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Motivation
redesign of many combinatorial scientific computing algorithms
• Architecture driven

– Coarse-grain massive parallelism: 
• Communication-avoiding for multi-node MPI

– Fine-grain massive parallelism:
• Accelerators: GPU, IPU (Johannes talk, Monday), FPGA, …
• Future extreme heterogeneity

– Different compromises to think
• Larger memory capacity
• Can afford more flops (as long as high Arithmetic Intensity)

• Application driven
– GPU-resident solvers
– KKT systems from optimization: preserve symmetry, compute matrix initia
– Power grid optimization
– … 
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Solving a linear system
For stability and efficiency, need to solve transformed linear system:
Ax = b è

Pc ( Pr (Dr A Dc ) ) Pc
T Pc Dc

-1 x = Pc Pr Dr b

Preprocessing steps

• Dr , Dc : diagonal scaling (a.k.a. equilibration, balancing)

• Pr : row permutation vector (numerical pivoting for stability)
– e.g. maximum weight matching

• Pc : row/column permutation vector (ordering to minimize fill-in, minimize communication)
– e.g. graph partitioning
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1. Numerical pivoting in sparse LU

• Goal: swap rows or columns to make diagonal elements large

• Partial pivoting does this dynamically
• Alternative pre-pivoting methods: quite stable in practice

– Sequential: MC64 in Harwell Subroutine Library
• DFS to grow a shortest alternating path tree
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1. Numerical pivoting in sparse LU

• Goal: swap rows or columns to make diagonal elements large

• Partial pivoting does this dynamically
• Alternative pre-pivoting methods: quite stable in practice

– Sequential: MC64 in Harwell Subroutine Library
• DFS to grow a shortest alternating path tree

– Distributed parallel heavy-weight perfect matching (HWPM, available in CombBLAS)
• Approximate
• Bipartite graph: Perfect matching + heavy weight

Ariful Azad, Aydın Buluc, Xiaoye S Li, Xinliang Wang, Johannes Langguth, A distributed-memory 
algorithm computing a heavy-weight perfect matching on bipartite graphs, SISC, 2020
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The parallel algorithm runs 300x faster than the 
sequential algorithm on 16K cores of NERSC/Cori

MC64

MC64+gather

Parallel AWPM
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Matrix from MHD for plasma fusion 
3M vertices, 1B edges

Distributed heavy-weight perfect matching
Algorithm elements: Use maximal, maximum 
cardinality, approx. weight matchings

• Maximal: A variant of the Karp-Sipser
algorithm

• Maximum cardinality: A variant of the 
Hopcroft-Karp algorithm

• Approximate weight: A variant of Pettie-
Sanders algorithm

• Primitives: Use sparse matrix (GraphBLAS)
operations for performance

Results

• Quality: For most real matrices, HWPM returns 
perfect matchings within 99% (weight) of the 
optimum solution

• Scalability: Scales to 256 nodes (17K cores) on 
Cori/KNL

• Speedup: Can run up to 2500x faster than the 
sequential algorithm on 256 nodes of Cori/KNL
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Extensions desirable
• GPU, or other accelerators?

• Symmetric pivoting for symmetric indefinite linear systems?
– Performs symmetric factorization: LDL^T
(Duff & Pralet): symmetric weighted matching to predefine 1x1 and 2x2 pivots in D
– Start from a nonsymmetric matching M
– Break into product of component cycles

• Cycle of length 1 is on the diagonal
• Even cycle length 2k gives k 2x2 pivots
• Odd cycle length 2k+1 gives 2k+1 2x2 pivots

M : = (1,2), (2,3), (3,4), (4,1)
2 pairs of symmetric 2x2 pivots: (2,3)-(3,2), (4,1)-(1,4)
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2. Symbolic factorization

Fill-in in sparse LU

“Transitive closure” for fill-in detection 1
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Fill-ins can be computed by reachability in original graph G(A)

The edge (v,w) exists due to the path v à 7 à 3 à 9 à w
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“Fill-path” theorem (Rose/Tarjan 1978):
An edge (v,w) exists in the filled graph if and only if there exists a directed path 
from v to w, with intermediate vertices smaller than v and w

Traverse G(A)
+
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Rose-Tarjan path-based algorithm

… essentially SSSP in disguise (Single Source Shortest Paths)

Dijkstra(G, s, cost)
for each v ∈V , d(v)←∞, pred(v)← NIL
d(s)← 0, S←∅, Q←V
While Q ≠∅ do
u← EXTRACT-MIN (Q)
S← S∪{u}
for each v ∈ Adj(u) do

if  d(v) > d(u)+ cos t(u,v) then
pred(v)← u
d(v)← d(u)+ cos t(u,v)

endif
endfor

endwhile

s

S

Q = V\S

u

v

S := vertices with shortest paths found
Q := vertices with shortest paths upper bound

given by d
(d decreases through iterations)
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s

S

Q = V\S
v

Proposed parallel path-based algorithm

Redefine variables in Dijkstra
1. “d(v)” replaced by “max_id_array(v)”

current maximum intermediate vertex number of all the paths leading to v
(it decreases through iterations)
S := { u | fill-in (s, u) already checked}
Q := { v | fill-in (s, v) unknown yet }

2. Add constraint: Frontier := set of vertices eligible
for extending paths (their numbers are lower than source s)

3. Update rule is defined in order to find the path to v
with minimum of max_id_array(v)

u Frontier
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GPU parallel symbolic factorization result

• Encouraging: Summit per node: 6 GPUs, 42 IBM Power9 CPU cores
– 1.3x - 10.9x speedups on 44 Summit nodes
– By-product: a GPU parallel SSSP / MSSP

• No so satisfactory: only 5x faster than parallel CPU algorithm
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Anil Gaihre, Yang Liu, Xiaoye Li, GSoFa: Scalable Sparse Symbolic Factorization on GPUs, IEEE 
TPDS 2020
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• Column j of A becomes column j of L and U

• Perform sparse triangular solve with A(:,j) as sparse RHS
• Time proportional to number of FLOPS in numerical factorization

An efficient left-looking algorithm (Gilbert/Peierls 1988)
-- edge-based elimination using filled graph G(L+U)

for column j = 1 to n do
Triangular solve

scale: lj = lj / ujj
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This is essentially what’s implemented in SuperLU
• Two enhancements:

– Symmetric pruning to reduce redundant search (Eisenstat/Liu 1992)
– Supernodes

• Shared-memory: SuperLU_MT (Demmel/Gilbert/Li 1999)
– Partial pivoting: symbolic & numerical factorizations interleave
– 20x speedup @ 32 processors

• Distributed-memory: SuperLU_DIST (Grigori/Demmel/Li 2007)
– 9x speedup @ 32 processors

• How to do it on GPU?
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L

U

U
- Extract column of U
- Compute fill-ins using corr. cols of L (SpMV)

- Use mask to avoid comp. with upper part

- Extract row of L
- Compute fill-ins using corr. rows of U (SpMV)

- Use mask to avoid comp. with left part

Attempt: Leverage GraphBLAS: left-up-looking  (Oguz Selvitopi)

L
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- Use mask to avoid comp. with upper part

- Extract row of L
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L

Block version: SpGEMM




