
Theoretically and
Practically Efficient Parallel
Nucleus Decomposition

Laxman Dhulipala

(University of Maryland)

Julian Shun

(MIT)

Jessica Shi

(MIT / Google)

How do we cluster a graph?

▷ A fundamental idea:

How well-connected are certain nodes or subsets of
nodes in a graph?

2

“Well-connected” nodes

▷ k-core: Repeatedly find + “delete” min degree vertex

3

2-core

3-core

3-core

Formally: A k-core is an induced subgraph where every vertex has degree at least k

A problem with k-core

▷ k-core: Repeatedly find + “delete” min degree vertex

4

Celebrity
Entire graph is in
a 3-core

s-clique peeling

▷ s-clique degree: Number of s-cliques each vertex participates in

▷ s-clique peeling: Repeatedly find + “delete” min s-clique degree vertex

5

Celebrity
3-triangle cores
(s = 3)

(r, s)-nucleus decomposition

▷ s-clique degree of a r-clique: Number of s-cliques each r-clique
participates in

▷ (r, s)-nucleus decomposition: Repeatedly find + “delete” r-clique
with min s-clique degree

6

2-(,) nuclei
(r = 2, s = 3)

(r = 2, s = 3 is also known as k-truss)

(r, s)-nucleus decomposition

7

facebook graph (88k edges)

(1, 3)-nuclei =
triangle-peeling(1, 2)-nuclei = k-core

Sariyuce, Seshadhri, Pinar, Catalyurek (2017)

(r, s)-nucleus decomposition

8

(3, 4)-nuclei

facebook graph (88k edges)

Sariyuce, Seshadhri, Pinar, Catalyurek (2017)

Main results

▷ New shared-memory parallel algorithms for nucleus
decomposition with strong theoretical guarantees

▷ Comprehensive evaluation, showing we outperform state-of-the-
art parallel algorithms by a couple orders of magnitude

9

Computational barriers: Sequential subgraph
decomposition can be slow

▷ Environment: 30-core GCP instance (2-way
hyperthreading), 240 GiB main memory

▷ Goal: < 15 min

10

Graph # Edges Sequential (3, 4)-
nucleus decomp [1]

as-skitter 11 million 8.5 minutes
livejournal 34 million 3.3 hours
orkut 117 million > 6 hours

[1] Sariyuce, Seshadhri, Pinar, Catalyurek (2017)

1

10

100

1,000

10,000

100,000

as-skitter (11M) livejournal (34M) orkut (117M)

R
un

ni
ng

 ti
m

e
(in

 s
ec

on
ds

)

Sequential [1] Parallel [2] Our parallel (theoretically efficient)

Theoretically efficient algorithms are fast
▷ Previous parallel nucleus decomposition [2]: Not theoretically efficient

11

[1] Sariyuce,
Seshadhri, Pinar,
Catalyurek (2017)
[2] Sariyuce,
Seshadhri, Pinar
(2018)

3.7 min

3.2 hrs
1.3 hrs

50 sec

14 min 21 min

Timed out3.3 hrs

8.4 min

1

10

100

1,000

10,000

100,000

as-skitter (11M) livejournal (34M) orkut (117M)

R
un

ni
ng

 ti
m

e
(in

 s
ec

on
ds

)

Sequential [1] Parallel [2]
Our parallel (theoretically efficient) Our parallel (theoretically efficient + optimized)

Practical optimizations

12

[1] Sariyuce,
Seshadhri, Pinar,
Catalyurek (2017)
[2] Sariyuce,
Seshadhri, Pinar
(2018)

3.7 min

3.2 hrs
1.3 hrs

50 sec

14 min 21 min

24 sec

3.3 min

13 min

Timed out
3.3 hrs

8.4 min

Preliminaries

13

Preliminaries

▷ Work = total # operations

▷ Span = longest dependency
path

▷ Running time ≤ (work / #
processors) + O(span)

▷ Work-efficient = work matches
best sequential time
complexity

14

Parallel computation graph

Task 0

Task 1 Task 2 Task 3

Task 4 Task 5 Task 6

Task 7

Task 8

Graph orientation

▷ ⍺ = arboricity = minimum # of spanning forests needed to cover
all edges of the graph
○ Upper bounded by O(√#) where # = # edges

▷ c-orientation: Direct graph such that each vertex’s out-degree is upper
bounded by c

▷ Arboricity orientation: O(⍺)-orientation

▷ Our prior work: Two theoretically efficient arboricity orientation
algorithms [1]

15

[1] Shi, Dhulipala, Shun (2021)

Parallel nucleus
decomposition

16

(r, s)-nucleus decomposition (r=3, s=4)

▷ Direct the graph (DG) using an arboricity
orientation

▷ Count # s-cliques per r-clique using DG

▷ Construct a bucketing structure mapping r-
cliques to a bucket based on # s-cliques

▷ While not all r-cliques have been peeled:
○ Peel set of r-cliques with minimum s-clique

count
○ Update s-clique counts of remaining r-cliques

17

a

d

f

g

b

c

e

▷ Direct the graph (DG) using an arboricity
orientation

▷ Count # s-cliques per r-clique using DG

▷ Construct a bucketing structure mapping r-
cliques to a bucket based on # s-cliques

▷ While not all r-cliques have been peeled:
○ Peel set of r-cliques with minimum s-clique

count
○ Update s-clique counts of remaining r-cliques

18

(r, s)-nucleus decomposition (r=3, s=4)
a

d

f

g

b

c

e

▷ Direct the graph (DG) using an arboricity
orientation

▷ Count # s-cliques per r-clique using DG

▷ Construct a bucketing structure mapping r-
cliques to a bucket based on # s-cliques

▷ While not all r-cliques have been peeled:
○ Peel set of r-cliques with minimum s-clique

count
○ Update s-clique counts of remaining r-cliques

19

(r, s)-nucleus decomposition (r=3, s=4)

No 4-cliques: cdg
One 4-clique: All triples in
{a,b,e,f} except abe
Two 4-cliques: All triples in
{a,b,c,d,e} except abe
Three 4-cliques: abe

a

d

f

g

b

c

e

▷ Direct the graph (DG) using an arboricity
orientation

▷ Count # s-cliques per r-clique using DG

▷ Construct a bucketing structure mapping r-
cliques to a bucket based on # s-cliques

▷ While not all r-cliques have been peeled:
○ Peel set of r-cliques with minimum s-clique

count
○ Update s-clique counts of remaining r-cliques

20

(r, s)-nucleus decomposition (r=3, s=4)

No 4-cliques: cdg
One 4-clique: All triples in
{a,b,e,f} except abe
Two 4-cliques: All triples in
{a,b,c,d,e} except abe
Three 4-cliques: abe

a

d

f

g

b

c

e

▷ Direct the graph (DG) using an arboricity
orientation

▷ Count # s-cliques per r-clique using DG

▷ Construct a bucketing structure mapping r-
cliques to a bucket based on # s-cliques

▷ While not all r-cliques have been peeled:
○ Peel set of r-cliques with minimum s-clique

count
○ Update s-clique counts of remaining r-cliques

21

(r, s)-nucleus decomposition (r=3, s=4)

No 4-cliques:
One 4-clique: All triples in
{a,b,e,f} except abe
Two 4-cliques: All triples in
{a,b,c,d,e} except abe
Three 4-cliques: abe

a

d

f

b

c

e

▷ Direct the graph (DG) using an arboricity
orientation

▷ Count # s-cliques per r-clique using DG

▷ Construct a bucketing structure mapping r-
cliques to a bucket based on # s-cliques

▷ While not all r-cliques have been peeled:
○ Peel set of r-cliques with minimum s-clique

count
○ Update s-clique counts of remaining r-cliques

22

(r, s)-nucleus decomposition (r=3, s=4)

No 4-cliques:
One 4-clique: All triples in
{a,b,e,f} except abe
Two 4-cliques: All triples in
{a,b,c,d,e} except abe
Three 4-cliques: abe

a

d

f

b

c

e

▷ Direct the graph (DG) using an arboricity
orientation

▷ Count # s-cliques per r-clique using DG

▷ Construct a bucketing structure mapping r-
cliques to a bucket based on # s-cliques

▷ While not all r-cliques have been peeled:
○ Peel set of r-cliques with minimum s-clique

count
○ Update s-clique counts of remaining r-cliques

23

(r, s)-nucleus decomposition (r=3, s=4)

No 4-cliques:
One 4-clique:
Two 4-cliques: All triples in
{a,b,c,d,e}
Three 4-cliques:

a

d

b

c

e

▷ Direct the graph (DG) using an arboricity
orientation

▷ Count # s-cliques per r-clique using DG

▷ Construct a bucketing structure mapping r-
cliques to a bucket based on # s-cliques

▷ While not all r-cliques have been peeled:
○ Peel set of r-cliques with minimum s-clique

count
○ Update s-clique counts of remaining r-cliques

24

(r, s)-nucleus decomposition (r=3, s=4)

No 4-cliques:
One 4-clique:
Two 4-cliques: All triples in
{a,b,c,d,e}
Three 4-cliques:

a

d

b

c

e

▷ Direct the graph (DG) using an arboricity
orientation

▷ Count # s-cliques per r-clique using DG

▷ Construct a bucketing structure mapping r-
cliques to a bucket based on # s-cliques

▷ While not all r-cliques have been peeled:
○ Peel set of r-cliques with minimum s-clique

count
○ Update s-clique counts of remaining r-cliques

25

(r, s)-nucleus decomposition (r=3, s=4)

No 4-cliques:
One 4-clique:
Two 4-cliques:
Three 4-cliques:

(r, s)-nucleus decomposition

▷ Direct the graph (DG) using an arboricity
orientation

▷ Count # s-cliques per r-clique using DG

▷ Construct a bucketing structure mapping r-
cliques to a bucket based on # s-cliques

▷ While not all r-cliques have been peeled:
○ Peel set of r-cliques with minimum s-clique

count
○ Update s-clique counts of remaining r-cliques

26

!(#) work, ! log() span

!(#*+,() work,
! - log) span whp

Shi, Dhulipala, Shun (2021)

(r, s)-nucleus decomposition

▷ Direct the graph (DG) using an arboricity
orientation

▷ Count # s-cliques per r-clique using DG

▷ Construct a bucketing structure mapping r-
cliques to a bucket based on # s-cliques

▷ While not all r-cliques have been peeled:
○ Peel set of r-cliques with minimum s-clique

count
○ Update s-clique counts of remaining r-cliques

27

!(#) work, ! log() span

!(#*+,() work,
! - log) span whp

Subgoal 2

Subgoal 1

How do we peel r-cliques?

▷ Subgoal 1: A way to keep track of r-cliques with min s-clique count

▷ In theory: Use a batch-parallel Fibonacci heap [1]

○ ! insertions: "(!) amortized expected work, "(log () span whp
○ Extract min: "(log () amortized expected work, "(log () span whp

▷ In practice: Fibonacci heaps are not efficient
○ Julienne: Efficient parallel bucketing structure [2]

28

[1] Shi, Shun (2020)
[2] Dhulipala, Blelloch, Shun (2017)

In practice: Store r-cliques

▷ To save space:

▷ Two-level array and hash table:

Refer to r-cliques by index in last-level tables

Additional optimization for cache behavior: Store last-level tables contiguously in
memory 29

a b c d e f

(cd, 2) (bc, 1) (bd, 1) (fe, 1) (be, 1) (ef, 1)

(cd, 2) (ef, 1) (ef, 1) (df, 2) (de, 2) (ef, 1)

In practice: Store r-cliques

▷ To save space:

▷ Two-level array and hash table:

Refer to r-cliques by index in last-level tables

Additional optimization for cache behavior: Store last-level tables contiguously in
memory 30

a b c d e f

(cd, 2) (bc, 1) (bd, 1) (fe, 1) (be, 1) (ef, 1)

(cd, 2) (ef, 1) (ef, 1) (df, 2) (de, 2) (ef, 1)

Space savings compared to standard hash table:
Up to 1.8x reduction in space usage on (2, 3)-nucleus
and (2, 4)-nucleus
Up to 2.2x reduction in space usage on (3, 4)-nucleus
Up to 2.5x reduction in space usage on (4, 5)-nucleus

(r, s)-nucleus decomposition

▷ Direct the graph (DG) using an arboricity
orientation

▷ Count # s-cliques per r-clique using DG

▷ Construct a bucketing structure mapping r-
cliques to a bucket based on # s-cliques

▷ While not all r-cliques have been peeled:
○ Peel set of r-cliques with minimum s-clique

count
○ Update s-clique counts of remaining r-cliques

31

!(#) work, ! log() span

!(#*+,() work,
! - log) span whp

Subgoal 2

!(#*.,(+ 0 log))
amortized expected work,
!(0 log)) span whp

where 0 = # rounds to peel entire graph

How do we update s-clique counts?

▷ Subgoal 2: A way to update s-clique counts after “deleting” r-
cliques
○ In theory and practice: We use a key lemma that improves

upon the previous best theoretical bounds for sequential
nucleus decomposition

○ In practice: Also use software optimizations

32

Theoretically: Update s-clique counts

▷ Subgoal 2: A way to update s-clique counts after “deleting” r-
cliques

▷ Modify parallel s-clique counting subroutine to efficiently obtain
updated s-clique counts from “deleted” r-cliques

▷ Theorem: Over all c-cliques in a graph !" = $%,… , $" ,
∑)* min%./." deg $/ = 3(56"7%). [1]

33[1] Eden, Ron, Seshadhri 2020

(r, s)-nucleus decomposition

▷ Direct the graph (DG) using an arboricity
orientation

▷ Count # s-cliques per r-clique using DG

▷ Construct a bucketing structure mapping r-
cliques to a bucket based on # s-cliques

▷ While not all r-cliques have been peeled:
○ Peel set of r-cliques with minimum s-clique

count
○ Update s-clique counts of remaining r-cliques

34

!(#) work, ! log() span

!(#*+,() work,
! - log) span whp

! #*+,(amortized expected
work, !(. log)) span whp

!(#*/,(+ . log))
amortized expected work,
!(. log)) span whp

where . = # rounds to peel entire graph

(r, s)-nucleus decomposition

▷ Direct the graph (DG) using an arboricity
orientation

▷ Count # s-cliques per r-clique using DG

▷ Construct a bucketing structure mapping r-
cliques to a bucket based on # s-cliques

▷ While not all r-cliques have been peeled:
○ Peel set of r-cliques with minimum s-clique

count
○ Update s-clique counts of remaining r-cliques

35

!(#) work, ! log() span

!(#*+,() work,
! - log) span whp

! #*+,(amortized expected
work, !(. log)) span whp

!(#*/,(+ . log))
amortized expected work,
!(. log)) span whp

where . = # rounds to peel entire graph

Practical optimizations:
Up to a 5x speedup over our unoptimized parallel
nucleus decomposition

Experiments

36

Environment

▷ 30-core GCP instance (2-way hyperthreading), 240 GiB main
memory

▷ Used real-world Stanford Network Analysis Platform (SNAP)
graphs

37

Comparison to other implementations

38AND, AND-NN, PND: Sariyuce, Seshadhri, Pinar (2018)

Other implementations are not theoretically
efficient

▷ Speedups up to 55x, median 9x over fastest of PND, AND,
AND-NN (! = 3, % = 4)

▷ Up to 40x self-relative speedups (! < % ≤ 7)

▷ PND, AND, AND-NN have large span, are not work-
efficient, or are not space-efficient (runs OOM)

39

Conclusion

40

Conclusion

▷ Summary:
○ Shared-memory parallel clustering algorithms developed with

strong theoretical guarantees + practical optimizations =
highly efficient and scalable implementations

▷ Future directions:
○ Dynamic nucleus decomposition
○ Other subgraph decompositions for other classes of graphs (e.g.,

bipartite graphs)
■ Generalization of (!, #)-decomposition

41

Conclusion

▷ Nucleus Decomposition Github: https://github.com/jeshi96/arb-
nucleus-decomp

▷ Contact me: jeshi@mit.edu

42

https://github.com/jeshi96/arb-nucleus-decomp

Thank you!

43

In practice: Keep track of r-cliques

▷ Subgoal 1: A way to keep track of r-cliques with min s-clique count

▷ Julienne: Efficient parallel bucketing structure [1]

▷ Requirement 1: Map r-cliques to unique keys

▷ Requirement 2: Obtain constituent r-clique vertices from keys

44

[1] Dhulipala, Blelloch, Shun (2017)

In practice: Keep track of r-cliques

▷ Julienne: Efficient parallel bucketing structure [1]

45

[1] Dhulipala, Blelloch, Shun (2017)

(,)-nuclei Bucket 0 Bucket 1 Bucket 2 Bucket 3

0 2, 6, 7 3, 4, 5, 8,
9, 10, 11,

12, 13

1Julienne:

• Bucket # = # of four-cliques

• Each key in the buckets corresponds
to a triangle
• e.g., key 0 = cdg, key 1 = abe

a

d

f

g

b

c

e

In practice: Map r-cliques to keys

▷ An option for space savings:

▷ Two-level array and hash table:

Keys = index of r-clique in last-level tables, Values = # s-cliques

Additional optimization for cache behavior: Store last-level tables contiguously in
memory 46

a b c d e f

(bf, 1) (ef, 1) (bc, 2) (bd, 2) (be, 3) (cd, 2) (ce, 2) (de, 2)

(ef, 1) (cd, 2) (ce, 2) (de, 1) (de, 1) (dg, 0)

In practice: Obtain r-clique vertices from keys

47

Bucket 0 Bucket 1 Bucket 2 Bucket 3

0 2, 6, 7, 9 3, 4, 5, 8,
9, 10, 11,

12, 13

1Julienne:

a b c d e f

(bf, 1) (ef, 1) (bc, 2) (bd, 2) (be, 3) (cd, 2) (ce, 2) (de, 2)

(ef, 1) (cd, 2) (ce, 2) (de, 1) (de, 1) (dg, 0)

In practice: Obtain r-clique vertices from keys

▷ Stored pointers:

48

a b c d e f g

(bf, 1) (ef, 1) (bc, 2) (bd, 2) (be, 3) (cd, 2) (ce, 2) (de, 2) (ef, 1) (cd, 2) (ce, 2) (de, 2) (de, 1) (dg, 0)

In practice: Update s-clique counts

▷ Subgoal 2: A way to update s-clique counts after “deleting” r-
cliques

▷ How do we aggregate r-cliques with updated s-clique counts in
parallel?

49

In practice: Obtain set of updated r-cliques

▷ List buffer:

▷ Contention only when getting a new block

50

Other implementations are not theoretically
efficient

▷ PND: Large span (> 80,000x sequential rounds compared to our alg)

▷ AND: Not work-efficient (up to 46x # of 4-cliques discovered
compared to our alg)

▷ AND-NN: Not work-efficient and not space-efficient (up to
3.5x # of 4-cliques discovered compared to our alg, out of memory for
skitter, livejournal, and orkut)

51

Comparison to other implementations

52
ND: Sariyuce, Seshadhri, Pinar, Catalyurek (17)
AND, AND-NN, PND: Sariyuce, Seshadhri, Pinar (18)

Up to 55x speedups over PND (average 23x)
Up to 60x speedups over AND (average 14x)
Up to 9x speedups over AND-NN (average 3x)

AND-NN runs out of memory on graphs with > 11 million
edges

Up to 40x self-relative parallel speedups

(r, s)-nucleus decomposition

▷ s-clique degree of a r-clique: Number of s-cliques each r-clique
participates in

▷ (r, s)-nucleus decomposition: Repeatedly find + “delete” r-clique
with min s-clique degree

53

Entire graph is in
a 3-triangle-core

Entire graph is in
a 2-(2, 3) nucleus

(r, s)-nucleus decomposition

▷ s-clique degree of a r-clique: Number of s-cliques each r-clique
participates in

▷ (r, s)-nucleus decomposition: Repeatedly find + “delete” r-clique
with min s-clique degree

54

1-(3, 4) nuclei
(r = 3, s = 4)

