Theoretically and
Practically Efficient
Nucleus Decompos

Parallel

ition

Jessica Shi Laxman Dhulipala
(MIT / Google) (University of Maryland)

Julian Shun
(MIT)

How do we cluster a graph?

> A fundamental idea:

How well-connected are certain nodes or subsets of
nodes in a graph?

"Well-connected” nodes

> k-core: Repeatedly find + “delete” min degree vertex

2-core 3-core
3-core

Formally: A k-core is an induced subgraph where every vertex has degree at least k
3

A problem with k-core

> k-core: Repeatedly find + “delete” min degree vertex

Celebrity

Entire graph is in
a 3-core

s-clique peeling

> s-cligue degree: Number of s-cliques each vertex participates in
> s-cliqgue peeling: Repeatedly find + “delete” min s-clique degree vertex

Celebrity

3-triangle cores
(s =3)

(r, s)-nucleus decomposition

> s-cligue degree of ar-clique: Number of s-cliques each r-clique
participates in

> (r,s)-nucleus decomposition: Repeatedly find + “delete” r-clique
with min s-clique degree

2-(e=e . M) nuclei

X X

(r=2,s =3is also known as k-truss) ,

(r, s)-nucleus decomposition

facebook graph (88k edges)

B T .
DEP_JSITY: 0.0-02-04—--06—-08—-1.0
(1, 3)_nuc|ei = SIZE:10<=|Q)< 102<= <:><103<= <104<=A
(1, 2)-nuclei = k-core triangle-peeling

Sariyuce, Seshadhri, Pinar, Catalyurek (2017)

(r, s)-nucleus decomposition

] 1 13000 (

facebook graph (88k edges)

DENSITY: 0.0—-0.2—-04—-06—-0.8—-1.0

SIZE:10<=O<102¢-<:><103<= <104<:=A

Sariyuce, Seshadhri, Pinar, Catalyurek (2017)

Main results

> New shared-memory parallel algorithms for nucleus
decomposition with strong theoretical guarantees

> Comprehensive evaluation, showing we outperform state-of-the-
art parallel algorithms by a couple orders of magnitude

Computational barriers: Sequential subgraph
decomposition can be slow

> Environment: 30-core GCP instance (2-way
hyperthreading), 240 GiB main memory

Graph # Edges Sequential (3, 4)-
nucleus decomp [']

as-skitter 11 million 8.5 minutes

livejournal 34 million 3.3 hours

orkut 117 million > 6 hours

> Goal: < 15 min

[1] Sariyuce, Seshadhri, Pinar, Catalyurek (2017)

10

Theoretically efficient algorithms are fast

> Previous parallel nucleus decomposition [2l: Not theoretically efficient

100,000 |
3 3.3 hrs 3.2 hrs Timed out
s 10,000 1.3 hrs
&
qJ .
2 1,000 8.4 mir; . 14 min 21 min
e .7 min
)
= 100 50 sec
o
§=
= 10
[1] Sariyuce, é
Seshadhri, Pinar, 1
Catalyurek (2017
IZTgawﬁce() as-skitter (11M) livejournal (34M) orkut (117M)
Seshadhri, Pi _
o mSequential [1] mParallel [2] mOur parallel (theoretically efficient) 11

Practical optimizations

100,000

Timed out
3.3hrs 3.2 hrs

10,000
1,000 8.4 min 14.min
3.7 min 3.3 min
100 50 sec
24 sec
| I I

1.3 hrs

21 m|n

I |

o

Running time (in seconds)

Seshadhri, Pinar, as-skitter (11M) livejournal (34M) orkut (117M)
Catalyurek (2017)

[2] Sariyuce, m Sequential [1] m Parallel [2]

E‘Szeos1h8a)dhr|, Pinar g Our parallel (theoretically efficient) m Our parallel (theoretically efficient + optimized) 12

—

[1] Sariyuce,

Preliminaries

Preliminaries
Parallel Computation graph

\Y%

Work = total # operations

Span = longest dependency
path

\Y%

> Running time < (work / #

processors) + O(span) ;
> Work-efficient = work matches
best sequential time

complexity

Graph orientation

> o = arboricity = minimum # of spanning forests needed to cover
all edges of the graph
o Upper bounded by O(v'm) where m = # edges

> c-orientation: Direct graph such that each vertex’s out-degree is upper
bounded by c

> Arboricity orientation: O(a)-orientation

> QOur prior work: Two theoretically efficient arboricity orientation
algorithms (1!

[1] Shi, Dhulipala, Shun (2021)
15

Parallel nucleus
decomposition

(r, s)-nucleus decomposition (r=3, s=4)

a f

> Direct the graph (DG) using an arboricity
orientation

> Count # s-cliques per r-clique using DG

> Construct a bucketing structure mapping r-
cliques to a bucket based on # s-cliques

C > While not all r-cliques have been peeled:
O Peel set of r-cliques with minimum s-clique

count
O Update s-cliqgue counts of remaining r-cliques

17
P

(r, s)-nucleus decomposition (r=3, s=4)

a f

> Direct the graph (DG) using an arboricity
orientation

> Count # s-cliques per r-clique using DG

> Construct a bucketing structure mapping r-
cliques to a bucket based on # s-cliques

C > While not all r-cliques have been peeled:
O Peel set of r-cliques with minimum s-clique

count
O Update s-cliqgue counts of remaining r-cliques

18
P

(r, s)-nucleus decomposition (r=3, s=4)

a f
o 4 > Direct the graph (DG) using an arboricity
orientation
d C > Count # s-cliques per r-clique using DG
g > Construct a bucketing structure mapping r-

cliques to a bucket based on # s-cliques

> While not all r-cliques have been peeled:
O Peel set of r-cliques with minimum s-clique

count
O Update s-cliqgue counts of remaining r-cliques

No 4-cliques: cdg

One 4-clique: All triples in
{a,b,e,f} except abe

Two 4-cliques: All triples in
{a,b,c,d,e} except abe

Three 4-cliques: abe .

(r, s)-nucleus decomposition (r=3, s=4)

a f
o 4 > Direct the graph (DG) using an arboricity
orientation
d C > Count # s-cliques per r-clique using DG
g > Construct a bucketing structure mapping r-

cliques to a bucket based on # s-cliques

> While not all r-cliques have been peeled:
O Peel set of r-cliques with minimum s-clique

count
O Update s-cliqgue counts of remaining r-cliques

No 4-cliques: cdg

One 4-clique: All triples in
{a,b,e,f} except abe

Two 4-cliques: All triples in
{a,b,c,d,e} except abe

Three 4-cliques: abe -

(r, s)-nucleus decomposition (r=3, s=4)

a f
o 4 > Direct the graph (DG) using an arboricity
orientation
d C > Count # s-cliques per r-clique using DG
> Construct a bucketing structure mapping r-
cliques to a bucket based on # s-cliques
No 4-cliques:

> While not all r-cliques have been peeled:
O Peel set of r-cliques with minimum s-clique

count
O Update s-cliqgue counts of remaining r-cliques

One 4-clique: All triples in
{a,b,e,f} except abe

Two 4-cliques: All triples in
{a,b,c,d,e} except abe

Three 4-cliques: abe »

(r, s)-nucleus decomposition (r=3, s=4)

a f
. 4 > Direct the graph (DG) using an arboricity
orientation
d C > Count # s-cliques per r-clique using DG
> Construct a bucketing structure mapping r-
cliques to a bucket based on # s-cliques
No 4-cliques:

> While not all r-cliques have been peeled:
O Peel set of r-cliques with minimum s-clique

count
O Update s-cliqgue counts of remaining r-cliques

One 4-clique: All triples in
{a,b,e,f} except abe

Two 4-cliques: All triples in
{a,b,c,d,e} except abe

Three 4-cliques: abe >

(r, s)-nucleus decomposition (r=3, s=4)

a
. h > Direct the graph (DG) using an arboricity
orientation
d C > Count # s-cliques per r-clique using DG
> Construct a bucketing structure mapping r-
cliques to a bucket based on # s-cliques
No 4-cliques:)]
N > While not all r-cliques have been peeled:
One 4-clique:
Two 4-cliques: All triples in O Peel set of r-cliqgues with minimum s-clique
{a’b,c’d,e} count
Three 4-cliques: O Update s-cliqgue counts of remaining r-cliques

23
P

(r, s)-nucleus decomposition (r=3, s=4)

a
. h > Direct the graph (DG) using an arboricity
orientation
d C > Count # s-cliques per r-clique using DG
> Construct a bucketing structure mapping r-
cliques to a bucket based on # s-cliques
No 4-cliques:)]
N > While not all r-cliques have been peeled:
One 4-clique:
Two 4-cliques: Al triples in O Peel set of r-cliqgues with minimum s-clique
{a,b,c,d,e} count
Three 4-cliques: O Update s-cliqgue counts of remaining r-cliques

24
P

(r, s)-nucleus decomposition (r=3, s=4)

> Direct the graph (DG) using an arboricity
orientation

> Count # s-cliques per r-clique using DG

> Construct a bucketing structure mapping r-
cliques to a bucket based on # s-cliques

> While not all r-cliques have been peeled:
O Peel set of r-cliques with minimum s-clique

count
O Update s-cliqgue counts of remaining r-cliques

No 4-cliques:

One 4-clique:
Two 4-cliques:
Three 4-cliques:

25
P

(r, s)-nucleus decomposition

0(m) work, 0(log?n) span > Direct the graph (DG) using an arboricity
orientation

> Count # s-cliques per r-clique using DG

> Construct a bucketing structure mapping r-
cliques to a bucket based on # s-cliques

> While not all r-cliques have been peeled:
O Peel set of r-cliques with minimum s-clique

count
O Update s-cliqgue counts of remaining r-cliques

0(ma’~?2) work,
O(slogn) span whp

Shi, Dhulipala, Shun (2021)
26
r

(r, s)-nucleus decomposition

0(m) work, 0(log?n) span > Direct the graph (DG) using an arboricity
orientation

> Count # s-cliques per r-clique using DG

> Construct a bucketing structure mapping r-
cliques to a bucket based on # s-cliques

> While not all r-cliques have been peeled:
O Peel set of r-cliques with minimum s-clique

count
Subgoal 2 == O Update s-clique counts of remaining r-cliques

0 (ma’s~?%) work,
O(slogn) span whp

Subgoal 1

27
P

How do we peel r-cliqgues?

> Subgoal 1: Away to keep track of r-cliques with min s-clique count

> Intheory: Use a batch-parallel Fibonacci heap 1]
O kinsertions: O(k) amortized expected work, 0(logn) span whp
O Extract min: O(logn) amortized expected work, O (logn) span whp

> |n practice: Fibonacci heaps are not efficient
o Julienne: Efficient parallel bucketing structure [2]

[1] Shi, Shun (2020)

[2] Dhulipala, Blelloch, Shun (2017) ”

In practice: Store r-cliques

> To save space:
> Two-level array and hash table:

a b c d e f
/ ?l
(cd, 2) | (ef, 1) || (ef, 1) | (df, 2) | (de, 2) | | (ef, 1)
(cd, 2)|(bc, 1) (bd, 1)| (fe, 1) |(be, 1)| (ef, 1)

Refer to r-cliques by index in last-level tables

Additional optimization for cache behavior: Store last-level tables contiguously in
memory

29

Space savings compared to standard hash table:

Up to 1.8x reduction in space usage on (2, 3)-nucleus
and (2, 4)-nucleus

Up to 2.2x reduction in space usage on (3, 4)-nucleus
Up to 2.5x reduction in space usage on (4, 5)-nucleus

(r, s)-nucleus decomposition

0(m) work, 0(log?n) span > Direct the graph (DG) using an arboricity
orientation
> Count # s-cliques per r-clique using DG

> Construct a bucketing structure mappingr-
O(ma™* + plogn) cliques to a bucket based on # s-cliques

amortized expected work,) .
0 > While not all r-cliques have been peeled:

O(plogn) span whp . . = .
where p = # rounds to peel entire graph Peel iet of r-cliques with minimum s-clique
coun

Subgoal 2 == O Update s-clique counts of remaining r-cliques

0 (ma’s~?%) work,
O(slogn) span whp

31
P

How do we update s-cligue counts?

> Subgoal 2: A way to update s-clique counts after “deleting” r-
cliques
o Intheory and practice: We use a key lemma that improves
upon the previous best theoretical bounds for sequential
nucleus decomposition
o Inpractice: Also use software optimizations

32

Theoretically: Update s-cliqgue counts

Subgoal 2: A way to update s-clique counts after “deleting” r-
cliques

Modify parallel s-clique counting subroutine to efficiently obtain
updated s-clique counts from “deleted” r-cliques

Theorem: Over all c-cliquesin agraph C, = {vy, ..., v},
Y.c, min deg(v;) = O(ma®1).[

1<i<c

[1] Eden, Ron, Seshadhri 2020

(r, s)-nucleus decomposition

0(m) work, 0(log?n) span > Direct the graph (DG) using an arboricity
orientation

> Count # s-cliques per r-clique using DG

> Construct a bucketing structure mappingr-
O(ma™* + plogn) cliques to a bucket based on # s-cliques

amortized expected work,) .
0 > While not all r-cliques have been peeled:

O(plogn) span whp . . = .
where p = # rounds to peel entire graph Peel iet of r-cliques with minimum s-clique
coun

0(ma°®~?) amortized expected o Update s-clique counts of remaining r-cliques
work, O(p logn) span whp

0 (ma’s~?%) work,
O(slogn) span whp

34
r

e Practical optimizations:

e Up to a 5x speedup over our unoptimized parallel
nucleus decomposition

Experiments

Environment

30-core GCP instance (2-way hyperthreading), 240 GiB main
memory

Used real-world Stanford Network Analysis Platform (SNAP)
graphs

Comparison to other implementations

= 065 ‘ ‘
8 60 \Fastest of parallel PND, AND, AND-NN\
= Al

— o= DN DN LW W & Ut
O OTO CTO OO OrTo Ot O

Mulitplicative speedup

our parallel ARB-NUCLEUS-

NN m NN\ R NN
amazon dblp youtube skitter livejournal orkut

(0.11s) (0.40 s) (2.48 s) (24.37 s) (207.83 s) (780.94 s)
925K edges 1M edges 3M edges 1M edges 35Medges 117M edges

AND, AND-NN, PND: Sariyuce, Seshadhri, Pinar (2018) 38

Other implementations are not theoretically
efficient

> Speedups up to 55x, median 9x over fastest of PND, AND,
AND-NN (r = 3,s = 4)

> Up to 40x self-relative speedups (r < s < 7)

> PND, AND, AND-NN have large span, are not work-
efficient, or are not space-efficient (runs OOM)

39

Conclusion

Conclusion

> Summary:
o Shared-memory parallel clustering algorithms developed with
strong theoretical guarantees + practical optimizations =
highly efficient and scalable implementations

> Future directions:
O Dynamic nucleus decomposition
O Other subgraph decompositions for other classes of graphs (e.g.,
bipartite graphs)
B Generalization of (a, 8)-decomposition

41

Conclusion

> Nucleus Decomposition Github: https://github.com/jeshi96/arb-
nucleus-decomp

> Contact me: jeshi@mit.edu

42

https://github.com/jeshi96/arb-nucleus-decomp

Thank you!

In practice: Keep track of r-cliqgues
Subgoal 1: Away to keep track of r-cliques with min s-clique count
Julienne: Efficient parallel bucketing structure [1]

Requirement 1: Map r-cliques to unique keys
Requirement 2: Obtain constituent r-clique vertices from keys

[1] Dhulipala, Blelloch, Shun (2017)

In practice: Keep track of r-cliqgues

> Julienne: Efficient parallel bucketing structure 1]

a f ¢ Bucket # = # of four-cliques
¢ Each key in the buckets corresponds
e b to atriangle
® eg.,keyO=cdg key1l=abe
d C
_ g Bucket 0 Bucket 1 Bucket 2 Bucket 3
, -nuclei .
(A E) Julienne: 0 2.6,7 3,4,5, 8, 1
9, 10, 11,
12,13

[1] Dhulipala, Blelloch, Shun (2017)
45

In practice: Map r-cligues to keys

> An option for space savings:
> Two-level array and hash table:
a b c d e f

/.\\,

(ef, 1) | (cd, 2) | (ce, 2) (de, 1) (de, 1) | (dg, 0)

(bf, 1) | (ef, 1) | (bc, 2) | (bd, 2) | (be, 3)|(cd, 2) | (ce, 2) |(de, 2)

Keys = index of r-clique in last-level tables, Values = # s-cliques

Additional optimization for cache behavior: Store last-level tables contiguously in
memory 46

In practice: Obtain r-clique vertices from keys

Bucket O Bucket 1 Bucket 2 Bucket 3
Julienne: 0 26,79| |345,.s8, 1
9, 10, 11,
12,13
a b c d e f
/) U_
(ef, 1) | (cd, 2) | (ce, 2)%6, 1) | (dg, 0)
(bf, 1) | (ef, 1) | (bc, 2) | (bd, 2) | (be, 3)|(cd, 2) | (ce, 2) |(de, 2)

47

In practice: Obtain r-clique vertices from keys

> Stored pointers:

In practice: Update s-clique counts

> Subgoal 2: Away to update s-clique counts after “deleting” r-
cliques

> How do we aggregate r-cliques with updated s-clique counts in
parallel?

49

In practice: Obtain set of updated r-cliqgues

> List buffer:

Uy Uy Us
v o = [O, |
insert(Crl)T insert(Cer)T insert(Cf,«?,)T
Py Py P

> Contention only when getting a new block

Other implementations are not theoretically
efficient

> PND: Large span (> 80,000x sequential rounds compared to our alg)
> AND: Not work-efficient (up to 46x # of 4-cliques discovered
compared to our alg)

> AND-NN: Not work-efficient and not space-efficient (up to
3.5x # of 4-cliques discovered compared to our alg, out of memory for

skitter, livejournal, and orkut)

51

Up to 55x speedups over PND (average 23x)
Up to 60x speedups over AND (average 14x)
Up to 9x speedups over AND-NN (average 3x)

AND-NN runs out of memory on graphs with > 11 million
edges

Up to 40x self-relative parallel speedups

(r, s)-nucleus decomposition

> s-cligue degree of ar-clique: Number of s-cliques each r-clique
participates in

> (r,s)-nucleus decomposition: Repeatedly find + “delete” r-clique
with min s-clique degree

Entire graph is in
a 3-triangle-core

Entire graphisin |
a2-(2,3)nucleus ‘ /
\

1-
(r

(r, s)-nucleus decomposition

> s-cligue degree of ar-clique: Number of s-cliques each r-clique
participates in

> (r,s)-nucleus decomposition: Repeatedly find + “delete” r-clique
with min s-clique degree

(3, 4) nuclei 4 ®
=3,s=4) \ p

54

