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How do we cluster a graph?

▷ A fundamental idea:

How well-connected are certain nodes or subsets of 
nodes in a graph?
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“Well-connected” nodes

▷ k-core: Repeatedly find + “delete” min degree vertex
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2-core

3-core

3-core

Formally: A k-core is an induced subgraph where every vertex has degree at least k



A problem with k-core

▷ k-core: Repeatedly find + “delete” min degree vertex
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Celebrity
Entire graph is in 
a 3-core



s-clique peeling

▷ s-clique degree: Number of s-cliques each vertex participates in

▷ s-clique peeling: Repeatedly find + “delete” min s-clique degree vertex
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Celebrity
3-triangle cores
(s = 3)



(r, s)-nucleus decomposition

▷ s-clique degree of a r-clique: Number of s-cliques each r-clique 
participates in

▷ (r, s)-nucleus decomposition: Repeatedly find + “delete” r-clique 
with min s-clique degree
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2-(      ,     ) nuclei
(r = 2, s = 3)

(r = 2, s = 3 is also known as k-truss)



(r, s)-nucleus decomposition
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facebook graph (88k edges)

(1, 3)-nuclei = 
triangle-peeling(1, 2)-nuclei = k-core

Sariyuce, Seshadhri, Pinar, Catalyurek (2017)



(r, s)-nucleus decomposition
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(3, 4)-nuclei

facebook graph (88k edges)

Sariyuce, Seshadhri, Pinar, Catalyurek (2017)



Main results

▷ New shared-memory parallel algorithms for nucleus 
decomposition with strong theoretical guarantees

▷ Comprehensive evaluation, showing we outperform state-of-the-
art parallel algorithms by a couple orders of magnitude
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Computational barriers: Sequential subgraph 
decomposition can be slow

▷ Environment: 30-core GCP instance (2-way 
hyperthreading), 240 GiB main memory

▷ Goal: < 15 min
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Graph # Edges Sequential (3, 4)-
nucleus decomp [1]

as-skitter 11 million 8.5 minutes
livejournal 34 million 3.3 hours
orkut 117 million > 6 hours

[1] Sariyuce, Seshadhri, Pinar, Catalyurek (2017)
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Theoretically efficient algorithms are fast
▷ Previous parallel nucleus decomposition [2]: Not theoretically efficient
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[1] Sariyuce, 
Seshadhri, Pinar, 
Catalyurek (2017)
[2] Sariyuce, 
Seshadhri, Pinar 
(2018)
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Practical optimizations
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[1] Sariyuce, 
Seshadhri, Pinar, 
Catalyurek (2017)
[2] Sariyuce, 
Seshadhri, Pinar 
(2018)

3.7 min

3.2 hrs
1.3 hrs

50 sec

14 min 21 min

24 sec

3.3 min

13 min

Timed out
3.3 hrs

8.4 min



Preliminaries
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Preliminaries

▷ Work = total # operations

▷ Span = longest dependency 
path

▷ Running time ≤ (work / # 
processors) + O(span)

▷ Work-efficient = work matches 
best sequential time 
complexity
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Parallel computation graph

Task 0

Task 1 Task 2 Task 3

Task 4 Task 5 Task 6

Task 7

Task 8



Graph orientation

▷ ⍺ = arboricity = minimum # of spanning forests needed to cover 
all edges of the graph
○ Upper bounded by O(√#) where # = # edges

▷ c-orientation: Direct graph such that each vertex’s out-degree is upper 
bounded by c

▷ Arboricity orientation: O(⍺)-orientation

▷ Our prior work: Two theoretically efficient arboricity orientation 
algorithms [1]
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[1] Shi, Dhulipala, Shun (2021)



Parallel nucleus 
decomposition
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(r, s)-nucleus decomposition (r=3, s=4)

▷ Direct the graph (DG) using an arboricity 
orientation

▷ Count # s-cliques per r-clique using DG

▷ Construct a bucketing structure mapping r-
cliques to a bucket based on # s-cliques

▷ While not all r-cliques have been peeled:
○ Peel set of r-cliques with minimum s-clique 

count
○ Update s-clique counts of remaining r-cliques
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(r, s)-nucleus decomposition (r=3, s=4)
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(r, s)-nucleus decomposition (r=3, s=4)

No 4-cliques: cdg
One 4-clique: All triples in 
{a,b,e,f} except abe
Two 4-cliques: All triples in 
{a,b,c,d,e} except abe
Three 4-cliques: abe
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(r, s)-nucleus decomposition (r=3, s=4)
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(r, s)-nucleus decomposition (r=3, s=4)

No 4-cliques:
One 4-clique:
Two 4-cliques:
Three 4-cliques:



(r, s)-nucleus decomposition
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!(#) work, ! log() span

!(#*+,() work, 
! - log ) span whp

Shi, Dhulipala, Shun (2021)



(r, s)-nucleus decomposition
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Subgoal 2

Subgoal 1



How do we peel r-cliques?

▷ Subgoal 1: A way to keep track of r-cliques with min s-clique count

▷ In theory: Use a batch-parallel Fibonacci heap [1]

○ ! insertions: "(!) amortized expected work, "(log () span whp
○ Extract min: "(log () amortized expected work, "(log () span whp

▷ In practice: Fibonacci heaps are not efficient
○ Julienne: Efficient parallel bucketing structure [2]
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[1] Shi, Shun (2020)
[2] Dhulipala, Blelloch, Shun (2017)



In practice: Store r-cliques

▷ To save space:

▷ Two-level array and hash table:

Refer to r-cliques by index in last-level tables

Additional optimization for cache behavior: Store last-level tables contiguously in 
memory 29
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(cd, 2) (ef, 1) (ef, 1) (df, 2) (de, 2) (ef, 1)



In practice: Store r-cliques

▷ To save space:

▷ Two-level array and hash table:

Refer to r-cliques by index in last-level tables

Additional optimization for cache behavior: Store last-level tables contiguously in 
memory 30

a b c d e f

(cd, 2) (bc, 1) (bd, 1) (fe, 1) (be, 1) (ef, 1)

(cd, 2) (ef, 1) (ef, 1) (df, 2) (de, 2) (ef, 1)

Space savings compared to standard hash table:
Up to 1.8x reduction in space usage on (2, 3)-nucleus 
and (2, 4)-nucleus
Up to 2.2x reduction in space usage on (3, 4)-nucleus
Up to 2.5x reduction in space usage on (4, 5)-nucleus



(r, s)-nucleus decomposition
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!(#) work, ! log() span

!(#*+,() work, 
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Subgoal 2

!(#*.,( + 0 log ))
amortized expected work, 
!(0 log )) span whp

where 0 = # rounds to peel entire graph



How do we update s-clique counts?

▷ Subgoal 2: A way to update s-clique counts after “deleting” r-
cliques
○ In theory and practice: We use a key lemma that improves 

upon the previous best theoretical bounds for sequential 
nucleus decomposition

○ In practice: Also use software optimizations
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Theoretically: Update s-clique counts

▷ Subgoal 2: A way to update s-clique counts after “deleting” r-
cliques

▷ Modify parallel s-clique counting subroutine to efficiently obtain 
updated s-clique counts from “deleted” r-cliques

▷ Theorem: Over all c-cliques in a graph !" = $%,… , $" ,
∑)* min%./." deg $/ = 3(56"7%). [1]

33[1] Eden, Ron, Seshadhri 2020
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(r, s)-nucleus decomposition
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!(#) work, ! log() span

!(#*+,() work, 
! - log ) span whp

! #*+,( amortized expected 
work, !(. log )) span whp

!(#*/,( + . log ))
amortized expected work, 
!(. log )) span whp

where . = # rounds to peel entire graph

Practical optimizations: 
Up to a 5x speedup over our unoptimized parallel 
nucleus decomposition



Experiments
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Environment

▷ 30-core GCP instance (2-way hyperthreading), 240 GiB main 
memory

▷ Used real-world Stanford Network Analysis Platform (SNAP) 
graphs
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Comparison to other implementations

38AND, AND-NN, PND: Sariyuce, Seshadhri, Pinar (2018)



Other implementations are not theoretically 
efficient

▷ Speedups up to 55x, median 9x over fastest of PND, AND, 
AND-NN (! = 3, % = 4)

▷ Up to 40x self-relative speedups (! < % ≤ 7)

▷ PND, AND, AND-NN have large span, are not work-
efficient, or are not space-efficient (runs OOM) 
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Conclusion
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Conclusion

▷ Summary:
○ Shared-memory parallel clustering algorithms developed with 

strong theoretical guarantees + practical optimizations = 
highly efficient and scalable implementations

▷ Future directions:
○ Dynamic nucleus decomposition
○ Other subgraph decompositions for other classes of graphs (e.g., 

bipartite graphs)
■ Generalization of (!, #)-decomposition
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Conclusion

▷ Nucleus Decomposition Github: https://github.com/jeshi96/arb-
nucleus-decomp

▷ Contact me: jeshi@mit.edu
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https://github.com/jeshi96/arb-nucleus-decomp


Thank you!
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In practice: Keep track of r-cliques

▷ Subgoal 1: A way to keep track of r-cliques with min s-clique count

▷ Julienne: Efficient parallel bucketing structure [1]

▷ Requirement 1: Map r-cliques to unique keys

▷ Requirement 2: Obtain constituent r-clique vertices from keys
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[1] Dhulipala, Blelloch, Shun (2017)



In practice: Keep track of r-cliques

▷ Julienne: Efficient parallel bucketing structure [1]
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[1] Dhulipala, Blelloch, Shun (2017)

(      ,      )-nuclei Bucket 0 Bucket 1 Bucket 2 Bucket 3

0 2, 6, 7 3, 4, 5, 8, 
9, 10, 11, 

12, 13

1Julienne:

• Bucket # = # of four-cliques

• Each key in the buckets corresponds 
to a triangle
• e.g., key 0 = cdg, key 1 = abe
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In practice: Map r-cliques to keys

▷ An option for space savings:

▷ Two-level array and hash table:

Keys = index of r-clique in last-level tables, Values = # s-cliques

Additional optimization for cache behavior: Store last-level tables contiguously in 
memory 46

a b c d e f

(bf, 1) (ef, 1) (bc, 2) (bd, 2) (be, 3) (cd, 2) (ce, 2) (de, 2)

(ef, 1) (cd, 2) (ce, 2) (de, 1) (de, 1) (dg, 0)



In practice: Obtain r-clique vertices from keys
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Bucket 0 Bucket 1 Bucket 2 Bucket 3

0 2, 6, 7, 9 3, 4, 5, 8, 
9, 10, 11, 

12, 13

1Julienne:

a b c d e f

(bf, 1) (ef, 1) (bc, 2) (bd, 2) (be, 3) (cd, 2) (ce, 2) (de, 2)

(ef, 1) (cd, 2) (ce, 2) (de, 1) (de, 1) (dg, 0)



In practice: Obtain r-clique vertices from keys

▷ Stored pointers:
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a b c d e f g

(bf, 1) (ef, 1) (bc, 2) (bd, 2) (be, 3) (cd, 2) (ce, 2) (de, 2) (ef, 1) (cd, 2) (ce, 2) (de, 2) (de, 1) (dg, 0)



In practice: Update s-clique counts

▷ Subgoal 2: A way to update s-clique counts after “deleting” r-
cliques

▷ How do we aggregate r-cliques with updated s-clique counts in 
parallel?
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In practice: Obtain set of updated r-cliques

▷ List buffer:

▷ Contention only when getting a new block
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Other implementations are not theoretically 
efficient

▷ PND: Large span (> 80,000x sequential rounds compared to our alg)

▷ AND: Not work-efficient (up to 46x # of 4-cliques discovered 
compared to our alg)

▷ AND-NN: Not work-efficient and not space-efficient (up to 
3.5x # of 4-cliques discovered compared to our alg, out of memory for 
skitter, livejournal, and orkut)
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Comparison to other implementations

52
ND: Sariyuce, Seshadhri, Pinar, Catalyurek (17)
AND, AND-NN, PND: Sariyuce, Seshadhri, Pinar (18)

Up to 55x speedups over PND (average 23x)
Up to 60x speedups over AND (average 14x)
Up to 9x speedups over AND-NN (average 3x)

AND-NN runs out of memory on graphs with > 11 million 
edges

Up to 40x self-relative parallel speedups



(r, s)-nucleus decomposition

▷ s-clique degree of a r-clique: Number of s-cliques each r-clique 
participates in

▷ (r, s)-nucleus decomposition: Repeatedly find + “delete” r-clique 
with min s-clique degree
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Entire graph is in 
a 3-triangle-core

Entire graph is in 
a 2-(2, 3) nucleus



(r, s)-nucleus decomposition

▷ s-clique degree of a r-clique: Number of s-cliques each r-clique 
participates in

▷ (r, s)-nucleus decomposition: Repeatedly find + “delete” r-clique 
with min s-clique degree
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1-(3, 4) nuclei
(r = 3, s = 4)


