Density-Driven Path Metrics: Graphs, Manifolds, and Data

James M. Murphy
Department of Mathematics
September 8, 2022

Collaborators

A. Little, Utah

M. Maggioni, JHU

D. McKenzie, Mines

Unsupervised Learning

Unsupervised learning: infer structure from data without access to *training data*, i.e. examples belonging to particular classes.

Clustering: unsupervised learning in which the goal is to label points as belonging to a given class.

$$x_1, \dots, x_n \stackrel{i.i.d.}{\smile} \mu = \sum_{k=1}^K w_k \mu_k + w_0 \tilde{\mu}, \sum_{k=0}^K w_k = 1$$

Labeling: Which x_j were generated from μ_k ?

Number of Clusters: Can we estimate K?

Standard Method: K-Means

- Idea: find K centroids, then assign each point to its nearest centroid.
- Empirically good for same sized, spherical clusters.
- Guaranteed for certain Gaussians.
- Exact solution is NP-Hard to compute.
- Standard implementations involve non-convex optimization.

ullet Need to know K .

$$C^* = \underset{C = \{C_k\}_{k=1}^K}{\operatorname{arg\,min}} \sum_{k=1}^K \sum_{x \in C_k} \|x - \bar{x}_k\|_2^2$$

Standard Method: K-Means

- Idea: find K centroids, then assign each point to its nearest centroid.
- Empirically good for same sized, spherical clusters.
- Guaranteed for certain Gaussians.
- Exact solution is NP-Hard to compute.
- Standard implementations involve non-convex optimization.

$$C^* = \underset{C = \{C_k\}_{k=1}^K}{\operatorname{arg\,min}} \sum_{k=1}^K \sum_{x \in C_k} \|x - \bar{x}_k\|_2^2$$

K-Means Often Fails

Problem: Some clusters are non-spherical!

Spectral Clustering I

Idea: embed data into a lowerdimensional space in a structure preserving way.

Input:
$$x_1,...,x_n \subset \mathbb{R}^D$$

Step 1: Build a weight matrix

$$W_{ij} = e^{-d(x_i, x_j)^2 / \sigma^2}$$

for some metric $d(\cdot, \cdot)$ and σ .

Step 2: Compute the (graph) Laplacian

$$L = I - D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$$

$$D_{ii} = \sum_{j=1}^{n} W_{ij}; D_{ij} = 0, i \neq j.$$

Spectral Clustering II

Step 3: Compute eigenvalues of L

 $0 \le \lambda_1 \le \lambda_2 \le \dots \le \lambda_n$

and associated eigenvectors

$$\Phi_1,...,\Phi_n$$
.

Step 4: Embed the data as

$$x_i \mapsto (\Phi_1(x_i), \dots, \Phi_K(x_i))$$

then run K-means. Note

$$\Phi_j(x_i) := \Phi_j(i).$$

K-Means v. Spectral Clustering

- Spectral clustering (with a "good" σ) succeeds where K-means fails!
- Theoretical estimates are limited, particularly for estimating the number of clusters. Common heuristic: $K \approx \arg\max_k \lambda_{k+1} \lambda_k$.

Data-Dependent LLPD Metric

Definition. For a discrete set $X = \{x_i\}_{i=1}^n \subset \mathbb{R}^D$, let \mathcal{G} be the graph on X with edges given by the Euclidean distance between points. For $x_i, x_s \in X$, let $\mathcal{P}(x_i, x_s)$ denote the space of paths connecting x_i, x_s in \mathcal{G} . The longest leg path distance (LLPD) between x_i, x_s is:

$$d_{\ell\ell}(x_i, x_s) = \min_{\{y_j\}_{j=1}^L \in \mathcal{P}(x_i, x_s)} \max_{j=1, 2, \dots, L-1} ||y_{j+1} - y_j||_2,$$

- The distance between points x, y is the minimum over all paths between x, y of the longest edge in the path.
- Depending on the data X, this distance changes!
- \mathcal{G} could be a complete graph (all points connected to all points) or a connected NN graph.
- Ultrametric structure is compatible with fast matrix-vector multipliers.

Euclidean Distance versus LLPD

Data Well-Suited for LLPD

LLPD Weight Matrix

- For our simple "four lines" data, there is a big difference between Euclidean distance (data independent) and LLPD (data dependent).
- The LLPD weight matrix has block-constant structure.

Low Dimensional, Large Noise (LDLN) Model

Definition. A set $S \subset \mathbb{R}^D$ is an element of $S_d(\kappa, \epsilon_0)$ for some $\kappa \geq 1$ if it has finite d-dimensional Hausdorff measure, denoted by \mathcal{H}^d , is connected, and for some $\epsilon_0 > 0$, it satisfies the following geometric condition:

$$\forall x \in S, \quad \forall \epsilon \in (0, \epsilon_0), \quad \kappa^{-1} \epsilon^d \le \frac{\mathcal{H}^d(S \cap B_{\epsilon}(x))}{\mathcal{H}^d(B_1(0))} \le \kappa \epsilon^d.$$

Low-dimensional

$$\mathcal{X}_1, \dots, \mathcal{X}_K \subset \mathcal{X} \subset \mathbb{R}^D$$

 $\mathcal{X}_1, \dots, \mathcal{X}_K \in \mathcal{S}_d(\kappa, \epsilon_0)$
 $\delta = \min_{k \neq k'} \operatorname{dist}(\mathcal{X}_k, \mathcal{X}_{k'})$

Large noise

$$\tilde{\mathcal{X}} = \mathcal{X} \setminus (\mathcal{X}_1 \cup \ldots \cup \mathcal{X}_K)$$

$$n = n_1 + \ldots + n_K + \tilde{n}$$

$$n_{\min} = \min_{1 \le k \le K} n_k$$

Nearest Neighbors in LLPD and Denoising

- In the LDLN model, points within clusters all have comparable distances, and points from different clusters are well separated.
- We denoise points by removing all points whose distance to their $k_{\rm nse}{}^{th}$ nearest neighbor exceeds some threshold θ .
- $k_{\rm nse}, \theta$ are parameters.
- This analysis, based on percolation theory, proves the weight matrix is nearly block constant.

Performance Guarantees

Theorem. (Little, Maggioni, M.) Under the LDLN data model and assumptions, suppose that the cardinality \tilde{n} of the noise set is such that

$$\tilde{n} \leq \left(\frac{C_2}{C_1}\right)^{\frac{k_{nse}D}{k_{nse}+1}} n_{min}^{\frac{D}{d+1}\left(\frac{k_{nse}}{k_{nse}+1}\right)}.$$

Let $f_{\sigma}(x) = e^{-x^2/\sigma^2}$ be the Gaussian kernel and assume $k_{nse} = O(1)$ and $\frac{\min_i n_i}{n_{max}} = O(1)$. If n_{min} is large enough and θ , σ satisfy

$$C_1 n_{min}^{-\frac{1}{d+1}} \le \theta \le C_2 \tilde{n}^{-\left(\frac{k_{nse}+1}{k_{nse}}\right)\frac{1}{D}} \tag{1}$$

$$C_3\theta \le \sigma \le C_4\delta \tag{2}$$

then with high probability the graph Laplacian L on the denoised LDLN data X_N satisfies:

- (i) the largest gap in the eigenvalues of L is $\lambda_{K+1} \lambda_K$.
- (ii) spectral clustering with L with K principal eigenvectors achieves perfect accuracy on X_N .

The constants $\{C_i\}_{i=1}^4$ depend on geometric quantities but do not depend on $n_1, \ldots, n_K, \tilde{n}, \theta, \sigma$.

Application: Image Clustering

COIL 16 Classes

- 16 classes, ambient dimensionality 1024, about 100 samples per class.
- LLPD spectral clustering achieve 99+% accuracy, and correctly identifies that there are 16 classes.

Interpolating Between Geometry and Density

Definition. For $p \in [1, \infty)$ and for $x, y \in \mathcal{X}$, the (discrete) p-Fermat distance from x to y is:

$$\ell_p(x,y) = \min_{\pi = \{x_{i_j}\}_{j=1}^T} \left(\sum_{j=1}^{T-1} \|x_{i_j} - x_{i_{j+1}}\|^p \right)^{\frac{1}{p}},$$

where π is a path of points in \mathcal{X} with $x_{i_1} = x$ and $x_{i_T} = y$ and $\|\cdot\|$ is the Euclidean norm.

How to balance density and geometry when both are salient?

Role of p

- As *p* changes, the embedding changes.
- Small p emphasizes geometry (cutting along the bottleneck).
- Large p emphasizes density (close to LLPD)

Fast Algorithms for Fermat Distances

• One can compute Fermat distances in quite general settings very fast, at least when $p\gg 1$.

Theorem. (Little, McKenzie, M.) Let \mathcal{M} be a compact, d-dimensional manifold with positive reach. Let $\mathcal{X} = \{x_i\}_{i=1}^n$ be drawn i.i.d. from \mathcal{M} according to a probability distribution with continuous density f satisfying $0 < f_{\min} \le f(x) \le f_{\max}$ for all $x \in \mathcal{M}$. For p > 1 and n sufficiently large, Fermat distances computed using (i) a complete Euclidean distances graph and (ii) a Euclidean k-nearest neighbors graph are the same with probability at least 1 - 1/n if

$$k \gtrsim \left\lceil \frac{f_{\text{max}}}{f_{\text{min}}} \right\rceil \left\lceil \frac{4}{4^{1-1/p} - 1} \right\rceil^{d/2} \log(n). \tag{1}$$

 Implicit constant in (1) depends on manifold reach and curvature.

Continuum Formulation

Definition. Let (\mathcal{M}, g) be a compact, d-dimensional Riemannian manifold and f a continuous density function on \mathcal{M} that is lower bounded away from zero (i.e. $f_{\min} := \min_{x \in \mathcal{M}} f(x) > 0$ on \mathcal{M}). For $p \in [1, \infty)$ and $x, y \in \mathcal{M}$, the (continuum) p-Fermat distance from x to y is:

$$\mathcal{L}_p(x,y) = \left(\inf_{\gamma} \int_0^1 \frac{1}{f(\gamma(t))^{\frac{p-1}{d}}} \sqrt{g(\gamma'(t), \gamma'(t))} dt\right)^{\frac{1}{p}}, \tag{1}$$

where $\gamma:[0,1]\to\mathcal{M}$ is a \mathcal{C}^1 path with $\gamma(0)=x,\gamma(1)=y$.

• Let $\mathcal{D}(x,y)$ be the geodesic on the manifold

• Let
$$\mathscr{D}_{f,\mathrm{Euc}}(x,y) = \frac{\|x-y\|}{(f(x)f(y))^{\frac{p-1}{2d}}}$$

be a density-based stretch of Euclidean distance.

Local Equivalence

Theorem. (Little, McKenzie, M.) Assume \mathcal{M} is sufficiently regular and that f is a bounded \mathfrak{L} -Lipschitz density function on \mathcal{M} with $f_{min} > 0$. Let $\epsilon > 0$. Then there exist constants $\epsilon_0, C_1, C_2, C_3$ depending only on the geometry of \mathcal{M} , f_{min} , \mathfrak{L} , p, and d such that for all $x, y \in \mathcal{M}$ such that $\mathcal{D}(x, y) \leq \epsilon_0$ and $||x - y|| \leq \epsilon$,

$$|\mathcal{L}_p(x,y) - \mathcal{D}_{f,Euc}^{1/p}(x,y)| \le C_1 \epsilon^{1+\frac{1}{p}} + C_2 \epsilon^{2+\frac{1}{p}} + O(\epsilon^{3+\frac{1}{p}}).$$

- This gives an opening to developing a discrete-to-continuum limit theory for graph operators constructed with Fermat distances which reveal how *p* balances density with geometric structure.
- Ongoing work making this precise.

References & Support

- Little, Maggioni, and **Murphy**. "Path-Based Spectral Clustering: Guarantees, Robustness to Outliers, and Fast Algorithms." *Journal of Machine Learning Research*. 2020.
- Little, McKenzie, and **Murphy**. "Balancing Geometry and Density: Path Distances on High-Dimensional Data." *SIAM Journal on the Mathematics of Data Science*. 2022.

DMS 1912737 DMS 1924513

Code and Contact Information

Code: https://jmurphy.math.tufts.edu/Code/

Contact: jm.murphy@tufts.edu

Thanks for Your Attention!

