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Unsupervised Learning

Data to Cluster

Unsupervised learning: infer
structure from data without
access to training data, 1.€.
examples belonging to particular
classes.

Clustering: unsupervised
learning in which the goal is to
label points as belonging to a
otven class.
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Labeling: Which £ were generated from Hk?
Number of Clusters: Can we estimate J ? Tufts
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Standard Method: K-Means

e Idea: find K centroids, then

assign each point to its nearest 0
centroid.

Data to Cluster

* Empirically good for same sized,
spherical clusters. 05t

e Guaranteed for certain Gaussians. o

e Exact solution 1s NP-Hard to 05
Compute.

* Standard implementations involve
non-convex optimization.

e Need to know K .

K
C* = argmin Z Z |z — Z1|3

C={Ckl}y_, k=1 reCl TL'IftS
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Standard Method: K-Means

¢ Idea: find K centroids, then
assign each point to its nearest

centroid.

* Empirically good for same sized,
spherical clusters.

e Guaranteed for certain (Gaussians.

e Fxact solution 1s NP-Hard to
Compute.

* Standard implementations involve
non-convex optimization.

e Need to know K .

K
C*" = argmin Z Z |x — 2]

C:{Ck}le k=1 xe(Cy

Data Labeled with K-means
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K-Means

Data to Cluster
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Often Fails

K-means Labels
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Problem: Some clusters are non-sphericall
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Spectral Clustering I

Data to Cluster

Idea: embed data into a lower-
dimensional space in a structure =l 8555 8k
. o5t 9 O%;f g"% %"ﬁgg ?8
preserving way. I I SH oo
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‘/ ‘/ i1 —_— € d(x?’ 7x~7 ) /O- Weight matrix, d(x,y) = ||z — y||2, 0 = 0.071

for some metric (] (-7 ) and o . .
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Step 2: Compute the (graph) Laplacian
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Spectral Clustering 11

Step 3: Compute eigenvalues of L

Low-dimensional Embedding from L

0< A < A< <Ay o

. . 0.08 |-

and associated eigenvectors
0.06
Oy,...,P,. 004
0.02 -
Step 4: Embed the data as & o
-0.02
X; ((1)1($z)7 . ,(I)K(.CEZ)) oorl
then run K-means. Note oos|
-0.08 -

Dj(xi) := (7).
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K-Means v. Spectral Clustering

K-means Labels Spectral Clustering Labels
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* Spectral clustering (with a “good” o ) succeeds where K-means fails!

* Theoretical estimates are limited, particularly for estimating the
number of clusters. Common heuristic: K ~ argmax A1 — Ak -

k
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Data-Dependent LLPD Metric

Definition. For a discrete set X = {x;}" , C RY, let G be the graph on X with edges given by the Euclidean
distance between points. For x;,xs € X, let P(x;,xs) denote the space of paths connecting x;,xs in G. The
longest leg path distance (LLPD) between x;,Ts is:

dpo(x;, Ts) = min max 11— Y
M( v S) {yj}leep(xi,xs)jzlﬂ ..... L—1Hyj_|_1 yJHQ?

* The distance between points Z,¥ is the minimum over all paths between %, ¥ of the
longest edge in the path.
* Depending on the data X, this distance changes!

* § could be a complete graph (all points connected to all points) or a connected

NN graph.

e Ultrametric structure 1s compatible with fast matrix-vector multipliers.
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Euclidean Distance versus LLPD

Euclidean distance from (0.0540, 0.8429)
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LLPD from (0.0540, 0.8429)
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Data Well-Suited for LLPD

Data to Cluster
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LLPD Weight Matrix

* For our simple “four lines” data, there is a big difference between Euclidean distance
(data independent) and LLLPD (data dependent).
* The LLLPD weight matrix has block-constant structure.

Weight matrix, d(z,y) = || — yl|2, o = 0.1474 Weight matrix, d(x,y) = dy(z,y), o = 0.06
1 | | 1
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Low Dimensional, Large Noise (LDLN) Model

Definition. A set S C RY is an element of Sq(k, €g) for some x> 1 if it has finite d-dimensional Hausdorff
measure, denoted by H?, is connected, and for some ey > 0, it satisfies the following geometric condition:

~1.d H(S N Be(x)) < ppd

KRE .

5
Ve eSS, Vee(0,¢), kK < <
¢ € (0, <0) < B 0)

L.ow-dimensional

Xla***axKCXCRD N |
n; i.i.d. draws from Unif(X;)
Xl,...,XKESd(/{7€O) .
kK’ (X Xi)

0.2

Large noise

~

~ n i.i.d. draws from Unif(X)
X=X\(XU...UXkg)

n=n1+...+ng+n
Nmin — mMIN Ny

1sk<K Tufts
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Nearest Neighbors in LLPD and Denoising

* In the LDLN model, points within clusters all have comparable
distances, and points from different clusters are well separated.

* We denoise points by removing all points whose distance to
their k... nearest neighbor exceeds some threshold 6 .

* knse, 0 are parameters.

* This analysis, based on percolation theory, proves the weight
matrix is nearly block constant.

Tufts
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Performance Guarantees

Theorem. (Little, Maggioni, M.) Under the LDLN data model and assumptions, suppose that the cardinality

n of the noise set is such that
anGD

k +1 D k
7 < (@) e nd‘f‘l(kn:es‘il).

Cl mn

Let f,(x) = e /7" be the Gaussian kernel and assume knse = O(1) and W = O(1). If nyin is large
enough and 0,0 satisfy

Cin T < 0 < Cyin~ (BB (1)
C30 < 0 < Cyf (2)

then with high probability the graph Laplacian L on the denoised LDLN data XN satisfies:
(i) the largest gap in the eigenvalues of L is A1 — Ak
(ii) spectral clustering with L with K principal eigenvectors achieves perfect accuracy on Xy .

The constants {C’i}‘}:1 depend on geometric quantities but do not depend on nq,...,ng,n,0,0.

) Tufts
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Application: Image Clustering

COIL 16 Classes Multiscale Eigenvalues for LLPD SC

T

* 16 classes, ambient dimensionality 1024, about 100 samples
per class.

* LLLPD spectral clustering achieve 99+% accuracy, and
correctly identifies that there are 16 classes. TUftS



Interpolating Between Geometry and Density

Definition. For p € [1,00) and for x,y € X, the (discrete) p-Fermat distance
from x to y 1s:

P

T-1
_ - E ( o p
Zp(gj,y) — _mmT Hilfzj mzj“H ;
where m s a path of points in X with x;;, = x and x;,. = y and || - || is the
FEuclidean norm.
Raw Data, 2 Classes Raw Data, 3 Classes Raw Data, 4 Classes

sl

2

;

.

Ay
L
R

sl
o

X
X)Qf&xxx X XXX
9 X KX %X

How to balance density and geometry when both are salient? Tufts
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® As P changes, the embedding changes.

b3

02+

04F
[ )
_06 L

-0.8

0.6

0.4 r

0.2r

1 1 1 1
-0.4 -0.2 0 0.2 0.4

P2

1 1
0.6 0.8

® Small p emphasizes geometry (cutting along the bottleneck).

® [arge p emphasizes density (close to LLPD)
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Fast Algorithms for Fermat Distances

®* One can compute Fermat distances in quite general settings
very fast, at least when p > 1.

Theorem. (Little, McKenzie, M.) Let M be a compact, d-dimensional mani-
fold with positive reach. Let X = {x;}I'_ be drawn i.i.d. from M according to a
probability distribution with continuous density f satisfying 0 < fuin < f(x) <
fmax for all x € M. For p > 1 and n sufficiently large, Fermat distances
computed using (i) a complete Euclidean distances graph and (i) a Fuclidean
k-nearest neighbors graph are the same with probability at least 1 — 1/n if

max T
kzlj;mm”zﬂ—l/p—ll og(n) g

® Implicit constant in (1) depends on manifold reach and
curvature.
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Continuum Formulation

Definition. Let (M, g) be a compact, d-dimensional Riemannian manifold and
f a continuous density function on M that is lower bounded away from zero
(i.e. fmin = mingeas f(z) > 0 on M). For p € [1,00) and xz,y € M, the
(continuum) p-Fermat distance from x to y is:

p

. : 1 / /
£p<sc,y>—<lgf | e Vet (t)m(t))dt> , (1

t)

where v : [0,1] — M is a C! path with v(0) = z,v(1) = y.
e let Y(x,y) be the geodesic on the manifold

|z —y]
(f(2)f(y)) 2"

* Let ZfBuc(?,y) =

be a density-based stretch of Euclidean distance. TllftS



Local Equivalence

Theorem. (Little, McKenzie, M.) Assume M 1is sufficiently reqular and that f
s a bounded £-Lipschitz density function on M with fn > 0. Let € > 0. Then
there exist constants €y, C1,Ca, C3 depending only on the geometry of M, frin,
£, p, and d such that for all x,y € M such that Z(x,y) < €y and ||x — y|| <,

Lp(z,y) — 275, (2. y)] < Cret o + Coe®to + O(F).

® This gives an opening to developing a discrete-to-
continuunm limit theory for graph operators constructed

with Fermat distances which reveal how p balances density
with geometric structure.

* Ongoing work making this precise.
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