fold phase, which merges all discoveries from the
expansion phase and reduces them into a single vertex. Finally,
the fold phase generates the frontier for the next expansion
phase.

We compare the inner phase timings from weak and strong
scaling runs on Kronecker graphs. For the strong scaling results,
we used a kron21 16. We started with a kron20 16 using a
single IPU for the weak scaling experiment and scaled up to
a kron23 16 on eight IPUs. The results were generated with
the PopVision™ graph analyzer suite of tools used to extract
profiling information generated by the Poplar framework during
the compilation and execution phase. All results make use of
all of our optimizations, such as (sub)-queue packing.

Results: Figure 6 shows that the compute time to solve the
kron21 16 instance decreases by adding IPUs. The communi-

cation and execution time of the fold phase decreases as the
communication and computation only take place within one
IPU. The computing time in the expansion phase decreases
every round by 36% to 24%. The communication increases by
8⇥ going from one to two IPUs. However, this trend does not
continue linearly, as the communication time reduces when
going to 4 IPUs, only to increase by 2⇥ going from 4 to 8 IPUs.
In addition to the expand and fold phase, the program also
requires further overhead, such as globally switching the BSP-
supersteps, the reduction determining if the algorithm should
continue, and the reductions from our optimizations. We can
observe that the additional compute and communication time
within this overhead category increases to up to 28% of the
global runtime. We can explain the overhead increase through
the need for five additional global communication steps between
the IPUs.

For the weak edge-scaling experiments, we can observe that
the cycle overhead does not increase much when scaling from
1 to 8 IPUs. Like in the strong scaling experiment, both fold
communication and exchange decrease. The communication
phase of the expansion phase constantly increases from 2%
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Performance Lessons Learned 

● Fast SRAM memory works (mostly) as advertised
● Load balanced memory bound operations (SpMV) very fast
● Very susceptible to bad load balance (hurts BFS results)
● AI oriented -> high FLOPS count restricted to matrix units
● Results update to A100 vs BOW IPU (40% higher clock rate) 
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Acknowledgement and Future Work

• Show streaming results
(they are pretty good)

• BFS on Cerebras results
(works in the simulator)

• Interesting graph algorithm results
(Matching, centrality, repeated BFS,
still working on that)

• More advanced partitioning for multi-IPU
(hierarchical, balance ghost cell count,
graph constrained partioning, etc.)

Luk Burchard


