
Combinatorial problems in sparse matrix computations

Sherry Li
Lawrence Berkeley National Laboratory
1st ACDA Workshop in Aussois, Sept. 5-9, 2022

2

Acknowledgement

Scientific Discovery through Advanced Computing (SciDAC) program through the FASTMath Institute under
Contract No. DE-AC02-05CH11231.

Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department of Energy’s Office of
Science and National Nuclear Security Administration.

3

Collaborators

Collaboration of two ECP projects:

• Sparse solvers and preconditioners (SuperLU, STRUMPACK)
– Lisa Claus, Pieter Ghysels, Yang Liu (LBNL)
– Anil Gaihre, Hang Liu (Stevens Institute of Technology)

• ExaGraph (CombBLAS)
– Ariful Azad, Aydin Buluc, Oguz Selvitopi (LBNL)
– Johannes Langguth (Simula Lab)

4

Motivation
redesign of many combinatorial scientific computing algorithms
• Architecture driven

– Coarse-grain massive parallelism:
• Communication-avoiding for multi-node MPI

– Fine-grain massive parallelism:
• Accelerators: GPU, IPU (Johannes talk, Monday), FPGA, …
• Future extreme heterogeneity

– Different compromises to think
• Larger memory capacity
• Can afford more flops (as long as high Arithmetic Intensity)

• Application driven
– GPU-resident solvers
– KKT systems from optimization: preserve symmetry, compute matrix initia
– Power grid optimization
– …

5

Solving a linear system
For stability and efficiency, need to solve transformed linear system:
Ax = b è

Pc (Pr (Dr A Dc)) Pc
T Pc Dc

-1 x = Pc Pr Dr b

Preprocessing steps

• Dr , Dc : diagonal scaling (a.k.a. equilibration, balancing)

• Pr : row permutation vector (numerical pivoting for stability)
– e.g. maximum weight matching

• Pc : row/column permutation vector (ordering to minimize fill-in, minimize communication)
– e.g. graph partitioning

6

1. Numerical pivoting in sparse LU

• Goal: swap rows or columns to make diagonal elements large

• Partial pivoting does this dynamically
• Alternative pre-pivoting methods: quite stable in practice

– Sequential: MC64 in Harwell Subroutine Library
• DFS to grow a shortest alternating path tree

7

1. Numerical pivoting in sparse LU

• Goal: swap rows or columns to make diagonal elements large

• Partial pivoting does this dynamically
• Alternative pre-pivoting methods: quite stable in practice

– Sequential: MC64 in Harwell Subroutine Library
• DFS to grow a shortest alternating path tree

– Distributed parallel heavy-weight perfect matching (HWPM, available in CombBLAS)
• Approximate
• Bipartite graph: Perfect matching + heavy weight

Ariful Azad, Aydın Buluc, Xiaoye S Li, Xinliang Wang, Johannes Langguth, A distributed-memory
algorithm computing a heavy-weight perfect matching on bipartite graphs, SISC, 2020

8

The parallel algorithm runs 300x faster than the
sequential algorithm on 16K cores of NERSC/Cori

MC64

MC64+gather

Parallel AWPM

Number of cores (log)

Ti
m

e
 i
n
 s

e
co

n
d
s

(l
o
g
)

64 256 1024 4096 16384
0.25

1

4

16

64

256

(Optimum/sequential)

(Gather time added)

(Approximate/parallel)

Matrix from MHD for plasma fusion
3M vertices, 1B edges

Distributed heavy-weight perfect matching
Algorithm elements: Use maximal, maximum
cardinality, approx. weight matchings

• Maximal: A variant of the Karp-Sipser
algorithm

• Maximum cardinality: A variant of the
Hopcroft-Karp algorithm

• Approximate weight: A variant of Pettie-
Sanders algorithm

• Primitives: Use sparse matrix (GraphBLAS)
operations for performance

Results

• Quality: For most real matrices, HWPM returns
perfect matchings within 99% (weight) of the
optimum solution

• Scalability: Scales to 256 nodes (17K cores) on
Cori/KNL

• Speedup: Can run up to 2500x faster than the
sequential algorithm on 256 nodes of Cori/KNL

9

Extensions desirable
• GPU, or other accelerators?

• Symmetric pivoting for symmetric indefinite linear systems?
– Performs symmetric factorization: LDL^T
(Duff & Pralet): symmetric weighted matching to predefine 1x1 and 2x2 pivots in D
– Start from a nonsymmetric matching M
– Break into product of component cycles

• Cycle of length 1 is on the diagonal
• Even cycle length 2k gives k 2x2 pivots
• Odd cycle length 2k+1 gives 2k+1 2x2 pivots

M : = (1,2), (2,3), (3,4), (4,1)
2 pairs of symmetric 2x2 pivots: (2,3)-(3,2), (4,1)-(1,4)

10

2. Symbolic factorization

Fill-in in sparse LU

“Transitive closure” for fill-in detection 1

2

3

4

6

7

5L

U

11

Fill-ins can be computed by reachability in original graph G(A)

The edge (v,w) exists due to the path v à 7 à 3 à 9 à w

+

+

+

w

+

+

+

+

3

7

9

v

o

o o

“Fill-path” theorem (Rose/Tarjan 1978):
An edge (v,w) exists in the filled graph if and only if there exists a directed path
from v to w, with intermediate vertices smaller than v and w

Traverse G(A)
+

12

Rose-Tarjan path-based algorithm

… essentially SSSP in disguise (Single Source Shortest Paths)

Dijkstra(G, s, cost)
for each v ∈V , d(v)←∞, pred(v)← NIL
d(s)← 0, S←∅, Q←V
While Q ≠∅ do
u← EXTRACT-MIN (Q)
S← S∪{u}
for each v ∈ Adj(u) do

if d(v) > d(u)+ cos t(u,v) then
pred(v)← u
d(v)← d(u)+ cos t(u,v)

endif
endfor

endwhile

s

S

Q = V\S

u

v

S := vertices with shortest paths found
Q := vertices with shortest paths upper bound

given by d
(d decreases through iterations)

13

s

S

Q = V\S
v

Proposed parallel path-based algorithm

Redefine variables in Dijkstra
1. “d(v)” replaced by “max_id_array(v)”

current maximum intermediate vertex number of all the paths leading to v
(it decreases through iterations)
S := { u | fill-in (s, u) already checked}
Q := { v | fill-in (s, v) unknown yet }

2. Add constraint: Frontier := set of vertices eligible
for extending paths (their numbers are lower than source s)

3. Update rule is defined in order to find the path to v
with minimum of max_id_array(v)

u Frontier

14

GPU parallel symbolic factorization result

• Encouraging: Summit per node: 6 GPUs, 42 IBM Power9 CPU cores
– 1.3x - 10.9x speedups on 44 Summit nodes
– By-product: a GPU parallel SSSP / MSSP

• No so satisfactory: only 5x faster than parallel CPU algorithm

�
�
�
�
�
��
��
��

� �� �� �� �� �� �� �� ��

��
��
��
�

������ �� ������ ����� ������ �������

��
��

��
��

��
��

��
��

��
��

��
��

��

Anil Gaihre, Yang Liu, Xiaoye Li, GSoFa: Scalable Sparse Symbolic Factorization on GPUs, IEEE
TPDS 2020

15

• Column j of A becomes column j of L and U

• Perform sparse triangular solve with A(:,j) as sparse RHS
• Time proportional to number of FLOPS in numerical factorization

An efficient left-looking algorithm (Gilbert/Peierls 1988)
-- edge-based elimination using filled graph G(L+U)

for column j = 1 to n do
Triangular solve

scale: lj = lj / ujj

L

L
U

A

j

L
L I

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
u j
l j

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟= a j for u j and l j

16

This is essentially what’s implemented in SuperLU
• Two enhancements:

– Symmetric pruning to reduce redundant search (Eisenstat/Liu 1992)
– Supernodes

• Shared-memory: SuperLU_MT (Demmel/Gilbert/Li 1999)
– Partial pivoting: symbolic & numerical factorizations interleave
– 20x speedup @ 32 processors

• Distributed-memory: SuperLU_DIST (Grigori/Demmel/Li 2007)
– 9x speedup @ 32 processors

• How to do it on GPU?

17

L

U

U
- Extract column of U
- Compute fill-ins using corr. cols of L (SpMV)

- Use mask to avoid comp. with upper part

- Extract row of L
- Compute fill-ins using corr. rows of U (SpMV)

- Use mask to avoid comp. with left part

Attempt: Leverage GraphBLAS: left-up-looking (Oguz Selvitopi)

L

18

L

U

U
- Extract column of U
- Compute fill-ins using corr. cols of L (SpMV)

- Use mask to avoid comp. with upper part

- Extract row of L
- Compute fill-ins using corr. rows of U (SpMV)

- Use mask to avoid comp. with left part

Attempt: Leverage GraphBLAS: left-up-looking (Oguz Selvitopi)

L

Block version: SpGEMM

